Limit cycles and update schedules in Boolean networks: Inverse Problem.
(Results of Luis Gómez’s Ph.D. Thesis)

Advisors: L. Salinas(UdeC), J. Demongeot (UG) and J. Aracena (UdeC).

Novembre 2014
Summary

1 Definition and Notation

2 Limit Cycle Existence problem

3 Limit Cycle Non Existence problem

4 Feasible Limit Cycle problem
A Boolean network is $N = (F, s)$, where

- $F = (f_v)_{v \in V} : \{0, 1\}^n \rightarrow \{0, 1\}^n$, global transition function,
- V a set of n elements.
- $f_v(x) := F(x)_v$, $\forall v \in V$, local activation functions.
- $s : V \rightarrow \{1, \ldots, n\}$ a deterministic update schedule (parallel, sequential, block-sequential).
Definition and Notation

Limit Cycle Existence problem
Limit Cycle Non Existence problem
Feasible Limit Cycle problem

Interaction Digraph

$G^F = (V, A)$ interaction digraph associated to a Boolean Network.

$(u, v) \in A$ if and only if f_v depends on x_u.

Nice 2014

Limit cycles and update schedules in Boolean networks
Interaction Digraph

$G^F = (V, A)$ interaction digraph associated to a Boolean Network.

$(u, v) \in A$ if an only if f_v depends on x_u.
Example 1

- $F: \{0, 1\}^4 \rightarrow \{0, 1\}^4$
- $f_1(x) := x_3 \land x_4$
- $f_2(x) := x_1 \land x_3$
- $f_3(x) := (x_1 \land x_2) \lor \overline{x}_4$
- $f_4(x) := \overline{x}_2$
Example 1

- $F: \{0, 1\}^4 \rightarrow \{0, 1\}^4$
- $f_1(x) := x_3 \land x_4$
- $f_2(x) := x_1 \land x_3$
- $f_3(x) := (x_1 \land x_2) \lor \overline{x_4}$
- $f_4(x) := \overline{x_2}$
Example 1

- $F : \{0, 1\}^4 \rightarrow \{0, 1\}^4$
- $f_1(x) := x_3 \land x_4$
- $f_2(x) := x_1 \land x_3$
- $f_3(x) := (x_1 \land x_2) \lor \overline{x_4}$
- $f_4(x) := \overline{x_2}$
Example 1

- \(F: \{0, 1\}^4 \rightarrow \{0, 1\}^4 \)
- \(f_1(x) := x_3 \land x_4 \)
- \(f_2(x) := x_1 \land x_3 \)
- \(f_3(x) := (x_1 \land x_2) \lor \overline{x}_4 \)
- \(f_4(x) := \overline{x}_2 \)
Example 1

- \(F: \{0, 1\}^4 \rightarrow \{0, 1\}^4 \)
- \(f_1(x) := x_3 \land x_4 \)
- \(f_2(x) := x_1 \land x_3 \)
- \(f_3(x) := (x_1 \land x_2) \lor \overline{x_4} \)
- \(f_4(x) := \overline{x_2} \)
Update Schedule

\[s: V \to \{1, \ldots, n\}, \text{ function.} \]
Definition and Notation

Limit Cycle Existence problem
Limit Cycle Non Existence problem
Feasible Limit Cycle problem

Update Schedule

\[s : V \rightarrow \{1, \ldots, n\}, \text{ function.} \]

\[s(V) = \{1\}, \text{ parallel.} \]
Definition and Notation

Limit Cycle Existence problem
Limit Cycle Non Existence problem
Feasible Limit Cycle problem

Update Schedule

$s: V \rightarrow \{1, \ldots, n\}, \text{ function.}$

$s(V) = \{1\}, \text{ parallel.}$

$s(V) = \{1, \ldots, n\}, \text{ sequential.}$
Update Schedule

\(s: V \rightarrow \{1, \ldots, n\}, \text{ function.}\)

\(s(V) = \{1\}, \text{ parallel.}\)

\(s(V) = \{1, \ldots, n\}, \text{ sequential.}\)

\(s(V) = \{1, \ldots, m\}, 1 < m < n, \text{ block-sequential.}\)
Given $x = (x_v)_{v \in V} \in \{0, 1\}^n$, the $(k + 1)$-iteration of x by F according to s is given by:

$$x^{k+1}_v = f_v(x^{l_u}_u : u \in V)$$

Where:

$$l_u = \begin{cases}
 k & \text{if } s(v) \leq s(u) \\
 k + 1 & \text{if } s(v) > s(u)
\end{cases}$$
Given $x = (x_v)_{v \in V} \in \{0, 1\}^n$, the $(k + 1)$-iteration of x by F according to s is given by:

$$x_{v}^{k+1} = f_{v}(x_{u}^{l_u} : u \in V)$$

Where:

$$l_u = \begin{cases}
 k & \text{if } s(v) \leq s(u) \\
 k + 1 & \text{if } s(v) > s(u)
\end{cases}$$

Nice 2014

Limit cycles and update schedules in Boolean networks
Dynamical Behavior

- We can define $f_v^s(x) = f_v(g_v^s(u)(x): u \in V)$

 Where:

 $$g_{v,u}^s(x) = \begin{cases}
 x_u & \text{if } s(v) \leq s(u) \\
 f_u^s(x) & \text{if } s(v) > s(u)
 \end{cases}$$

