Abstract Interpretation of Chemical Reaction Networks for the Prediction of Gene Knockouts

> Joachim Niehren Inria Lille

BIOCOMPUTING GROUP OF UNIVERSITY OF LILLE

BioRegul 2023

<ロト <回ト < 国ト < 国ト < 国ト 三 国

🚺 Warmup

- Reaction Networks
- Steady States
- 2 Reaction Networks with Complete Kinetic Information
 - From Arithmetic Expressions to ODEs
 - Reaction Networks with Deterministic Semantics

Abstract Interpretation of Algebraic Equations

- Abstract Interpretation over Changes
- Change Prediction in Steady States

Gene Knockout Prediction

- Reaction Networks with Partial Kinetic Information
- Application to Metabolic Overproduction

Abstract Interpretation of ODEs

Enzymatic Reaction Network

Graph of Species and Reactions

Species

S substrate, P product, C complex S.E, E enzyme

Mass Action Kinetics

the probability of reactants to meet in a well-steered solution.

BioCham: Syntax

Biocham 4.6.19 Copyright (C) 2003-2020 Inria, EPI Lifeware, Sa

```
% reaction 1
     10000 * S *E for S+E => C.
     % reaction -1
     0.2 * C for C => S+E.
     % reaction 2
     0.1 * C for C => P+E.
     present(S,5).
     present(E, 2).
     present(C,0).
```

Ordinary Differential Equations (ODEs)

$$\dot{\mathbf{S}} = -r_1 + r_{-1} \dot{\mathbf{E}} = -r_1 + r_{-1} + r_2 \dot{\mathbf{C}} = r_1 - r_{-1} - r_2 \dot{\mathbf{P}} = r_2 r_1 = 10000 \mathbf{S} \mathbf{E} r_{-1} = 0.2 \mathbf{C} r_2 = 0.1 \mathbf{C}$$

BioCham: numerical_simulation

```
present(S,5).
present(E,0.2).
present(C,0).
```

```
In [5]: numerical_simulation(time:500). plot.
```


Reaction Networks

What Happens with Less Enzyme?

```
present(S,5).
present(E,0.02).
present(C,0).
```

numerical_simulation(time:5000). plot.

What Happens with More Substrate?

```
present(S,50).
present(E,0.02).
present(C,0).
```

numerical_simulation(time:50000). plot.

Reaction with Michaelis-Menten Kinetics

```
p1 * S / (p2 + S) for S => P.
function(k1 = 10000).
function(k_1 = 0.1).
function(k2 = 0.2).
function(p1 = k2 \times 5).
function(p2 = (k 1+k2) / k1).
present(S,5).
present(P,0).
```


Simulation of Reaction with Michaelis-Menten Kinetics

Representation of Activators of Reactions

Representation of Inhibitors of Reactions

🚺 Warmup

- Reaction Networks
- Steady States
- 2 Reaction Networks with Complete Kinetic Information
 - From Arithmetic Expressions to ODEs
 - Reaction Networks with Deterministic Semantics

Abstract Interpretation of Algebraic Equations

- Abstract Interpretation over Changes
- Change Prediction in Steady States

Gene Knockout Prediction

- Reaction Networks with Partial Kinetic Information
- Application to Metabolic Overproduction

Concentrations will no more change

Concentrations will no more change May the Enzymatic Network become Steady?

Concentrations will no more change May the Enzymatic Network become Steady?

No at any real time point

S decreasing but never becomes exactly 0 E+C does not change P increasing but never become exactly S(0)

Concentrations will no more change May the Enzymatic Network become Steady?

No at any real time point

S decreasing but never becomes exactely 0 E+C does not change P increasing but never become exactely S(0)

```
Yes in the limit: quasi steady state
```

 $S(\infty) = 0$ $P(\infty) = S(0) + C(0)$ $E(\infty) = E(0) + C(0)$ $C(\infty) = 0$

How many Quasi Steady States per Network?

Deterministic Semantics

- at most one state in the limit towards ∞
 - for each choice of initial values sometimes a signal may fail sometimes a signal is periodic, so no limit towards ∞
- though: infinitely many possible choices of initial values

May Networks with Active Reactions become Steady?

Previous enzymatic network

- steady once all substrate has been converted into product
- nothing is produced nor consumed any more

But we can add:

- an inflow producing S, and
- an outflow consuming P

With an Inflow and Outflow

Becomes stable? ???

