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Lifeware’s Motto: Cells Compute

• Cells process information from external signals
– noise filtering, ultrasensitivity
– analog-digital conversion

• Make informed decisions
– metabolism change
– cell division 
– differentiation
– migration
– apoptosis

• Control process execution
– cell cycle progression, DNA repair
– homeostasis

What are the programs ? 
Chemical Reaction Networks (CRN)
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Systems Biology

After the end of Human Genome Project (2000)
1. Analyze post-genomic data: RNA, proteins
Data produced with high-throughput technologies
à Databases GO, KEGG, BioCyc, etc.

2. Understand and predict cell processes with protein/RNA/gene networks
à Modelling & analysis software (CellDesigner, Cytoscape, Copasi, Biocham, Kappa…)
à Model exchange format for CRN models: Systems Biology Markup Language (SBML)
à Model repositories: e.g. biomodels.net 2000 hand-made models 10000 imported from metabolic maps
à Simulation of a whole-cell mycoplasma genitalium [Karr  Covert et al 12]

“Bioinformatics is the study of informatic processes in biotic systems” Ben Hessper, Paulien Hodgeweg 1970
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“Systems Biology aims at systems-level understanding which requires a set of 
principles and methodologies that links the behaviors of molecules to systems 
characteristics and functions.”        Hiroaki Kitano, ICSB 2000



Synthetic Biology

Design and implement new functions in either living cells or artificial devices

Synthetic gene networks added to living cells
– MIT BioBrick standard biological part,  IGEM competition since 2004
– Production of an antimalarial drug in engineered yeast (UC Berkeley, SANOFI)
– Biofuels (e.g. from engineered algae)

DNA computing
– Artificial double strand DNA [Phillips Cardelli 2009]

– Turing complete DNA stack programming [Cook Soloveichik Winfree Bruck 2009 ]

Protein computing
– Cell signal processing, process control [Oishi Klavins 2011, Briat Gupta Khammash 2016] 

– Turing complete CRN analog computation [F- Le Guludec Bournez Pouly 2017 next lecture]

– Artificial DNA-free micro-reactor diagnosis vesicles [Courbet Amar F- Renard Molina 2018]

BIOCHAM [F- Le Guludec Bournez Pouly CMSB 2017]

CRN++ [Varsik Soloveichik Kurshid NatComp 2020]
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Analog Computation with CRN Programs

Theorem (Turing-completeness of finite CRNs with ODE semantics) [F- Le Guludec Bournez Pouly CMSB 2017]

Any computable real function (i.e. by a Turing machine with arbitrary requested precision given in input) can 
be computed by a finite CRN with mass action law kinetics and at most bimolecular reactions.
Theorem (Online computation, robust stabilization) [Hemery F- CMSB 2022]

The set of real functions computable online by a CRN is the set of real algebraic functions 𝑃(𝑥, 𝑓(𝑥)) = 0.

Example Natural MAPK CRN structure       Biocham-compiler-generated CRN for I/O function y = )!

*+)!
~ I/O function of MAPK signaling

[Huang Ferrel PNAS 1996]

stiff sigmoid
analogx-digitaly converter

solution of 𝑘 + 𝑥! 𝑦 − 𝑥! = 0
hence CRN-computable online
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Plan of my Two Lectures

Lecture 1: CRN as a Modelling/Programming Language
1. CRN syntax, hierarchy of semantics and typings by abstract interpretation
2. Model reductions: slow-fast ODE-based decomposition and general graph-theoretic CRN reductions

3. Specifying behaviors in (quantitative) temporal logics: verification, robustness measure, parameter search
4. Case study on coupled modeling of the cell cycle and circadian clock
5. Conclusion on high-level rule-based CRN models versus low-level ODE models

Lecture 2: The cell, an analog chemical computer
1. Turing completeness of continuous CRN over a finite set of abstract molecular species
2. Compiler of mathematical functions in abstract CRNs
3. Comparisons to natural CRNs acquired by natural evolution and artificial evolution
4. Conclusion on engineered design by decomposition and learnt design by evolution
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1. CRN Syntax

A CRN is finite set of formal chemical reactions.

A reaction is a triplet (𝑅, 𝑃, 𝑓) also noted 𝑅 →" 𝑃 where
• 𝑅 is a multiset of reactant species, written with stoichiometric coefficients 𝛼#𝑅# +⋯+ 𝛼$𝑅$
• 𝑃 is a multiset of product species, written with stoichiometric coefficients 𝛽#𝑃# +⋯+ 𝛽$𝑃$
• A catalyst is a species that appears as both reactant and product with the same coefficient.
• 𝑓 is a formal rate function with well-formedness conditions that should be imposed in SBML:

[F- Gay Soliman. Inferring Reaction Systems from Ordinary Differential Equations. TCS 2015]

– 𝑆 ∈ 𝑅 if and only if !"
!#
≠ 0 (negative for an inhibitor reactant)

– 𝑆 ∈ 𝑅, !"
!$ > 0 imply 𝑓 𝑆 = 0 = 0 (ensures positivity)

E.g. Mass action law kinetic function 𝑓 = 𝑘 𝑅#
%! …𝑅$

%", Michaelis-Menten kinetics &'
()'

, Hill kinetics &'
#

()'#
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Graphical Representations of CRN

Reaction hypergraph: bipartite graph of species and reactions (Petri net structure, SBGN compatible)

Influence graph: abstraction, graph labeled by influence signs 
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1) Model for representing knowledge: the more detailed the better (do not miss any known information)
2) Model for answering a concrete question: the more abstract the better (get rid of irrelevant information)

1) Generic annotated graph model [Kohn’s 99 map cell cycle]

Requires general notions of CRN structure reductions and CRN dynamics abstractions

Model Building: Two Contradictory Perspectives

2) Reduced graph models
[Tyson’s 91 model cell cycle]

2) Reduced boolean models (and’s or or’s?)

