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Reaction Networks Warmup

Enzymatic Reaction Network

Graph of Species and Reactions

Species
S substrate, P product, C complex S.E, E enzyme

Mass Action Kinetics
the probabilty of reactants to meet in a well-steered solution.
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Reaction Networks Warmup

BioCham: Syntax
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Reaction Networks Warmup

Ordinary Differential Equations (ODEs)
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Reaction Networks Warmup

BioCham: numerical_simulation
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Reaction Networks Warmup

What Happens with Less Enzyme?

- the transformation of S to P is happens later
- but all S is converted to P
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Reaction Networks Warmup

What Happens with More Substrate?

- complete transformation takes longer
- speed is the same
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Reaction Networks Warmup

Reaction with Michaelis-Menten Kinetics
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Reaction Networks Warmup

Simulation of Reaction with Michaelis-Menten Kinetics
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Reaction Networks Warmup

Representation of Activators of Reactions
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Reaction Networks Warmup

Representation of Inhibitors of Reactions
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Steady States Warmup

Quasi Steady States

Concentrations will no more change
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Steady States Warmup

Quasi Steady States

Concentrations will no more change
May the Enzymatic Network become Steady?
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Steady States Warmup

Quasi Steady States

Concentrations will no more change
May the Enzymatic Network become Steady?

No at any real time point
S decreasing but never becomes exactely 0
E+C does not change
P increasing but never become exactely S(0)
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Steady States Warmup

Quasi Steady States

Concentrations will no more change
May the Enzymatic Network become Steady?

No at any real time point
S decreasing but never becomes exactely 0
E+C does not change
P increasing but never become exactely S(0)

Yes in the limit: quasi steady state
S(∞) = 0
P(∞) = S(0) + C(0)
E(∞) = E(0) + C(0)
C(∞) = 0
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Steady States Warmup

How many Quasi Steady States per Network?

Deterministic Semantics
- at most one state in the limit towards ∞

for each choice of initial values
sometimes a signal may fail
sometimes a signal is periodic, so no limit towards ∞

- though: infinitely many possible choices of initial values
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Steady States Warmup

May Networks with Active Reactions become Steady?

Previous enzymatic network
- steady once all substrate has been converted into product
- nothing is produced nor consumed any more

But we can add:
- an inflow producing S, and
- an outflow consuming P
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Steady States Warmup

With an Inflow and Outflow

Graph

Becomes stable?
???
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Steady States Warmup

Enough Enzyme
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Steady States Warmup

More Enzyme
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Steady States Warmup

Not Enough Enzyme
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Steady States Warmup

Living Systems in Longer Runs are Active but Steady

Glucose in blood is quasi steady
- eating and dinking all the time
- burning energy all the time

What happens if glucose level increases?
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Steady States Warmup

Living Systems in Longer Runs are Active but Steady

Glucose in blood is quasi steady
- eating and dinking all the time
- burning energy all the time

What happens if glucose level increases?
Diabetes!
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Steady States Warmup

Living Systems in Shorter Terms are Dynamical

Postprandial glucose regulation
- stabilizes after 4 hours

Typical Dynamics
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From Arithmetic Expressions to ODEs Reaction Networks with Complete Kinetic Information
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From Arithmetic Expressions to ODEs Reaction Networks with Complete Kinetic Information

Arithmetic and Boolean Expressions

X set of variables.
F = sin, cos,

√
.... predefined arithmetic functions

e,e′ ∈ EX ::= x | k | where x ∈ X , k ∈ R,
| e + e′ | e − e′ | e ∗ e′ | e/e′

| f (e) f ∈ F
| if b then e else e′

b,b′ ::= e ≤ e′ | ¬b | b ∧ b′
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From Arithmetic Expressions to ODEs Reaction Networks with Complete Kinetic Information

Interpretation over the Reals

JxKη = η(x) Je + e′Kη = JeKη +R Je′Kη

JkKη = k Je − e′Kη = JeKη −R Je′Kη

Je ∗ e′Kη = JeKη ∗R Je′Kη

Je/e′Kη =

{
JeKη/RJe′Kη if Je′Kη ̸= 0
undef otherwise

Jf (e)Kη = fR→R(JeKη)

Jif b then e else e′Kη =


JeKη if JbKη = 1
Je′Kη if JbKη = 0
undef otherwise

Je ≤ e′Kη =


1 if JeKη ≤R Je′Kη

0 if JeKη >R Je′Kη

undef else
Jb ∧ b′Kη = JbKη ∧B Jb′Kη

J¬bKη = ¬B(JbKη)
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From Arithmetic Expressions to ODEs Reaction Networks with Complete Kinetic Information

