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ABSTRACT

Object Oriented Programming Languages(OOPLs) primarily allow modeling object behaviors using either class-
based inheritance or prototype-based delegation. Such an approach does not make a clear distinction between
the two cases of an extension to the behavior of an object versus specialization of an object behavior by another
object. If an object is considered to have its own state, behavior and identity, Behavioral eXtension(BeX) of an
object can be seen to retain object identity, while extending the behavior and the state. On the other hand,
Behavioral Specialization(BeS) always creates a new object by specializing existing behavior. Current OOPL
either model class as a type or interface as a type. Hence, these languages lack the expressiveness required to
distinguish between object behavioral extension and behavioural specialization. This paper proposes modeling
object identity as a type, which clearly captures this distinction. Furthermore, the proposed model ensures
type-safety when various objects are composed together to achieve behavioral extension.
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1. INTRODUCTION

Object Behavioral eXtension(BeX) and Behavioural Specialization(BeS) are two different facets of modeling
object behaviors. Behavioral extension of an object is an operation that preserves the identity, whereas special-
ization creates an object with a new identity. Generally, in current OOPLs, inheritance is the sole mechanism
available to model both BeX and BeS. While class-based OOPLs clearly capture BeS through inheritance, they
lack the ability to model dynamic behavioral evolution of a single object. This is due to the fact that the behavior
of an object is frozen at the time of its instantiation. Prototype-based languages capture behavioral extension
through a combination of dynamic inheritance and the delegation mechanism,! albeit at the cost of compro-
mising encapsulation and the safety normally provided by static typing. A clear separation in modeling object
behavioral extension from behavioural specialization requires building new programming language constructs.
These constructs need to address the issues of modeling object identity and type safety with respect to abstrac-
tion and encapsulation. Further, the language constructs should be built on a sound theoretical foundation
keeping in mind the issues related to typing object behaviors.

Method Driven Model (MDM)? is an effort towards providing distinction between BeX and BeS by focusing
on the issues related to object identity. The key idea behind MDM is viewing an object itself as being composed
from the various encapsulated parts of a basic abstraction. MDM shares the underlying philosophy of Glue
object model® which is the relaxation of tight coupling between abstraction and encapsulation in a systematic
manner. However, it distinctly differs from Glue model in that methods are explicitly modeled as connectors.
Consequently, it is possible to capture rules for breaking encapsulation and associated self rebinding.

MDM is based on the notion that an object exhibits immutable and mutable behavior. TypeMarker(TM) is an
interface consisting of a set of method declarations, whose definitions are deferred. An object’s mutable behaviour
is captured through the TypeMarkers. The method definitions, self rebinding based on the communication
styles, and the contracts are specified using aspects. Instead of viewing objects as rigid behavioural entities, the
aspect run-time system weaves appropriate aspects along with the object to achieve BeX. Whenever an object
is composed from multiple aspects, there is a possibility of the composed object’s state, behavior or both being
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Figure 1. Transportation Problem

spread across the constituent aspects. This paper proposes a novel way of modeling the object identity as a type
that captures the characteristic of identity retention by BeX.

The paper is organized as follows. Section 2 gives an example which illustrates the difficulty in modeling
BeX with the current mainstream OOPLs. The various perspectives on object identity are discussed in Section
3. Section 4 analyzes some mathematical formalisms in relation to BeX and BeS. Section 5 provides an overview
of MDM and explains how object identity is modeled as a type. Section 6 concludes and provides directions for
future work.

2. MOTIVATION

Figure 1 illustrates a transportation domain model. In this domain, there are three specializations of the vehicle
concept and two different contexts in which these specializations could be used. These contexts depict the
various possible extensions to the behavior of the vehicle object. Since car, bus and taxi specialize the behaviour
provided by the vehicle abstraction, that hierarchy depicts BeS. On the other hand, objects belonging to any of
these categories that already have come into existence through instantiation can extend their behaviour by the
introduction of public or private context. This corresponds to BeX.

One way to model this in the current class based OOPLs is to form an inheritance hierarchy as shown in Figure
2. This obviously results in unnecessary class explosion. When there are m specializations and n extensions in
a given problem domain, it would be efficient to model them with m+n classes instead of the mn classes that
the current solution mandates. Further, the code addressing the same functionality needs to be replicated in
multiple places for the various specializations. Any need to introduce additional contexts requires modification
in several places. Instead, employing multiple inheritance or mixins,* avoids unnecessary replication of the same
functionality in several classes. However, the most compelling drawback with all of these modeling approaches
is that there is no way to convert a public bus or public car dynamically to a private one and vice versa.