2) Reduced Petri net models (discrete levels)

2) Reduced stochastic CTMC models (intrinsic noise, time)

2) Reduced ODE models (timing)
[Tyson’s 91 model cell cycle]
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Differential semantics: concentrations, continuous time evolution 

Ordinary differential equations (ODE)          *+
*,
= −𝑘. 𝐴. 𝐵 *-

*,
= −𝑘. 𝐴. 𝐵 *.

*,
= 𝑘. 𝐴. 𝐵

ODE simulation of Tyson’s 1991 model of the cell cycle: 

CRN Semantics      A + B
!.#.$

C
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Differential semantics: concentrations, continuous time evolution 

Ordinary differential equations (ODE)          *+
*,
= −𝑘. 𝐴. 𝐵 *-

*,
= −𝑘. 𝐴. 𝐵 *.

*,
= 𝑘. 𝐴. 𝐵

Stochastic semantics: numbers of molecules, probability and time of transition (intrinsic noise)

Continuous Time Markov Chain (CTMC)     A	,	B
/ 0! , 2(04) C++,	A--,	B--

CRN Semantics      A + B
!.#.$

C
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CRN Semantics      A + B
!.#.$

C

Differential semantics: concentrations, continuous time evolution 

Ordinary differential equations (ODE)          *+
*,
= −𝑘. 𝐴. 𝐵 *-

*,
= −𝑘. 𝐴. 𝐵 *.

*,
= 𝑘. 𝐴. 𝐵

Stochastic semantics: numbers of molecules, probability and time of transition (intrinsic noise)

Continuous Time Markov Chain (CTMC)     A	,	B
/ 0! , 2(04) C++,	A--,	B--

Petri net semantics: numbers of molecules A	,	B	→ C++,	A--,	B--
Multiset rewriting
Structural invariants for ODEs
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Differential semantics: concentrations, continuous time evolution 

Ordinary differential equations (ODE)          *+
*,
= −𝑘. 𝐴. 𝐵 *-

*,
= −𝑘. 𝐴. 𝐵 *.

*,
= 𝑘. 𝐴. 𝐵

Stochastic semantics: numbers of molecules, probability and time of transition (intrinsic noise)

Continuous Time Markov Chain (CTMC)     A	,	B
/ 0! , 2(04) C++,	A--,	B--

Petri net semantics: numbers of molecules A	,	B	→ C++,	A--,	B--
Multiset rewriting
Structural invariants for ODEs

Boolean semantics: presence/absence       A	Ù B	→ C	Ù ¬A	Ù ¬B
Asynchronous transition system                  A	Ù B	→ C	Ù A	Ù ¬B

A	Ù B	→ C	Ù ¬A	Ù B
A	Ù B	→ C	Ù A	Ù B

CRN Semantics      A + B
!.#.$

C
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CRN Multiple Semantics 
Example of Lotka-Volterra Dynamics

CRN: reaction rules with kinetics
MA(k1) for A+B=>2*B

MA(k2) for A=>2*A
MA(k3) for B=>_

• ODE semantics:

sustained osscillations
• Stochastic semantics (continuous time Markov chain):

almost sure extinction of the predator

• Boolean semantics:
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Theory of Abstract Interpretation for computer programming [Cousot Cousot POPL 1977]

applied here to the CRN programming language to define 
• a hierarchy of CRN semantics
• various CRN typings (making SBML annotations formal)

Theorem (abstract interpretation       ) Galois connections 
between the syntactical, stochastic CTMC, Petri net and 
Boolean transition semantics                    [F- Soliman TCS 2008]

If a behavior is not possible in the Boolean semantics 
(verifiable by model-checking) it is not possible in the 
stochastic semantics for any reaction rates.

Boolean model behaviors may correspond to rare events.

Model Dynamics Abstractions

Stochastic semantics
(CTMC)

Differential semantics
(ODE)

Discrete semantics
(Petri Net)

Boolean semantics

Theorem (approximation        ) When volume and molecule numbers 
tend to infinity the ODE trace approximates the mean stochastic trace 
at all time points [Kurtz 1978, 1992]

Reaction set (CRN)
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Question: which transitions should be associated for 
the boolean threshold abstraction 𝛼6 𝑣 = (𝑣 > 𝜃)
instead of zero/non-zero abstraction 𝛼 𝑣 = 𝑣 ≠ 0 ?