Enough Enzyme

present(S,5).
present(E,10).
present(C,0).

More Enzyme

present(S,5).
present(E,100).
present(C,0).

numerical_simulation(time:50). plot.

Not Enough Enzyme

present(S,5).
present(E,0.2).
present(C,0).

numerical_simulation(time:50). plot.

Living Systems in Longer Runs are Active but Steady

Glucose in blood is quasi steady

- eating and dinking all the time
- burning energy all the time

What happens if glucose level increases?

Living Systems in Longer Runs are Active but Steady

Glucose in blood is quasi steady

- eating and dinking all the time
- burning energy all the time

What happens if glucose level increases? Diabetes!

Living Systems in Shorter Terms are Dynamical

Postprandial glucose regulation

- stabilizes after 4 hours

Typical Dynamics

- Reaction Networks
- Steady States
- 2 Reaction Networks with Complete Kinetic Information
 - From Arithmetic Expressions to ODEs
 - Reaction Networks with Deterministic Semantics
 - Abstract Interpretation of Algebraic Equations
 - Abstract Interpretation over Changes
 - Change Prediction in Steady States
- Gene Knockout Prediction
 - Reaction Networks with Partial Kinetic Information
 - Application to Metabolic Overproduction

(日)

Arithmetic and Boolean Expressions

X set of variables. $F = \sin, \cos, \sqrt{\dots}$ predefined arithmetic functions $e, e' \in \mathcal{E}_X ::= x | k |$ where $x \in X, k \in \mathbb{R}$, | e + e' | e - e' | e * e' | e/e' $| f(e) f(e) f \in F$ | if b then e else e' $b, b' ::= e \le e' | \neg b | b \land b'$

E

Interpretation over the Reals

$$\begin{split} \llbracket x \rrbracket^{\eta} &= \eta(x) \qquad \llbracket e + e' \rrbracket^{\eta} = \llbracket e \rrbracket^{\eta} + \mathbb{R} \llbracket e' \rrbracket^{\eta} \\ \llbracket e - e' \rrbracket^{\eta} &= \llbracket e \rrbracket^{\eta} - \mathbb{R} \llbracket e' \rrbracket^{\eta} \\ \llbracket e + e' \rrbracket^{\eta} &= \llbracket e \rrbracket^{\eta} + \mathbb{R} \llbracket e' \rrbracket^{\eta} \\ \llbracket e + e' \rrbracket^{\eta} &= \llbracket e \rrbracket^{\eta} + \mathbb{R} \llbracket e' \rrbracket^{\eta} \\ \llbracket e + e' \rrbracket^{\eta} &= \llbracket e \rrbracket^{\eta} + \mathbb{R} \llbracket e' \rrbracket^{\eta} \\ \llbracket e + e' \rrbracket^{\eta} &= \begin{Bmatrix} \llbracket e \rrbracket^{\eta} + \mathbb{R} \llbracket e' \rrbracket^{\eta} \\ \llbracket e + e' \rrbracket^{\eta} &= \begin{Bmatrix} \llbracket e \rrbracket^{\eta} + \mathbb{R} \llbracket e' \rrbracket^{\eta} \\ \llbracket e + e' \rrbracket^{\eta} &= \begin{Bmatrix} \llbracket e \rrbracket^{\eta} + \mathbb{R} \llbracket e' \rrbracket^{\eta} \\ \llbracket e + e' \rrbracket^{\eta} &= \begin{Bmatrix} \llbracket e \rrbracket^{\eta} + \mathbb{R} \llbracket e' \rrbracket^{\eta} \\ \llbracket e + e + \mathbb{R} \rrbracket^{\eta} &= \begin{Bmatrix} \llbracket e \rrbracket^{\eta} + \mathbb{R} \llbracket e' \rrbracket^{\eta} \\ \llbracket e + e + \mathbb{R} \rrbracket^{\eta} &= \begin{Bmatrix} \llbracket e \rrbracket^{\eta} + \mathbb{R} \llbracket e' \rrbracket^{\eta} \\ \llbracket e + e + \mathbb{R} \rrbracket^{\eta} &= \llbracket e \rrbracket^{\eta} \\ \llbracket e + e + \mathbb{R} \rrbracket^{\eta} &= \llbracket e \rrbracket^{\eta} \\ \llbracket e + e + \mathbb{R} \rrbracket^{\eta} &= \llbracket e \rrbracket^{\eta} + \mathbb{R} \llbracket e + \mathbb{R} \rrbracket^{\eta} \\ \llbracket e + e + \mathbb{R} \rrbracket^{\eta} \\ = \mathbb{R} \rrbracket^{\eta} \\ \llbracket e + \mathbb{R} \blacksquare^{\eta} \\ \llbracket e + \mathbb{R} \rrbracket^{\eta} \\ \llbracket e + \mathbb{R} \blacksquare^{\eta} \\ \llbracket e + \mathbb{R} \rrbracket^{\eta} \\ \llbracket e + \mathbb{R} \blacksquare^{\eta} \\ \llbracket e + \mathbb{R} \blacksquare^{\eta} \\ \llbracket e + \mathbb{R} \blacksquare^{\eta} \\ \llbracket^{\eta} \\ \llbracket e + \mathbb{R} \blacksquare^{\eta} \\ \llbracket e + \mathbb{R} \blacksquare^{\eta} \\ \llbracket^{\eta} \\ \llbracket e + \mathbb{R} \blacksquare^{\eta} \\ \llbracket^{\eta} \\ \llbracket e + \mathbb{R} \blacksquare^{\eta} \\ \llbracket^{\eta} \\ \llbracket^{\eta} \\ \llbracket e + \mathbb{R} \blacksquare^{\eta} \\ \llbracket^{\eta} \\ \llbracket e + \mathbb{R} \blacksquare^{\eta} \\ \llbracket^{\eta} \\ \llbracket^{\eta} \\ \llbracket^{\eta} \\ \llbracket e + \mathbb{R} \rrbracket^{\eta} \\ \llbracket^{\eta} \\ \llbracket^{\eta}$$