Alternately we could model the problem by keeping two separate hierarchies as in Figure 1, and a reference
to the usage class can be kept within the vehicle class. When such aggregation is used for modeling, private
variables of the wehicle class are not accessible to the usage class. Further, care must be taken to bind the
self reference properly to the object receiving the original message. This adds an additional burden on the
programmers. Improper handling of the self rebinding can result in broken delegation problem. The complexity
associated with message delivery semantics increases when messages have to be delegated across multiple levels.
Such complexities can be attributed to lack of expressiveness of class based OOPLs to capture BeX properly.

3. OBJECT IDENTITY

The concept of Object Identity(OID) plays a key role in bringing distinction between the two notions BeX and
BeS. This section briefly discusses the traditional view of OID. OID has been defined as that property of an object
which uniquely distinguishes it from other objects.> OID has been studied both in the context of programming
languages and databases. However, OID is different from variable names in programming languages and keys in
databases. Implementation concepts such as surrogates represent system generated globally unique identifiers
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Figure 2. Inheritance Hierarchy

for objects. In all these contexts, the main focus is on physically locating the objects without any ambiguity.
From this perspective, Wegner® argues that OID should not be tied down with the object’s attributes, name,
behavior or the address at which the object resides. This is because, two objects can have identical attributes,
or identical behavior. Further, an object may have aliases and an object can even migrate. Bearing all these in
mind, Wieringa’ came up with “Singular reference” and “Singular naming” requirements for the OID naming
scheme. These requirements mandate that at every possible state, each name refers to exactly one object and
each object is referred to by exactly one name. In addition to this, “Rigid referencing” and “Rigid naming”
requirements® were also imposed to avoid any reuse of OIDs and to exclude renaming of objects. Mendelzon®
contends that OID should remain the same irrespective of any change in the object’s behavior, (i.e) even when
an object changes its class.

Nevertheless, the inherent essence of identity cannot be captured, when unique identifiers are assigned at the
time of object creation. The identity of an object can change dynamically during program execution. In order to
capture the key perspectives of object identity, in the present work, various mathematical formalisms have been
examined in detail. The next section briefly discusses the identity and typing related issues as seen by these
formalisms.

4. MATHEMATICAL FORMALISMS
4.1. \ Calculus

A Calculus is a mathematical system that has been widely used in the specification of programming language
features, and in the study of type systems. Typed A calculus augmented with quantification operators helps in
capturing certain OO language notions. From the work of Cardelli et al.,'%!! it is evident that parametric and
inclusion polymorphisms can be modeled by universal and bounded universal quantification respectively. Further,
it also shows that data abstraction and information hiding can be represented by existential quantification. This
work does not distinguish between conceptual sub-typing and the inheritance mechanism. However, under
practical situations, inheritance is used both as a conceptual specialization mechanism and as a vehicle for code
reuse. The latter use of inheritance cannot be explained by A calculus. Further, the notion of self also cannot be
captured in this formalism. In order to address this need, Cardelli et al.'* proposed ( calculus for objects. This
approach integrates the self semantics based on the fixed point theory into calculus. In both A\ and ¢ calculi,
BeS alone is captured and there are no easy means to explain BeX.

4.2. Algebra

The term algebra denotes abstract behavior of a class of objects. An algebra consists of sets of data together with
some functions that operate on them. The traditional algebra has been generalized to many sorted algebra'? to



model abstract data types whose interface may include procedures which take arguments from more than one
domain. The interface and corresponding implementation are captured by signature and its associated algebra.

Francesco et al.'3 proposed a formal model of class using algebraic specification. Using this model, a clear

distinction has been made between the conceptual inheritance based on “is-a” link, and the implementation
inheritance.

The hidden sorted Order Sorted Algebra(OSA)* extends the classical treatment of abstract data types to
the notion of state. The possible internal states of an object are the elements of a “hidden” sort. Encapsulation
can be captured using these hidden sorts.

The notion of an OSA, introduced initially by Goguen et al.'® models subtypes and inheritance. An order-

sorted signature is a many-sorted signature with an ordering relation < on its sorts. Thus, the traditional concept
of individual algebras has been extended to systems of related algebras. This enhancement permits BeS to be
modeled, but not BeX.

4.3. Denotational Semantics

Denotational Semantics(DS)!6 is a technique for describing the meaning of programs in terms of mathematical
functions on programs and program components. Cook and Palsberg!” proposed that, objects are modeled as
record values with their fields representing methods. Records can be viewed as functions from a domain of labels
to a heterogeneous domain of values. A generator function defines a class. The Least Fixed Point(LFP) of the
“generator” formally explains an object, since an object itself is self-referential. The modification component
that differentiates the derived class from the base class is expressed as a wrapper function of two arguments,
one representing self and the other representing super. Wrapper application mechanism is used to change the
self-reference in inherited methods. A wrapper is applied to a gemerator to produce a new generator by first
distributing self to both the wrapper and the original generator. Thus, DS captures BeS.