Answer: add transitions for production or not of C, D. 
Reaction synchrony lost: equivalent to influence model 
with generalized asynchronous semantics.
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2. CRN Reductions

1. Example of Michaelis-Menten reduction
– Conservation laws
– Quasi-steady state approximation

2. Slow-fast ODE system decompositions
– Tikhonov theorem

3. General notion of CRN reduction by subgraph epimorphism (SEPI)
– Graph-theoretic model reduction operations
– NP-completeness of SEPI detection
– Automatic reconstruction of model hierarchies in BioModels.net
– Comparison between synthetic CRNs and natural CRNs
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An enzyme E binds to a substrate S to catalyze the formation of product P:
E+S àk1 C àk3 E+P
E+S ßk2 C

Mass action law kinetics ODE:
dE/dt = -k1.E.S+(k2+k3).C
dS/dt = -k1.E.S+k2.C
dC/dt = k1.E.S-(k2+k3).C
dP/dt = k3.C

Two conservation laws (species s.t. Σn
i=1Mi = constant as Σn

i=1 dMi/dt = 0, also Petri net place invariant)
E+C=E0+C0,    S+C+P=S0+C0+P0

One can eliminate two variables E= E0+C0-C and P and get the equivalent ODE system with C0  S0 fixed
dS/dt = -k1.(E0+C0-C).S+k2.C                (bad practice to deposit SBML model with invariant eliminated)
dC/dt = k1.(E0+C0).S-(k1.S+k2+k3).C     

Let us further assume C0=0, P0=0

Michaelis-Menten CRN
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Michaelis-Menten Slow/Fast Time Scales
Hydrolysis of benzoyl-L-arginine ethyl ester by trypsin (protein of 223 amino acids)
present(E,1e-8). present(S,1e-5).  E << S
parameter(k1=4e6, k2=25, k3=15).          
k1*E*S for E+S => C. 
k2*C for C => E+S.        
k3*C  for C => E+P.

Complex formation 5e-9 in 0.1s Product formation 1e-5 in 400s
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Quasi-Steady State Approximation (QSSA)

After short time assume dC/dt ≃ 0 ≃ k1E0S-(k1S+k2+k3)C  
Then C = k1E0S/(k1S+k2+k3) 

= E0S/(S+(k2+k3) /k1)
= E0S/(Km+S)  with Km=(k2+k3)/k1

Km is substrate concentration with half maximum velocity

We get dP/dt = -dS/dt = -k1(E0-C)S+k2C
= -k1E0S + (k1S+k2) E0 S / (Km+S) 
= Vm S / (Km+S) where Vm= k3E0 

Vm is maximum velocity at saturing substrate concentration

Michaelis-Menten kinetics:    Vm S/(Km+S) for S => P

C and E are eliminated but sometimes E is re-injected as a slow variable…
k3*E*S /(Km+S) for S+E => E+P

Leonor Michaelis and Maude Menten 1913     Victor Henry (X) 1903 
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Slow-Fast ODE Decomposition and Reduction to Slow Dynamics

Tikhonov theorem. 
Consider an ODE system defined for (𝑋, 𝑌) ∈ 𝑅7×𝑅8
𝑑𝑋/𝑑𝑡 = 𝑓(𝑋, 𝑌)
𝜖 𝑑𝑌/𝑑𝑡 = 𝑔(𝑋, 𝑌) with 𝜖 ≪ 1
such that for 𝑋 ∈ 𝑈 𝑔 𝑋, 𝑌 = 0 ⟺ 𝑌 = 𝐺 𝑋 with (𝑋, 𝑌) ∈ 𝑊

and 𝐺(𝑋) is an asymptotically stable fixed point for the fast subsystem 
then, 
for any initial condition (𝑋0, 𝑌0) s.t. 𝑌0 belongs to the basin of attraction of 𝐺(𝑋0) for the fast subsystem, 
the solution (𝑋(𝑡), 𝑌(𝑡)) tends to (𝑥(𝑡), 𝐺(𝑥(𝑡))), when 𝜖 → 0,
where 𝑥(𝑡) is the solution of the slow subsystem 𝑑𝑥/𝑑𝑡 = 𝑓(𝑥, 𝐺(𝑥)) with initial condition 𝑋0. 

• Limit theorem with no bound on the error.
• Solution Y=G(X) may be difficult to express and stability difficult to prove.
• Different decompositions for different regimes lead to an automaton of reduced ODE systems with gluing pb
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Model Reductions on the CRN Hypergraph Structure by
Subgraph Epimorphisms [Gay F- Soliman ECCB 2010]

Reaction hypergraph represented by bipartite graph of species and reactions.

SEPI: merge r1 r3 delete r2 SE SEPI, SISO: delete E
𝒓𝒖𝒍𝒆𝟏 → 𝒓𝒖𝒍𝒆, 𝒓𝒖𝒍𝒆𝟑 → 𝒓𝒖𝒍𝒆, 𝑺𝑬 →⊥, 𝒓𝒖𝒍𝒆𝟐 →⊥ 𝑬 →⊥

Model reduction by 4 graph edition operations:
• Delete (irrelevant) species nodes
• Delete (neglectable) reaction nodes
• Merge (similar) species nodes
• Merge (chain) reaction nodes
A graph morphism from G to G’ associates G’ nodes to G nodes and preserves G arcs
Theorem. Let G = (S, R, A) and G′ = (S′, R′, A′) be two reaction graphs.
There exists a subgraph epimorphism μ from G to G′ if and only if there exists a finite sequence 
of delete and merge operations that, when applied to G, yield a graph isomorphic to G′.