Interpretation over the Real Functions

let $\alpha(x) : \mathbb{R}_+ \to \mathbb{R}$ for all $x \in X$

```
Projection of variables assignment
```

define $\alpha_t(x) \in \mathbb{R}$ for all $x \in X$ and $t \in \mathbb{R}_+$ such that:

 $\alpha_t(\mathbf{x}) = \alpha(\mathbf{x})(t)$

Function interpretation

define $\llbracket e \rrbracket^{\alpha} : \mathbb{R}_+ \to \mathbb{R}$ such that for all $t \in \mathbb{R}_+$:

 $\llbracket \boldsymbol{e} \rrbracket^{\alpha}(t) = \llbracket \boldsymbol{e} \rrbracket^{\alpha_t}$

Piecewise Real Functions

Special variable for identify function

Let *time* \in *X* such that α (*time*)(*t*) = *t* for all *t* $\in \mathbb{R}_+$.

Example of piecewise affine real function

if $0 \le time \land time \le 2.5$ then 1.3 * time else 0

- Warmup
- Reaction Networks
- Steady States
- 2 Reaction Networks with Complete Kinetic Information
 - From Arithmetic Expressions to ODEs
 - Reaction Networks with Deterministic Semantics
 - Abstract Interpretation of Algebraic Equations
 - Abstract Interpretation over Changes
 - Change Prediction in Steady States
- Gene Knockout Prediction
 - Reaction Networks with Partial Kinetic Information
 - Application to Metabolic Overproduction

< ロ > < 同 > < 回 > < 回 >

Reaction Networks

Reactions *r* with species in *X*:

r = (R, e, P) where $R, P : X \rightarrow \mathbb{N}, e \in \mathcal{E}_X$

Written in biocham as:

e for $P \Rightarrow P$.

Reaction network N is finite set of reactions

→ ∃ →

Dynamics by Ordinary Differential Equations (ODEs)

Deterministic semantics of reaction network *N*. For each species $x \in X$:

$$\dot{x} = \sum_{(R,e,P)\in N} e * (P(x) - R(x))$$

Equations interpreted over real valued functions.

Example: acyclic network

イロト イポト イヨト イヨ

E

Example: acyclic network

$$\overset{A}{=} -r_1 - r_2 + in-A \\ \overset{B}{=} r_1 - r_{yB} \\ \overset{C}{=} r_2 - r_{yC} \\ \overset{D}{=} -r_{-4} + r_4 \\ \overset{E}{=} -r_{-3} + r_3$$
Example: acyclic network

- ₹ 🕨 🕨

Steady State Equation

For each species $x \in X$:

$$0 = \sum_{(R,e,P)\in N} e * (P(x) - R(x))$$

Equations interpreted over reals.