An explanation of DS for prototype-based dynamic inheritance has been provided by Steyeart et al..'® In this
case, objects need a changing version of themselves rather than the fixed versions. Hence, objects are modeled as
generators instead of as fixed points to generators. Further, message passing requires that the message receiver
be properly wrapped every time so that self reference would be set appropriately. This can be regarded as an
explanation for BeX in the context of prototype based languages. However, it does not explain BeX as a notion
that retains the underlying object’s identity in the context of class-based OOPLs.

5. METHODOLOGY AND FORMALISM
5.1. Overview of MDM

The essential concept underlying MDM is viewing objects as composition of various encapsulated parts of a basic
abstraction. The philosophy behind modeling methods as connectors between objects is to facilitate specification
of rules for systematic infringement of encapsulation, and related self rebinding semantics. These factors are
specified using aspects. In this context, the “aspect” should not be viewed in the traditional way of modeling a
cross-cutting concern. In MDM, different factors related to a given class are separately captured using aspects.
The state of the object at any point in its life-cycle dictates the set of aspects that should be weaved with the
class. The fundamental entity in this model is a partial class, which comprises of:

e Composable-Aspects: The set of aspects that can be weaved with the partial class,

Aspect-View: Visibility of the private attributes to other aspects,

Private, Protected and Public attributes,

Methods describing the fixed behavior,

TypeMarker(TM): Declaration of methods describing the variable behavior.
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Figure 3. Class Design in MDM

The class is called as “partial” because it becomes complete only after the proper TM method definitions are
weaved based on the state of the object.

Various considerations such as encapsulation, communication styles, contractual obligations, identity seman-
tics and others are captured using the construct aspect. This consists of the following units:

e Unit-Type: This unit specifies the category of the TypeMarker which can be one of “Part-of”, “using”,
“in” or “out”, and communication styles such as “delegation” or “consultation”.

e Unit-Encap: This unit defines the TM methods of the partial class. Inside this unit, replace keyword
signifies the definition of TM methods of category “Part-of” or “Using”. The keywords before and after
are used for specifying additional actions associated with TM methods that fall under “in” category.

e Unit-Identity: The rebinding of self can be specified by the programmer according to the specific problem
needs.

e Unit-Contract: This unit specifies:

the pre-conditions, which must be satisfied for this aspect to be weaved with an object
— the post-conditions that must hold before the aspect gets unweaved
— interdependencies among the TMs specified as an invariant

— the preconditions that need to be checked before a particular method execution

the post-conditions that a given method must ensure at the end of its execution

e Unit-Style: This unit specifies the styles in which the objects should be composed, such as Pipe and
filter, event etc.

Figure 3 illustrates the construction of a class in its entirety through weaving of suitable aspects along with
the partial class at the control points specified by the TypeMarkers.

Aspects are also instantiable analogous to classes. Based on the state of the object during its life-cycle,
the aspect run-time system dynamically weaves the appropriate sets of aspects along with it. Further details
regarding the model can be found in Babu et al..?



5.2. Typing Object Identity

Types, in general, help to enforce correctness of programs by imposing appropriate constraints. The fundamental
objective of a well-defined type-system is to minimize the possibility of run-time errors during program execution.
Initially, procedural languages modeled data alone as type. Later, in the context of object-orientation, some
programming languages treat the concepts of class and type as being identical. Class serves as a template for
defining both structure and behavior. Any object instantiated from a given class conforms to the structure and
behavior dictated by that class. Languages such as Java'® model behavior alone as type. This section discusses
a novel approach of modeling the object identity as a type so that the distinction between the two notions of
BeX and BeS can be formally explained.

Traditionally, whenever an object is created, it is assigned a unique identity by which it can be referred. An
instance created from a single class or a statically defined class composition structure will map to a single unique
identity. On the other hand, if an object is dynamically composed out of multiple aspects, as in MDM, the
composed object’s identity is an “AND” of identities of the object and all the constituent aspects. However, the
phenomenon of behavioral extension of an object needs to retain the underlying object’s identity all the time.
This has been achieved in the present work by modeling OID as a type. This approach involves two levels of
abstraction: one level for defining the type and another for defining the actual identity of the object.

At the first level, OID is captured as a type (i.e) a set containing the name of the partial class and composition
of names for each possible partial class-aspect combination. This set is known as OID_Type. At the second
level, objects instantiated from this OID_Type are assigned object identities each of which comprises a set of
elements. This set is called OID_Instance. The elements of this set are the identity of the partial object and
tuples corresponding to identities of partial object and appropriate aspect instances. In this context, the identity
of the partial object is the “self” which is defined through denotational semantics by finding the fixed point of
the generator function corresponding to the partial class.