SISO: subgraph isomorphism
SEPI: subgraph epimorphism

EPI: epimorphism

)
) )
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Detecting the Existence of a SEPI between CRN Graphs

Theorem. [Gay Martinez F- Soliman Solnon DAM 2014] Let G = (S, R, A) and G′ = (S′, R′, A′) be two reaction graphs.
Deciding the existence of a subgraph epimorphism μ from G to G′ is NP-complete.

• Implemented in Biocham using Constraint Logic Program or SAT solver.
• Some timeouts in BioModels for models above 100 species

• Non-unique sepi-glb(G, G’) nor sepi-lub(G,G’) which combines details of G and G’ for free! 
• No good algorithm to restrict the merge operation to neighboring species or reactions (as in graph minors)
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SEPI-detection of Metamodels in BioModels

MAPK metamodel:

Calcium oscillation metamodel:

Circadian clock metamodel:

Also used to compare synthetic CRN to natural CRNs (next evening lecture) [F- Le Guludec Bournez Pouly CMSB 2017 
Hemery F- CMSB 2023 ?]
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{ 𝑅< 𝑥
"$(=$ > )

𝑃< 𝑥 }

̇𝑥? = a
<∈.=A

(𝑃<(𝑥?) − 𝑅< 𝑥? . 𝑓< 𝑥

Algebraic
transformation

Model Reduction Methods for CRN versus ODE Models

SEPI      
CRN                                 crn Programming language

[3]                                [3]                                             decompiler

invariant elimination
ODE                                 ode Assembler code

slow-fast
decomposition [4]                         
�̇� = 𝜖 . 𝑓 𝑥, 𝑦
�̇� = 𝑔 𝑥, 𝑦

[3] François Fages, Steven Gay, Sylvain Soliman. Inferring Reaction Systems from Ordinary Differential Equations.  TCS 2015. 
[4] Sylvain Soliman, François Fages, Ovidiu Radulescu. A constraint solving approach to model reduction by tropical equilibration. AMB, 2014.

Optimization
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Coffee ?
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4. Temporal Logics as Specification Language of CRN Behaviors

How to query the possible transitions of Kohn’s map (1999) of the cell cycle ? 
By model-checking ! [Chabrier F- CMSB 2003, Bernot Comet Peres Richard CMSB 2003, Lincoln et al PCB 2002]
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Transcription of Kohn’s Map in Reaction System 

Detail of the complexation of cdk2 with cycA and cycE :   
Total:
à 165 proteins and genes
à 532 variables
à 732 reactions

No kinetics 
Boolean state transition semantics:
• Asynchronous: selection of one reaction firing at a time:  A+B => C
• Non-deterministic: selection of one Boolean transition for that reaction:

• zero/non-zero abstraction of the stochastic/Petri net transitions (first course)
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A	Ù B	→ C	Ù ¬A	Ù ¬B
A	Ù B	→ C	Ù A	Ù ¬B
A	Ù B	→ C	Ù ¬A	Ù B
A	Ù B	→ C	Ù A	Ù B



Symbolic Representation of Boolean Transition Systems

How to represent a transition system over 
• 532 boolean variables ? 
• 2532 ∼10177 boolean states ?? >>1080 the number of atoms in the observable universe 
• 22532 sets of boolean states ???
Represent a set of states by a Boolean constraint over n Boolean variables:
• False: empty set
• True: full set of 2532 states
• A: set of 2531 states where A is present
• AÚ¬ B: set of 3.2530 states with either A present or B absent
• Of course some (bad) sets require formulae of exponential size
Represent a transition relation by a Boolean constraint over 2. 𝑛 variables
• 𝑅 𝐴#, … , 𝐴A, 𝐴’#, … , 𝐴’7 disjunction of the relation associated to each reaction
• Reaction A+B => C transition relation over set of species {A,B, C, D, E} ?

Bioregul 2023

𝐴 ∧ 𝐵 ∧ 𝐶B ∧ (𝐷B= 𝐷) ∧ (𝐸B= 𝐸)
i.e. C appears (𝐶B is true) A and B may disappear, D, E remain unchanged
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Kohn’s Map Model-Checking

BIOCHAM NuSMV symbolic model-checker time in seconds [Chabrier Fages CMSB 2003] 

Bioregul 2023

Initial state G2 Query: Time: 

Compiling of the set of initial states 
and transition system

29s

Reachability of G1 phase EF CycE 2s

Reachability of G1 phase EF CycD 1.9s

Checkpoint
for mitosis complex

¬E (¬Cdc25Nterm U Cdk1Thr161-CycB 2.2s

Oscillations CycA EG ( (EF ¬ CycA) Ù (EF CycA)) 31.8s

Oscillations CycB EG ( (EF ¬ CycB) Ù (EF CycB)) 
false ! (omission of CycB synthesis in Kohn’s map)

6s
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Computation Tree Logic CTL*
Infinite computation pathways.
Propositional logic with modal operators for qualifying when (in logical time future) 
and where (on which computation path) a Boolean proposition is true. 
Introduced for program verification and program synthesis in [Pnueli 1977]
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\ Pathways
Time

