stems biology of coupled biological oscillators

Franck Delaunay Institut de Biologie Valrose, Nice *Université Côte d'Azur -CNRS-INSERM*

Ecole thématique Biorégul, 5-9 juin 2023

The CDK oscillator drives the cell cycle

Daily rhythms of cell division cycle are universal

- Kellicott, W. The daily periodicity of cell division and of elongation in the root of Allium. **Bull. Torrey Bot. Club**, 31: **1904**
- Fortuyn-Van Leyden, Droogleever. Some observations on periodic nuclear division in the cat. Proc. Soc. of Sciences, Amsterdam, 19: 38, 1916.
- Thuringer, J. M. Studies on cell division in the human epidermis. Anat. Record, 40: 1, 1928

DNA synthesis in zebrafish tissues

Laranjeiro et al, PNAS 2012

Cell cycle transcripts are enriched in the colon mucosa circadian transcriptome

Circadian transcriptomics

GO term	Count	%	p-value
GO:0022402~cell cycle process	36	22	1.91E-24
GO:0000279~M phase	32	20	2.38E-24
GO:0007049~cell cycle	42	26	5.55E-24

Mitotic genes

Weel

Fishing rhythmic genes in liver

The Rev-ERB/ROR loop drives *p21* oscillations in liver

Compromised proliferation of *Bmal1^{-/-}* hepatocytes

Molecular links between the clock and the cell cycle in vertebrates

Matsuo et al, Sicence 2003 Geri et al, Cell 2006 Grechez-Cassiau et al , JBC 2008 Kang et al, PNAS 2010 Kowalska et al, PNAS 2013

Are the mammalian cell cycle and clock coupled oscillators ?

- Can we demonstrate experimentally this coupling ?
- What is the coupling mode?
- How is coupling influenced by external perturbations ?
- Build mathematical models to better understand the behaviour of the coupled system ?

Monitoring of the entire cell cycle progression in single cells using FUCCI

Sakaue-Sawano et al, Cell 2008

Visualizing the dynamics of the clock and the cell cycle in single cells

NIH3T3-RVNP

- Live cells
- Single cells
- Real time

- High temporal resolution (min)
- Spatial Information
- Variability

Nagoshi et al, Cell 2004 Feillet et al , PNAS 2014

Visualizing the dynamics of the clock and the cell cycle in single cells

NIH3T3-RVNP+FUCCI

Nagoshi et al, Cell 2004 Feillet et al , PNAS 2014

From images to global phase dynamics of lineages

The clock and the cell cycle oscillate at similar periods in unsynchronised cells

Clock: $21.9 \pm 1.1 h$ Cell cycle: $21.3 \pm 1.3 h$ A fixed phase relationship between the clock and the cell cycle

Mean clock phase at division: 3.97 ± 0.14 radians

The clock and the cell cycle display a fixed phase relationship across generations

Cell cycle phase dependent expression of *Rev-erbα* and *Per2* in human HaCaT skin cells

Joint trajectory for a 1:1 phase-locked system

One single coupling region can explain different regimen

15 % FBS

10 % FBS + dex pulse

20 % FBS + dex pulse

Simulation of a 3:2 coupling ratio

Two coexisting coupling regimes in synchronized cells cultured in 20 % FBS

21

Clustering analysis in 20 % FBS

Population A (1:1 ratio) Clock phase at division *vs* experiment time

Clustering analysis in 20 % FBS

Population B (3:2 ratio) Clock phase at division *vs* experiment time

=> 3 clock phases at division

Clustering analysis in 20 % FBS

Modelling the the bidirectional coupling of the clock-cell cycle system

Systems's synchronisation

Response to Dex pulse

Almeida et al JTB 2020 Almeida et al RSOS 2020 Almeida et al JBCB 2020

Role of G2/M in the circadian clock-cell cycle coupling

Phase locking to coordinate multiple oscillators in cells

Conclusion

- Multiple molecular links between the clock and the cell cycle
- The cell cycle has a significant influence on the clock in unperturbed mammalian cells
- A robust phase-locking mechanism
- Bidirectional model explains the differetial dynamics of Dexamthasone pulsed dividing cells (*S Almeida & M Chaves*)
- Modelling suggests a role for *Bmal1* inhibition around G2/M for period and phase control (*P Traynard & F Fages*)