э

Example: acyclic network

Not only Chemical Reactions

Reactions = Interactions

Can represent biological system on all levels

- molecular
- cellular
- tissue
- physiologial
- communities

Not only biological species as variables

Example: Linear Integral Feedback Control

Species as signals: $\mathbb{R}_+ \to \mathbb{R}_+$

u glucose in intestine inflows in reaction 1

y glucose level in blood

s insulin sensiblity in muscles

Z integral error: $Z(t) = \int_0^t y(x) - y(0) dx$

Example: Linear Integral Feedback Control

Homeostatis

Constancy for any value of *s*: $lim_{t\to\infty}y(t) = y(0)$

< □ > < □ > < □ > < □ >

Example: Dynamical Compensation

Constancy of the signal

for any value of s, the same signal

- Reaction Networks
- Steady States
- 2 Reaction Networks with Complete Kinetic Information
 - From Arithmetic Expressions to ODEs
 - Reaction Networks with Deterministic Semantics
 - Abstract Interpretation of Algebraic Equations
 - Abstract Interpretation over Changes
 - Change Prediction in Steady States
- Gene Knockout Prediction
 - Reaction Networks with Partial Kinetic Information
 - Application to Metabolic Overproduction

{+,*, *inh*}-Structure of Changes

Changes

 $\Delta_3=\{\uparrow,\downarrow,\sim\}$

Operations

 $\begin{array}{ll} \uparrow + \overset{\Delta_3}{} \uparrow = \uparrow & \uparrow * \overset{\Delta_3}{} \uparrow = \uparrow \\ \uparrow + \overset{\Delta_3}{} \sim = \uparrow & \uparrow * \overset{\Delta_3}{} \sim = \uparrow \\ \uparrow + \overset{\Delta_3}{} \downarrow \in \Delta_3 \text{ everything possible } & \dots \end{array}$

$$inh^{\Delta_3}(\uparrow) =\downarrow$$

 $inh^{\Delta_3}(\downarrow) =\uparrow$
 $inh^{\Delta_3}(\sim) =\sim$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Difference Abstraction

 $h_{diff}:\mathbb{R}^2_+ o\Delta_3$

$$h_{diff}(r, r') = \begin{cases} \uparrow & \text{if } r < r' & \text{increase} \\ \downarrow & \text{if } r > r' & \text{decrease} \\ \sim & \text{if } r = r' & \text{no-change} \end{cases}$$

Proposition

 $h: \mathbb{R}^2_+ \to \Delta_3$ is a homomorphism between $\{+, *, inh\}$ -structures

Possible Network Changes

- increase inflow
- decrease inflow

- ...

Which Changes may increase out-B

Which Changes may increase out-B

Solutions of Steady State Equations over Changes

- $in-A = r_1 + r_2$ $out-B = r_1$ $out-C = r_2$ $r_{-4} = r_4$ $r_{-3} = r_3$
- out-B = B out-C = C $r_1 = A inh(E)$ $r_2 = A inh(D)$ $r_{-3} = E$ $r_{-4} = D$

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Solutions of Steady State Equations over Changes

- $in-A = r_1 + r_2$ $out-B = r_1$ $out-C = r_2$ $r_{-4} = r_4$ $r_{-3} = r_3$
- out-B = B out-C = C $r_1 = A inh(E)$ $r_2 = A inh(D)$ $r_{-3} = E$ $r_{-4} = D$

Solutions of Steady State Equations over Changes

- $in-A = r_1 + r_2$ $out-B = r_1$ $out-C = r_2$ $r_{-4} = r_4$ $r_{-3} = r_3$
- out-B = B out-C = C $r_1 = A inh(E)$ $r_2 = A inh(D)$ $r_{-3} = E$ $r_{-4} = D$

Abstract Interpretation of Algebraic Equations

John's Theorem (2011): Soundness

For each homomorphism $h : A \to B$ between Σ -structures A and B and systems of Σ -equations:

 $h(sol^{A}(\phi)) \subseteq sol^{B}(\phi))$

Abstract Interpretation of Algebraic Equations

John's Theorem (2011): Soundness

For each homomorphism $h : A \to B$ between Σ -structures A and B and systems of Σ -equations:

 $h(sol^{A}(\phi)) \subseteq sol^{B}(\phi))$

Establishes a Gallois connection between concrete solution sets and abstract solution sets.