E
Exists path

A
All paths

X next EX(f) AX(f)
F

finally
EF(f)

reachability
AF(f)
liveness

G 
globally

EG(f) AG(f)
safety

U   until E (f1 U f2) A (f1 U f2)
Time

Pathways E, A

F,G,U

EF

AG



Kripke Semantics of CTL*

A Kripke structure K=(S,R) is a set S of states with a total relation RÍSxS
The truth of a formula f in a state s or on a path p of K is defined by:
p ⊨ f for a state formula f if s⊨ f where s is the initial state of p
s ⊨ f if f is a propositional formula true in s
s ⊨ E f if there is a path p starting from s such that p ⊨ f
s ⊨ A f if for every path p starting from s such that p ⊨ f
p ⊨ X f if p1 ⊨ f where p1 is the suffix of p without its first state
p ⊨ F f if $ k ≥ 0 such that pk ⊨ f where pk is the kth suffix of p
p ⊨ G f if " k ≥ 0, pk ⊨ f
p ⊨ f1 U f2 if $ k ≥ 0 ( pk ⊨ f2 Ù " j < k pj ⊨ f1 )
p ⊨ f1 R f2 if " k ≥ 0 ( pk ⊨ f2 Ú $ j < k pj ⊨ f1 )

Duality: ¬ Ef =

Bioregul 2023

A ¬ f , ¬ Ff = G ¬ f , ¬ Xf = X ¬ f,  ¬ (f 1 U f 2 ) = ¬ f 1 R ¬ f 2

Exists path
For all paths
At next time point
At some time point
At all time points
Until
Release
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CTL Fragment of CTL*

In CTL fragment, each temporal operator must be preceded by a path quantifier

Basis of three operators: EX, EG, EU
• EF f = E(true U f)       s ⊨ EF f if  $ p from s   $ k ≥ 0  pk ⊨ f
• AX f = ¬ EX ¬ f s ⊨ AX f if  " p from s   p1 ⊨ f 
• AF f = ¬ EG ¬ f s ⊨ AF f if  " p from s   $ k ≥ 0  pk ⊨ f
• AG f = ¬ EF ¬ f s ⊨ AG f if " p from s  " k ≥ 0, pk ⊨ f
• Etc…

Any CTL formula is thus a state formula and can be identified to the set of states that satisfy it
f ≃ {sÎS : s ⊨ f }                      [Emerson 90]

Example in metabolism: EF(product) = {metabolites :  present metabolites ⊨ EF(product) } 
a symbolic model-checker returns a set (or the sets) of metabolites sufficient for the production
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Biochemical Reachability Properties in CTL
(from some initial state)

Initial state = initial biological conditions = molecules present / absent (/ undetermined)

• Can the cell produce some protein P (from initial state) ? 
– EF(P) ≜ reachable(P)

• Can the cell produce P, Q and not R?  
– reachable(P^Q^¬R)

About pathways:
• Can the cell reach a given set s of states while passing by another set of states s2? 

– EF(s2^EFs)

• Is it possible to produce P without Q before ? 
– E(¬Q U P)

• If not, this gives a phenomenological non-causal notion of checkpoint
– ¬E(¬s2 U s) ≜ checkpoint(s2,s)
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• Is a given set of states s a stable state set (infinite loop with no escaping possibility)? 
– stable(s) ≜ AG(s)

• Is s a steady state (infinite loop with escaping possibility) ? 
– steady(s) ≜ EG(s)

• Can the cell reach a given stable state s? 
– reachable(stable(s)) 

alternance of path quantifiers EF AG f (not expressible in LTL)

• Must the cell reach a given stable state s? 
– AF(stable(s))

• What are the stable states? 
– Not expressible in CTL.
needs to combine CTL with enumeration, see Biocham generate_ctl(stable(s))
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Biochemical Reachability Properties in CTL
(from some initial state)



Oscillation Properties in CTL*/CTL

CTL*: EG((F ¬P) ^ (F P)) expresses possibility of oscillation but is not in CTL

CTL: EG((EF ¬P) ^ (EF P))provides a (weaker) necessary condition for oscillation

• not sufficient condition for oscillations without fairness:

P ¬ P
• also with weak fairness (no rule stays continuously fireable without being fired)

P ¬ P

P,Q
• Needs strong fairness (no rule is infinitely often fireable without being fired)
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Basic CTL Model-Checking Algorithm

Dynamic programming algorithm for computing the set of states satisfying a CTL formula: 
{sÎK : s ⊨ f } in a finite Kripke structure K.

Represent K explicitly by the finite graph of all state transitions
and iteratively label the nodes with the subformulas of f that are true in that node:
• Add proposition f to the states satisfying f
• Add EX f to the immediate predecessors of the states labeled by f
• Add EF f to all the predecessors of the states labeled by f
• Add E(f1 U f2 ) to the predecessor states of f2 while they satisfy f1
• Add EG f to the states of the subgraph satisfying f which are on a path leading to a 

non trivial (i.e. containing at least one edge) strongly connected component.