Applying this approach to the example discussed in section 2, car, bus and taxi are modeled as partial
classes with a TM for public/private functionality. Two different aspects capture the behaviour corresponding
to public and private vehicles respectively. MDM makes it viable to model the same physical vehicle as public or
private through weaving appropriate behaviour based on the conditions captured in the “Unit-Contract” section
of aspects. Identity-Type for car is as shown below:

OID_Type Car = {PC_Car,< PC_Car, PublicAspect >, < PC_Car, PrivateAspect >}

where PC_Clar is the name of the partial class associated with car, and PublicAspect and PrivateAspect are
the names of the corresponding aspects. The identity of a particular car object is defined as:

OID_Instance myCar = {Self_myCar,< Self_myCar,Self_PublicAspin >,
< Self_myCar, Sel f_Private Aspin >}

in which Self_myCar, Sel f_PublicAspin, and Sel f_ PrivateAspin are selfs of the myCar object, PublicAs-
pect and PrivateAspect instances respectively. Whenever myCar object acquires public or private behaviour, its
identity is governed by the appropriate identity tuple in the set. Nevertheless, these tuples belong to the same
set and hence the preservation of identity is explained at the set level. Since the set OID_Type is built from
TM information, and only those aspects which conform to TM interface are taken into account in constructing
the tuples, type safety is guaranteed.

Modeling OID as a type uniformly captures both BeX and BeS. Whenever BeS occurs, the sets OID_Type
and OID_ Instance themselves will change for the specialized object. On the other hand, when the behavior of
an object is extended, the sets OID_Type and OID_Instance will remain the same for the extended object.
However, the value of the identity type will switch among the elements of the set, based on the current class-aspect
structure that dictates the extended object’s state and behavior. Further, the object identity is also governed
by the specific tuple of self of object instantiated from the partial class and selfs of the aspect instances.



6. RELATED WORK

Predicate classes?? proposed by Chambers et al. are similar to regular classes except that they have an additional
predicate expression associated with them. This allows the appropriate dispatch of the multi-method?' when
the state of the object is changed which is captured by the predicate expression. Even though predicate classes
support dynamic reclassification of objects, based on the run-time state of the objects, it cannot respond to
changes in external environments in which the objects function. The reclassification is also lazily done, whenever
the particular multi- method is invoked. On the other hand, in MDM, the state change is implicitly monitored
and the appropriate aspect is weaved with the object instantiated from partial class, thus changing the class
structure that dictates the object’s current behaviour. Since predicate classes dynamically change the inheritance
hierarchy, it leads to ambiguity. In contrast, MDM strives for orthogonality through usage of inheritance only for
BeS. Further, MDM allows the specification of postconditions too in the contract-section, which enables catching
possible exception conditions and taking appropriate actions.

Fickle®® is a language developed by Drossopoulou et al., with the objective of dynamically re-classifying
an object, while preserving its identity. The language uses two types of classes known as state classes that
represent object’s possible states and root classes that define the commonalities among these state classes. State
classes targeted for reclassification are depicted as subclasses of root classes. Thus, Fickle also uses inheritance
to capture BeX, which is precisely what MDM intends to avoid. Further, the re-classification should be done
in Fickle through explicit language constructs inside the method body, while the change in class structure is
transparent in MDM.

Balloon types?? enforce strong encapsulation by ensuring that no state reachable either directly or transitively
by a balloon object is referenced by any external object. Even though partial class and its associated aspects
together enforce strong encapsulation at the level of the composed object, the objective of MDM is completely
different from that of Balloon types. While balloon types address the problem that arise from aliasing through
specifying the ability to share state as a first class type, MDM aims to distinguish BeX and BeS clearly through
typing object identity.

Rondo object model®* introduces an additional abstraction known as classcombiner in between classes and
objects. This model also uses denotational semantics for explaining the essence of the model in a formal way. In
Rondo, an object is a fixed point of a generator function corresponding to the classcombiner, which is obtained
by combining the generator functions representative of the individual classes that are part of the classcombiner.
Hence, the identity of the object is not preserved while it extends its behaviour which blurs the differences
between BeS and BeX. In contrast, since MDM models an object as a set of tuples, where each tuple corresponds
to the selfs of object instantiated from the partial class and the current active aspects that are applicable, the
identity preservation after BeX is properly captured.

7. CONCLUSIONS

The need to distinguish between object behavioral extension and specialization, from the viewpoint of object
identity has been identified. Various mathematical formalisms currently in use have been examined and shown
to be inadequate to capture the notion of BeX. Modeling object identity as a type, as proposed in this paper
allows both BeX and BeS to be captured equally well. The key idea is to view an object as an instance of the
OID_Type, rather than as an instance of a single class. This approach clearly brings out the fact that BeX
is an identity preserving operation while BeS is an identity altering one. Object identity typing has enormous
potential in distributed object frameworks for generating OIDs that reflect the inherent essence of objects as
opposed to identifiers which bear no semantic connection to objects.
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