Abstract Interpretation of Algebraic Equations

John's Theorem (2011): Soundness

For each homomorphism $h : A \to B$ between Σ -structures A and B and systems of Σ -equations:

$$h(sol^{A}(\phi)) \subseteq sol^{B}(\phi))$$

Establishes a Gallois connection between concrete solution sets and abstract solution sets.

Completeness Conjecture (recent)

Equality holds if ϕ is an acyclic set of equations:

 $h(sol^{A}(\phi)) = sol^{B}(\phi))$

イロト イポト イヨト イヨ

E

Simple Loop

What happens if one increases in-A?

Simple Loop

What happens if one increases in-A?

Abstract interpretation is not complete for the simple loop.

Abstract interpretation is not complete for the simple loop.

Abstract interpretation is not complete for the simple loop.

$$in-A + r_2 = r_1$$

$$r_1 = out-B + r_2$$

$$in-A = out-B$$

Logical consequence rules out unjustified abstract solution

• • • • • • • • • • • • •

How to obtain Completeness

Theorem (Allart, Niehren, Versari 2021)

 $h_{diff}(sol^{\mathbb{R}^2_+}(\phi))$ can be computed in at most exponential time for any linear equation system ϕ .

Rewrite linear equation system ϕ based on elementary modes to a linear equation system ϕ' such that:

$$\mathsf{sol}^{\Delta_3}(\phi') = h_{\mathsf{diff}}(\mathsf{sol}^{\mathbb{R}^2_+}(\phi))$$

Then use finite domain constraint programming to compute $sol^{\Delta_3}(\phi')$. In practice based on "libcdd" for elementary modes and "Minizinc" for finite domain constraint programming.

- Reaction Networks
- Steady States
- 2 Reaction Networks with Complete Kinetic Information
 - From Arithmetic Expressions to ODEs
 - Reaction Networks with Deterministic Semantics
 - Abstract Interpretation of Algebraic Equations
 - Abstract Interpretation over Changes
 - Change Prediction in Steady States
- Gene Knockout Prediction
 - Reaction Networks with Partial Kinetic Information
 - Application to Metabolic Overproduction

What if we don't know kinetic epxressions?

Partial Kinetic Information

know activator and inhibitor of reactions

Example

イロト イ団ト イヨト イヨト

æ

Possible Network Changes

Changes	Application
inflow increase and decreases	change experimental environment or adjacent network
remove reaction	gene knockouts
enhance reaction	gene knockups

Semantics

Idea

Any reaction network with complete kinetic information that justifies inhibors and activators.

Default kinetic expressions

$$e_{default} = S * A * inh(I)$$

where
 $inh(I) = 1/(1 + I)$

Formally

kinetic expression *e* of a reaction in completion must be similar to default kinetic expression $e_{default}$ of the reaction in the network with partial kinetic information: $sol^{\Delta_3}(e) = sol^{\Delta_3}(e_{default})$

Change Prediction

Abstract Interpretation

- of steady state equations
- with default kinetic expressions

Algorithmic Techniques

- finite domain constraint programming
- exact rewriting with elementary modes

🕦 Warmup

- Reaction Networks
- Steady States
- 2 Reaction Networks with Complete Kinetic Information
 - From Arithmetic Expressions to ODEs
 - Reaction Networks with Deterministic Semantics
 - Abstract Interpretation of Algebraic Equations
 - Abstract Interpretation over Changes
 - Change Prediction in Steady States

Gene Knockout Prediction

- Reaction Networks with Partial Kinetic Information
- Application to Metabolic Overproduction

Overproduction of Nonribosomal Peptide by B.Subtilis

Surfactine

a ring of 7 amino acids of which 4 are leucine

Micosubtilin

same ring of 7 amino acids but with an anteiso-C15 fatty acid chain

Leucine and Fatty Acids from Threonine and Pyruvate

Elementary Flux Modes

Knockout Predictions for Overproducing Leucine

Change Prodictions for Overproducing anteiso-C15

Open Problems

Feedback loops

lead to large overapproximation in case of anteiso-C15 so we removed them even though they are biologically justified Question: How can we reason properly without changing the model?

Quantitative predictions

How to get to get from qualitative to quantitative predictions?

How to take dynamics into account

not only steady states, but see how the change states the dynamics leading to another steady state.