Space and time in O(|K|*|f|), 
CTL model-checking is Ptime-complete in non-succinct (explicit) representation of K
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Apply the previous basic model-checking algorithm to show

P ¬ P     ⊨ EG((EF ¬P) ^ (EF P))  
Subformulae:
P                                              1                 0
¬ P                                         0                 1
EF P 1                 0
EF ¬P 1                 1
(EF ¬P) ^ (EF P) 1                 0
EG((EF ¬P) ^ (EF P))  1 0

Example
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Symbolic CTL Model-Checking Algorithm

Represent a set of states by a symbolic boolean constraint c(V) over state variables V
e.g. 𝑝 ∨ ¬𝑞 represents the set of all states where p is present and q absent

Represent the transition relation by a boolean constraint r(V,V’) on twice state variables
e.g. the constraint 𝑝 ∨ ¬𝑝 ∧ ¬𝑝% represents the transition graph  𝑝 → ¬𝑝

Represent CTL operators by state constraint transformers
e.g. 𝐸𝑋 𝑐(𝑉) = ∃𝑉B 𝑟 𝑉, 𝑉B ∧ 𝑐(𝑉B) ≜ 𝑒𝑥 𝑐(𝑉)

constraint of having one immediate successor r(V,V’) satisfying c(V’)

e.g. 𝐴𝑋 𝑐(𝑉) = ∀𝑉B 𝑟 𝑉, 𝑉B ⇒ 𝑐(𝑉B) ≜ 𝑎𝑥 𝑐(𝑉)
constraint of having all immediate successors r(V,V’) satisfying c(V’)

Returns Boolean state constraints to satisfy an input CTL formula
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TP Chemical Signalling
http://lifeware.inria.fr/biocham4/online/notebooks/C2-19-Biochemical-Programming/22ctl.ipynb
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Logical Paradigm for Systems Biology

Use of model-checking algorithms [Lincoln et al. 2002]  [Chabrier Fages 2003]  [Bernot et al. 2004]… 

Biological process model = State Transition System K
Biological property = Temporal Logic Formula φ
Model validation = model-checking: K, s  ⊨?  φ

Model reduction = model-checking: K’?⊂K  K’, s  ⊨ φ
Static experiment design = model-checking: K, s?  ⊨ φ

Model behaviors = enumeration of true formulae: K, s  ⊨ φ?
Model Inference, dyn. exp. design = constraint solving: K?, s?  ⊨ φ

Generalizations to quantitative temporal logics
• FO-LTL(Rlin) [Rizk, Batt, F, Soliman 09]  STL [Donze Maler 12] parameter search, robustness
• SAT modulo ODE [Gao Clarke 2012] formal verification on parameter range

• CRN synthesis: K?, s?  ⊨ reachable(stable(y ≈ >%

C)>%
)
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4. Case study on coupled modeling of the cell cycle and circadian clock

Bioregul 2023 François Fages

• Time gating for mitosis by effects of clock genes on cell cycle genes 
inhibition of Wee1 synthesis by Clock-Bmal1 [Matsuo et al 2003]

• Model-based predictions on conditions of entrainment [Calzone Soliman 2006] and period doubling (24h, 48h) 
phenomena [Gerard Goldbeter 2012]

• also repression of c-Myc by Clock-Bmal1 and inhibition of p21 by Reverb-𝛼

(sunny Paris)

Mormont MC, Levi F.
Cancer chronotherapy: principles, applications, and perspectives.
Cancer, 2003.



• Linear Time Temporal logic (LTL) extends classical logic with time operators X: next, F: finally, G: 
globally, U: until

– Reachability of a stable set of states FG(s)

• First-order LTL with linear constraints, FO-LTL(Rlin), express quantitative properties about 
concentrations:

– Reachability of threshold F(x>c)
– Maximum value G(x<v)

– Distance between successive peaks 
– Amplitude of next peak

– Period constraints
– Phase constraints …

Formal Behavior Specification in Temporal Logic
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– Focus on G2/M phase
– 10 molecular species including Wee1
– 31 kinetic parameters

Variation of the cell cycle free period
by kdie degradation rate constant
(important in growing G1 phase)

Cell Cycle Model [Qu-McLellan-Weiss Model 2003]
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– 19 species, 70 parameters
– 4 genes: Per, Cry, Rev-erb α, Bmal1
– 2 negative feedback loops:

• Per-Cry
• Rev-erb α

Circadian Clock Model [Leloup Goldbeter 03] 
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Coupled Circadian Clock Model à Cell Cycle [Calzone Soliman 2006]

Time gating of mitosis hypothesis [Matsuo et al 2003]           Entrainment conditions on parameter values  

Coupling synthesis reaction of Wee1activated by Bmal1 repressed by Per-Cry:

(ksweemp+ksweem*[Bmal1])/(Kweem+kwpcn*[PC]) for _ => mWee1

kampf = 2.44832 · kimpf + 2.0071



Figure 11: DNA damage produced on phase-shifted cells with the same exposure law as
in Figure 10.

24

Figure 10: Maximum exposure preserving DNA damage under threshold 1.

phase shift, which can be attained for unsynchronized cells, DNA damage
attains 1.7, that is a 70 percent increase compared to synchronized cells.

The next specification regards the DNA repairing power of the cell.
F7: After an exposure to irinotecan is performed, DNA damage is able to
go under the threshold of 0.1 before the next exposure.
LTL(R) : G(([CPT11] > d) _ (([CPT11]  d)U([DNAdam] < 0.1))).,
where d depends on the dose of irinotecan.
Before testing the property, we decided to parameterize the lapse of time
between consecutive irinotecan exposures. Then we took advantage of the
procedure learn parameters to find the minimum k such that, if one 10-
units-exposure is performed every k hours, then property F7 is true.
Results: we found out that the minimum k multiple of 12 which makes F7
true is 36. Thus, one exposure every 36 hours should be performed in order
to allow DNA damage to be recovered before the next exposure. Then we
tried to see what it happens if, at each exposure, we double the irinotecan
dose, that is, we expose to 20 units. In this case, one exposure every 48 hours
should be done.