Interpretation over the Real Functions

let α(x) : R+ → R for all x ∈ X

Projection of variables assignment
define αt(x) ∈ R for all x ∈ X and t ∈ R+ such that:

αt(x) = α(x)(t)

Function interpretation
define JeKα : R+ → R such that for all t ∈ R+:

JeKα(t) = JeKαt
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From Arithmetic Expressions to ODEs Reaction Networks with Complete Kinetic Information

Piecewise Real Functions

Special variable for identify function
Let time ∈ X such that α(time)(t) = t for all t ∈ R+.

Example of piecewise affine real function

if 0 ≤ time ∧ time ≤ 2.5 then 1.3 ∗ time else 0
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Reaction Networks with Deterministic Semantics Reaction Networks with Complete Kinetic Information
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Reaction Networks with Deterministic Semantics Reaction Networks with Complete Kinetic Information

Reaction Networks

Reactions r with species in X :

r = (R,e,P) where R,P : X → N, e ∈ EX

Written in biocham as:
e for P ⇒ P.

Reaction network N is finite set of reactions
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Reaction Networks with Deterministic Semantics Reaction Networks with Complete Kinetic Information

Dynamics by Ordinary Differential Equations (ODEs)

Deterministic semantics of reaction network N.
For each species x ∈ X :

ẋ =
∑

(R,e,P)∈N

e ∗ (P(x)− R(x))

Equations interpreted over real valued functions.
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Reaction Networks with Deterministic Semantics Reaction Networks with Complete Kinetic Information

Example: acyclic network
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Reaction Networks with Deterministic Semantics Reaction Networks with Complete Kinetic Information

Example: acyclic network

Å = −r1 − r2 + in-A
B̊ = r1 − ryB

C̊ = r2 − ryC

D̊ = −r−4 + r4

E̊ = −r−3 + r3
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Reaction Networks with Deterministic Semantics Reaction Networks with Complete Kinetic Information

Example: acyclic network

Å = −r1 − r2 + in-A
B̊ = r1 − ryB

C̊ = r2 − ryC

D̊ = −r−4 + r4

E̊ = −r−3 + r3

out-B = B
out-C = C
r1 = A inh(E)
r2 = A inh(D)
r−3 = E
r−4 = D
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Reaction Networks with Deterministic Semantics Reaction Networks with Complete Kinetic Information

Steady State Equation

For each species x ∈ X :

0 =
∑

(R,e,P)∈N

e ∗ (P(x)− R(x))

Equations interpreted over reals.
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Reaction Networks with Deterministic Semantics Reaction Networks with Complete Kinetic Information

Example: acyclic network

in-A = r1 + r2
out-B = r1
out-C = r2
r−4 = r4
r−3 = r3

out-B = B
out-C = C
r1 = A inh(E)
r2 = A inh(D)
r−3 = E
r−4 = D
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Reaction Networks with Deterministic Semantics Reaction Networks with Complete Kinetic Information

Not only Chemical Reactions

Reactions = Interactions

Can represent biological system on all levels
- molecular
- cellular
- tissue
- physiologial
- communities

Not only biological species as variables
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Reaction Networks with Deterministic Semantics Reaction Networks with Complete Kinetic Information

Example: Linear Integral Feedback Control

Species as signals: R+ → R+

u glucose in intestine inflows in reaction 1
y glucose level in blood
s insulin sensiblity in muscles
Z integral error: Z (t) =

∫ t
0 y(x)− y(0)dx
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Reaction Networks with Deterministic Semantics Reaction Networks with Complete Kinetic Information

Example: Linear Integral Feedback Control

Homeostatis
Constancy for any value of s: limt→∞y(t) = y(0)
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Reaction Networks with Deterministic Semantics Reaction Networks with Complete Kinetic Information

Example: Dynamical Compensation

Constancy of the signal
for any value of s, the same signal
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Abstract Interpretation over Changes Abstract Interpretation of Algebraic Equations
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Abstract Interpretation over Changes Abstract Interpretation of Algebraic Equations

{+, ∗, inh}-Structure of Changes

Changes
∆3 = {↑, ↓,∼}

Operations

↑ +∆3 ↑=↑ ↑ ∗∆3 ↑=↑
↑ +∆3 ∼=↑ ↑ ∗∆3 ∼=↑
↑ +∆3 ↓∈ ∆3 everything possible . . .