Warmup

- Reaction Networks
- Steady States
- 2 Reaction Networks with Complete Kinetic Information
 - From Arithmetic Expressions to ODEs
 - Reaction Networks with Deterministic Semantics
 - Abstract Interpretation of Algebraic Equations
 - Abstract Interpretation over Changes
 - Change Prediction in Steady States
- Gene Knockout Prediction
 - Reaction Networks with Partial Kinetic Information
 - Application to Metabolic Overproduction

Reconsider Enzymatic Network

Abstract Simulation

Fix threshold $\epsilon > 0$

- X present at time t means: $X(t) > \epsilon$
- X absent at time t means: $X(t) \le \epsilon$

$$\{+,*,\ldots\}$$
-Structure of Signs $\mathbb{S} = \{0,1,-1\}$

 $-1 *^{\mathbb{S}} - 1 = 1, \qquad 1 + ^{\mathbb{S}} - 1 \in \mathbb{S}$ anything ,

Introduce Booleans and Signs $\mathbb{B}\subseteq\mathbb{S}=\{0,1,-1\}$

- X present \Rightarrow X = 1 X absent \Rightarrow X = 0
- X increasing $\Rightarrow \mathring{X} = 1$ X decreasing $\Rightarrow \mathring{X} = -1$

Abstract behavior of $S\mathring{S}ECP\mathring{P}$ 1-11001 \rightarrow 1-11111 \rightarrow 1-10111 \rightarrow 001010

Abstract Simulation

Does this Depend on Initial Concentrations

No

- only qualitative reasoning
- not quantitative.

How to Compute Abstract Simulation (CMSB 2022)

ideas:

- use abstract interpretation of ODEs over S
- map signs to pairs of booleans
- use exact rewriting of linear equations for boolean abstractions (Allart, Niehren, Versari 2020)

New Variables for Derivatives + Two Copies of ODEs + Link

∃Ŝ∃Ĕ∃Ċ∃₽́∃ŠĴĖĴĊĴ₽́.	_ `		
${ m \mathring{S}} \stackrel{\circ}{=} -r_1+r_{-1}$	$\wedge \mathbf{\mathring{S}} = -\overrightarrow{r_1} + \overrightarrow{r_{-1}}$	$\wedge \overrightarrow{\mathbf{S}} \stackrel{\circ}{=} \mathbf{S} + \mathbf{\mathring{S}}$	$\wedge \mathbf{S} \leq \overrightarrow{\mathbf{S}}$
$\wedge \stackrel{\mathrm{e}}{\mathrm{E}} \stackrel{\mathrm{o}}{=} -r_1 + r_{-1} + r_2$	$\wedge \mathring{ $	$\wedge \overrightarrow{\mathbf{E}} \stackrel{\circ}{=} \mathbf{E} + \mathbf{\mathring{E}}$	$\wedge \mathbf{E} \leq \overrightarrow{\mathbf{E}}$
$\wedge \stackrel{\mathrm{o}}{\mathrm{C}} \stackrel{\mathrm{o}}{=} r_1 - r_{-1} - r_2$	$\wedge \overrightarrow{\mathring{ extsf{C}}} \stackrel{\circ}{=} \overrightarrow{r_1} - \overrightarrow{r_{-1}} - \overrightarrow{r_2}$	$\wedge \overrightarrow{\mathbf{C}} \stackrel{\circ}{=} \mathbf{C} + \mathring{\mathbf{C}}$	$\land \mathbf{C} \leq \overrightarrow{\mathbf{C}}$
$\wedge \ \mathring{\mathrm{P}} \stackrel{\circ}{=} r_{2}$	$\wedge \vec{\mathring{\mathbf{P}}} \stackrel{\circ}{=} \vec{r_2}$	$\wedge \overrightarrow{\mathbf{P}} \stackrel{\circ}{=} \mathbf{P} + \mathbf{\mathring{P}}$	$\land \mathbf{P} \leq \overrightarrow{\mathbf{P}}$
where			
$r_1 = 1000000 * S * E$	$r_{-1} = 0.2 * C$	$r_2 = 0.1 * C$	
$\overrightarrow{r_1} = 1000000 * \overrightarrow{\mathbf{S}} * \overrightarrow{\mathbf{E}}$	$\overrightarrow{r_{-1}} = 0.2 * \overrightarrow{\mathbf{C}}$	$\overrightarrow{r_2} = 0.1 * \overrightarrow{\mathbf{C}}$	

First-order boolean networks (with nondeterministic updates)

what is relationship to classical boolean networks (with most permissive semantics?)