The last property requires the oscillating trend of proteins p53 and Mdm2
to stop before a new exposure.

23

Irinotecan Exposure Chronotherapy Optimisation [De Maria F- Soliman TCS 2011]

Coupled cycle-clock-p53Mdm2-Irinotecan model

on safe cell

Optimal control of drug exposure
• max pulses satisfying always DNAdam<1 on safe cells
• and DNA damage>1 on phase shifted cells

shifted phase

Bioregul 2023 François Fages

Cell cycle Circadian clock

p53/Mdm2 Irinotecan Injection control

S-phase:

Top1cc

DNAdam

Bmal1Wee1

Bmal1

Top1

DNA damage

p53

p21

CycECycA

Figure 6: Global schema of the coupled model.

The link between the cell cycle and circadian clock models comes from
the experiments of [33] and is reflected through a direct influence of CLOCK-
BMAL1 (Bmal1) on the synthesis of Wee1, a kinase that delays or prevents
entry into mitosis by phosphorylation of the Cdk1/CyclinB complex. This
link uses the same structure as [9] since the Circadian clock model is the
same. [45] relied on a slightly di↵erent coupling that also modified, for unclear
reasons, the reaction of CyclinB synthesis, whereas the aim here is to search
for a coupling as simple as possible and satisfying the specification. Note
that experimental results direct at a G2/M-transition focussed coupling but
that for these experiments the cell-cycle model considered, even if it displays
the four di↵erent phases, is centered around the restriction point following
G1/S.

Bmal1 is also involved in the transcription of Top1 [44]: this provides a
link between the circadian clock and irinotecan models.

In order to link the p53/Mdm2 and cell cycle models, we inserted in the
p53/Mdm2 model a rule which fixes that p53 activates p21, and two further
rules imposing that p21 inhibits CycA and CycE, respectively. It is worth
noting that we also investigated the possibility to abstract the previous ex-
panded rules by letting p53 directly inhibit CycA and CycE. In the following,
we will refer to this last version of the link as to the contracted one.
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Time series data in individual mice fibroblasts [Feillet Delaunay 2012]
Fluorescent markers of the cell cycle and the circadian clock (RevErb𝛼)
Medium with various concentrations of serum (FBS) 
• FBS modulates the cell cycle frequency
• No observed time gating for mitosis
• But observed acceleration of the circadian clock

in fastly dividing cells ! and not in confluent cells (24h)
FBS 10% à Cell cycle 22h à Circadian clock 22h, phase 7h
FBS 15% à Cell cycle 19h à Circadian clock 18h, phase 7h

Statistical model 1:1, 5:4, 3:2 phase locking [Feillet et al Delaunay Rand PNAS 2014]

Unexpected Acceleration of the Clock at high FBS  in NIH3T3 Fibroblasts
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Mechanistic Model for Reverse Effect Cell Cycle à Clock
[Traynard, Feillet, Soliman, Delaunay, F., Biosystems 2016]

Hypothesis 1: Uniform inhibition of gene transcription during mitosis
• Entrainment in period
• No entrainment in phase 

Hypothesis 2: Selective regulation of clock genes during mitosis 
• Entrainment in period and phase fitted to experimental data
• Prediction of Reverb up-regulation or of Bmal1 down-regulation during mitosis 
• Proposal of experiment at FBS 5% to discriminate between the two 
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Relogio-Herzel Model of the Circadian Clock (2011)

Bioregul 2023 François Fages

• 20 species, 71 parameters
• 60 parameters fitted to liver cell data 

– amplitude, period and phase data
• Per, Cry, Reverb, Ror, Bmal genes

Relógio, A., Westermark, P. O., Wallach, T., Schellenberg, K., Kramer, A., & 
Herzel, H. (2011). Tuning the mammalian circadian clock: robust synergy of two
loops. PLoS Computational Biology.



Hyp. 1: Uniform Inhibition of Transcription during Mitosis [Kang et al. 2008]

• Correct acceleration of both the cell cycle and the circadian clock

• But impossible to fit the observed phase shift
between cell division time and RevErb peak

– Experimental phase: 7h
– Model phase: 18h
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Hyp. 2: Selective Regulation of Clock Genes during Mitosis

Correct fit of period and phase experimental data 
playing with only coupling strength regulation parameters

Two sets of parameter values fit the data:
• either down-regulation of Bmal1
• or up-regulation of RevErb𝛼 during mitosis
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Results:                                                          or

Prediction: different behaviors for a slow cell cycle (5% FBS)

Hypothesis 2: Results and Predictions

Inhibition of Bmal1 Activation of RevErb

Faster cell cycle

Stronger control of 
the clock by the 
divisions

Score for the property:
The cell cycle and the circadian 
clock have the same period
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Model Predictions for Treatment by Dexamethasone