inh∆3(↑) =↓
inh∆3(↓) =↑
inh∆3(∼) =∼
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Abstract Interpretation over Changes Abstract Interpretation of Algebraic Equations

Difference Abstraction

hdiff : R2
+ → ∆3

hdiff (r , r ′) =


↑ if r < r ′ increase
↓ if r > r ′ decrease
∼ if r = r ′ no − change

Proposition

h : R2
+ → ∆3 is a homomorphism between {+, ∗, inh}-structures
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Change Prediction in Steady States Abstract Interpretation of Algebraic Equations

Possible Network Changes

- increase inflow
- decrease inflow
- ...
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Change Prediction in Steady States Abstract Interpretation of Algebraic Equations

Which Changes may increase out-B
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Change Prediction in Steady States Abstract Interpretation of Algebraic Equations

Which Changes may increase out-B
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Change Prediction in Steady States Abstract Interpretation of Algebraic Equations

Solutions of Steady State Equations over Changes

in-A = r1 + r2
out-B = r1
out-C = r2
r−4 = r4
r−3 = r3

out-B = B
out-C = C
r1 = A inh(E)
r2 = A inh(D)
r−3 = E
r−4 = D
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Change Prediction in Steady States Abstract Interpretation of Algebraic Equations

Solutions of Steady State Equations over Changes

in-A = r1 + r2
out-B = r1
out-C = r2
r−4 = r4
r−3 = r3

out-B = B
out-C = C
r1 = A inh(E)
r2 = A inh(D)
r−3 = E
r−4 = D

J. Niehren (BIOCOMPUTING GROUP OF UNIVERSITY OF LILLE) Reaction Networks with Partial Kinetic Information
Dec 6, 2021 38



Change Prediction in Steady States Abstract Interpretation of Algebraic Equations

Abstract Interpretation of Algebraic Equations

John’s Theorem (2011): Soundness
For each homomorphism h : A → B between Σ-structures A and B and
systems of Σ-equations:

h(solA(ϕ)) ⊆ solB(ϕ))
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Change Prediction in Steady States Abstract Interpretation of Algebraic Equations

Abstract Interpretation of Algebraic Equations

John’s Theorem (2011): Soundness
For each homomorphism h : A → B between Σ-structures A and B and
systems of Σ-equations:

h(solA(ϕ)) ⊆ solB(ϕ))

Establishes a Gallois connection between concrete solution sets and
abstract solution sets.

J. Niehren (BIOCOMPUTING GROUP OF UNIVERSITY OF LILLE) Reaction Networks with Partial Kinetic Information
Dec 6, 2021 39



Change Prediction in Steady States Abstract Interpretation of Algebraic Equations

Abstract Interpretation of Algebraic Equations

John’s Theorem (2011): Soundness
For each homomorphism h : A → B between Σ-structures A and B and
systems of Σ-equations:

h(solA(ϕ)) ⊆ solB(ϕ))

Establishes a Gallois connection between concrete solution sets and
abstract solution sets.

Completeness Conjecture (recent)
Equality holds if ϕ is an acyclic set of equations:

h(solA(ϕ)) = solB(ϕ))
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Change Prediction in Steady States Abstract Interpretation of Algebraic Equations

Simple Loop

What happens if one increases in-A?
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Change Prediction in Steady States Abstract Interpretation of Algebraic Equations

Simple Loop

What happens if one increases in-A?
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Change Prediction in Steady States Abstract Interpretation of Algebraic Equations

Solutions of Steady State Equations over ∆3

i

Abstract interpretation is not complete for the simple loop.
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Change Prediction in Steady States Abstract Interpretation of Algebraic Equations
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Change Prediction in Steady States Abstract Interpretation of Algebraic Equations

Solutions of Steady State Equations over ∆3

i

Abstract interpretation is not complete for the simple loop.
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Change Prediction in Steady States Abstract Interpretation of Algebraic Equations

Solutions of Steady State Equations over ∆3

in-A + r2 = r1
r1 = out-B + r2

⇓
in-A = out-B

Logical consequence rules out unjustified abstract solution
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Change Prediction in Steady States Abstract Interpretation of Algebraic Equations

How to obtain Completeness

Theorem (Allart, Niehren, Versari 2021)

hdiff (solR
2
+(ϕ)) can be computed in at most exponential time for any

linear equation system ϕ.