Dexamethasone synchronize cellular clocks, but complex dynamics observed

• Interpreted as 5:4 and 1:1 locking modes for 10% FBS and 3:2 and 1:1 for 15%
[C. Feillet et al. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle., PNAS 2014]

• In our model, Dex pulse is modeled by induction of a high level of Per.
– Clock perturbation varies according to the time T of the pulse
– Stabilization of the clock may occur well after the 70h of observed data…

peak-peak distance in
[18.8, 22.7] with T=162h
[20.9, 21.7] with T=170h
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period and a fast cell cycle, with an overall ratio close to 3:2 between the clock

and cell cycle, explaining the three-peaks distribution of the circadian phase at

division, as already observed by Nagoshi et al.[7] ten years before. It has to be

noted that the 20% FBS dexamethasone-synchronized experiment was repeated

with similar results available in the Supplementary Information of [14], although

the distribution of the period ratios for the second group is wider in the interval

ranging from 1.2 to 2.

Medium Clock period Division period Mean delay
FBS 10% 24.2 h ± 0.5 h 20.1 h ± 0.94 h 10.7 h
FBS 20% 21.25 h ±0.36 h 19.5 h ±0.42 h 8.3 h

29 h±1.05 h 16.05 h±0.48 h 6h/12h/22h

Table 2: Estimated periods of the circadian molecular clock and the cell division cycle mea-
sured in [14] in fibroblast cells after treatment by dexamethasone, for two concentrations of
FBS. The time delay is between the cell division and the next peak of RevErb-↵ protein. The
experiment done with 20% FBS have been clustered by the authors of [14] in two groups with
di↵erent periods.

In [14], the authors suggest that these observations might be interpreted

by the existence of distinct oscillatory stable states coexisting in the cell pop-

ulations, in particular with 5:4 and 1:1 phase-locking modes for the condition

10% FBS, and 3:2 and 1:1 phase-locking modes for the condition 20% FBS, and

that the dexamethasone could knock the state out of the 1:1 mode toward other

attractors.

2.3. Formal Specification of Oscillation Properties in Quantitative Temporal
Logic

For the analysis of the dynamical behavior of this complex system, we shall

make use of a temporal logic language which allows us to express the relevant

system’s oscillatory properties to fit, instead of over-specifying them by provid-

ing a precise curve to fit. This allows us to combine qualitative properties of

oscillations and quantitative properties on the shapes of the traces such as dis-

tances between peaks or peak amplitudes. This is useful to capture the periods

on either experimental and simulated traces, even when the traces are irregular

and noisy. We use formal constraints on the amplitudes and regularity of the

7

RevErb-↵ in the cytoplasm and in the nucleus. Notably, the other clock genes

and proteins targeted by Bmal1 exhibit a phase delay when the synthesis of

RevErb-↵ is activated during mitosis.

The prediction is thus that in dividing cells, the phases between the clock

proteins slightly but significantly di↵er from the phases in quiescent cells.

4.5. Comparison to Experimental Data after Treatment by Dexamethasone

In order to take into account the experiments with dexamethasone, the model

can be extended with an event, lasting for two hours, and inducing Per mRNA

while inhibiting the other clock genes.

Fig. 10 shows that in our models, regardless of the growth factors in the

medium (i.e. of the value of kdie), the Dex pulse results in a perturbation of the

clock and then returns to the observed entrainment.
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Figure 10: E↵ect of a dexamethasone pulse on the entrainment resulting from the periodic
activation of RevErb-↵ synthesis by the cell cycle. The pulse alters the clock before returning
to the previously observed entrainment regime. In the left panel the pulse is from time 162
to 164 while on the right it is from 170 to 172. The left panel’s peak-to-peak distance is in
the [18.8; 22.7] interval, while the right one remains in the [20.9; 21.7] interval. This might
correspond to the two groups observed in [14]. The time to recover normal entrainment varies
but is often larger than 72 hours.

These simulations point us to the possibility that the noisy data reported in

Table 1 after the Dex pulse might simply be due to the various cellular states

in which the pulse happened and to the time necessary for the cells to recover

their clock entrainment, rather than to two di↵erent oscillatory attractors of

the system. A pulse at time 170h disrupted only slightly our clock, leading to

mostly remaining in mode-locking 1 : 1, whereas advancing that same pulse by

8 hours (corresponding to giving the pulse to a cell in a di↵erent state) leads
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Conclusion on CRN Modeling and Programming Language

Programming theory of biological processes can provide efficient
• Model building methods (modular, updates, testing, continuous integration, GitHub …)
• Model analysis methods (graph theoretic, abstract interpretation, model-checking, …)
• Before using classical mathematical analysis methods

High-level CRN modeling/programming language
• Hierarchy of semantics ODE, CTMC, Petri Net, Boolean
• Explicit graph structure allowing for efficient analyses 

– Model comparison in the large by subgraph epimorphism SEPI
– Graphical conditions for ODE conservation laws (P-invariants), extreme fluxes (T-invariants), rate-independence
– Graphical requirements for multistationarity in CRNs [Baudier F- Soliman. Journal of Theoretical Biology, 459:79–89, 2018]

• Used in       BIOCHAM modeling platform 
– together with temporal logic language to specify desired behaviors, verify and optimize them

Next lecture: abstract CRN synthesis to implement input/output functions and comparison to natural CRNs
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