Rewrite linear equation system ϕ based on elementary modes to a
linear equation system ϕ′ such that:

sol∆3(ϕ′) = hdiff (solR
2
+(ϕ))

Then use finite domain constraint programming to compute sol∆3(ϕ′).
In practice based on “libcdd” for elementary modes and “Minizinc” for
finite domain constraint programming.
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Reaction Networks with Partial Kinetic Information Gene Knockout Prediction
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Reaction Networks with Partial Kinetic Information Gene Knockout Prediction

What if we don’t know kinetic epxressions?

Partial Kinetic Information
know activator and inhibitor of reactions

Example
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Reaction Networks with Partial Kinetic Information Gene Knockout Prediction

Possible Network Changes

Changes
inflow increase and decreases

remove reaction
enhance reaction

Application
change experimental environment
or adjacent network
gene knockouts
gene knockups
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Reaction Networks with Partial Kinetic Information Gene Knockout Prediction

Semantics

Idea
Any reaction network with complete kinetic information that justifies
inhibors and activators.

Default kinetic expressions

edefault = S ∗ A ∗ inh(I)
where

inh(I) = 1/(1 + I)

Formally
kinetic expression e of a reaction in completion must be similar to
default kinetic expression edefault of the reaction in the network with
partial kinetic information: sol∆3(e) = sol∆3(edefault)
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Reaction Networks with Partial Kinetic Information Gene Knockout Prediction

Change Prediction

Abstract Interpretation
- of steady state equations
- with default kinetic expressions

Algorithmic Techniques
- finite domain constraint programming
- exact rewriting with elementary modes
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Application to Metabolic Overproduction Gene Knockout Prediction
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Application to Metabolic Overproduction Gene Knockout Prediction

Overproduction of Nonribosomal Peptide by B.Subtilis

Surfactine
a ring of 7 amino acids of which 4 are leucine

Micosubtilin
same ring of 7 amino acids but with an anteiso-C15 fatty acid chain
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Application to Metabolic Overproduction Gene Knockout Prediction

Leucine and Fatty Acids from Threonine and Pyruvate
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Application to Metabolic Overproduction Gene Knockout Prediction

Elementary Flux Modes

J. Niehren (BIOCOMPUTING GROUP OF UNIVERSITY OF LILLE) Reaction Networks with Partial Kinetic Information
Dec 6, 2021 50



Application to Metabolic Overproduction Gene Knockout Prediction

Knockout Predictions for Overproducing Leucine
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Application to Metabolic Overproduction Gene Knockout Prediction

Change Prodictions for Overproducing anteiso-C15
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Application to Metabolic Overproduction Gene Knockout Prediction

Open Problems

Feedback loops
lead to large overapproximation in case of anteiso-C15
so we removed them even though they are biologically justified
Question: How can we reason properly without changing the model?

Quantitative predictions
How to get to get from qualitative to quantitative predictions?

How to take dynamics into account
not only steady states, but see how the change states the dynamics
leading to another steady state.
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Abstract Interpretation of ODEs
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Abstract Interpretation of ODEs

Reconsider Enzymatic Network
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Abstract Interpretation of ODEs

Abstract Simulation

Fix threshold ϵ > 0
- X present at time t means: X (t) > ϵ
- X absent at time t means: X (t) ≤ ϵ

{+, ∗, . . .}-Structure of Signs S = {0,1,−1}
−1 ∗S −1 = 1, 1 +S −1 ∈ S anything , . . .

Introduce Booleans and Signs B ⊆ S = {0,1,−1}
X present ⇒ X = 1 X absent ⇒ X = 0
X increasing ⇒ X̊ = 1 X decreasing ⇒ X̊ = −1

Abstract behavior of SS̊ECPP̊
1−11001 → 1−11111 → 1−10111 → 001010
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Abstract Interpretation of ODEs

Abstract Simulation

Does this Depend on Initial Concentrations
No
- only qualitative reasoning
- not quantitative.

How to Compute Abstract Simulation (CMSB 2022)
ideas:
- use abstract interpretation of ODEs over S
- map signs to pairs of booleans
- use exact rewriting of linear equations for boolean abstractions
(Allart, Niehren, Versari 2020)
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Abstract Interpretation of ODEs

New Variables for Derivatives + Two Copies of ODEs +
Link

First-order boolean networks (with nondeterministic updates)
what is relationship to classical boolean networks (with most
permissive semantics?)
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