- F^s is the dynamical behavior of $N = (F, s)$.
Dynamical Behavior

- We can define $f_v^s(x) = f_v(g_{v,u}^s(x): u \in V)$
- Where:
 $$g_{v,u}^s(x) = \begin{cases}
 x_u & \text{if } s(v) \leq s(u) \\
 f_u^s(x) & \text{if } s(v) > s(u)
 \end{cases}$$
- F^s is the dynamical behavior of $N = (F, s)$.
Dynamical Behavior

- We can define $f_v^s(x) = f_v(g_{v,u}^s(x); u \in V)$
- Where:

 $g_{v,u}^s(x) = \begin{cases}
 x_u & \text{if } s(v) \leq s(u) \\
 f_u^s(x) & \text{if } s(v) > s(u)
 \end{cases}$

- F^s is the dynamical behavior of $N = (F, s)$.
Limit Behavior

Fixed point: \(x \in \{0, 1\}^n : F^s(x) = x \)

Limit Cycles: \(C = \left[x^k \right]_{k=0}^{p} , x^k \in \{0, 1\}^n, p > 1 : \)

\[x^{k+1} = F^s(x^k) \land x^p \equiv x^0 \]

\(LC(N) : \) set of limit cycles of \(N. \)
Definition and Notation

Limit Cycle Existence problem

Limit Cycle Non Existance problem

Feasible Limit Cycle problem

Limit Behavior

Fixed point: \(x \in \{0, 1\}^n : F^s(x) = x \)

Limit Cycles: \(C = \left\{ x^k \right\}_{k=0}^{p} , x^k \in \{0, 1\}^n, \ p > 1 \):

\[x^{k+1} = F^s(x^k) \land x^p \equiv x^0 \]

\(LC(N) \): set of limit cycles of \(N \).
Definition and Notation

Limit Cycle Existence problem
Limit Cycle Non Existence problem
Feasible Limit Cycle problem

Limit Behavior

Fixed point: \(x \in \{0, 1\}^n : F^s(x) = x \)

Limit Cycles: \(C = \left[x^k \right]_{k=0}^p, x^k \in \{0, 1\}^n, p > 1: \)
\[
 x^{k+1} = F^s(x^k) \quad \wedge \quad x^p \equiv x^0
\]

\(LC(N) \): set of limit cycles of \(N \).
Given a Boolean network \((F, s)\), we define the associated labeled digraph \(G^F_s = (G^F, \text{lab}_s)\), called update digraph, where \(\text{lab}_s : A(G^F) \to \{\ominus, \oplus\}\) is defined as:

\[
\text{lab}_s(u, v) = \begin{cases}
\oplus & \text{if } s(u) \geq s(v) \\
\ominus & \text{if } s(u) < s(v)
\end{cases}
\]

Example:

\[
\begin{array}{c}
1 \\
2 \\
3 \\
4
\end{array}
\]

\[
s(i) = i, \quad \forall i \in \{1, \ldots, n\}.
\]

It was proven in (Aracena, J., Goles, E., Moreira, A., Salinas, L., 2009. Biosystems 97, 1-8) that if two different update schedules have the same update digraph, then they also have the same dynamical behavior.
Given a Boolean network \((F, s)\), we define the associated labeled digraph \(G_s^F = (G^F, \text{lab}_s)\), called *update digraph*, where \(\text{lab}_s : A(G^F) \rightarrow \{\ominus, ⊕\}\) is defined as:

\[
\text{lab}_s(u, v) = \begin{cases}
⊕ & \text{if } s(u) \geq s(v) \\
\ominus & \text{if } s(u) < s(v)
\end{cases}
\]

Example: \[
\begin{array}{cccc}
2 & \rightarrow & 1 & \leftarrow & 3 \\
| & ⊕ & | & ⊕ & \ominus \\
\ominus & | & ⊕ & & \\
1 & \leftarrow & 4 & \rightarrow & 2
\end{array}
\]

\(s(i) = i, \quad \forall i \in \{1, \ldots, n\}\).

It was proven in (Aracena, J., Goles, E., Moreira, A., Salinas, L., 2009. Biosystems 97, 1-8) that if two different update schedules have the same update digraph, then they also have the same dynamical behavior.
Given a Boolean network \((F, s)\), we define the associated labeled digraph \(G^F_s = (G^F, \text{lab}_s)\), called *update digraph*, where \(\text{lab}_s : A(G^F) \rightarrow \{\ominus, \oplus\}\) is defined as:

\[
\text{lab}_s(u, v) = \begin{cases}
\oplus & \text{if } s(u) \geq s(v) \\
\ominus & \text{if } s(u) < s(v)
\end{cases}
\]

Example:

\[
s(i) = i, \quad \forall i \in \{1, \ldots, n\}.
\]

It was proven in (Aracena, J., Goles, E., Moreira, A., Salinas, L., 2009. Biosystems 97, 1-8) that if two different update schedules have the same update digraph, then they also have the same dynamical behavior.
Summary

1. Definition and Notation
2. Limit Cycle Existence problem
3. Limit Cycle Non Existence problem
4. Feasible Limit Cycle problem
Inverse problems of update schedules

General problem

Given $F = (f_v)_{v \in V} : \{0, 1\}^n \rightarrow \{0, 1\}^n$. Does there exists an update schedule s such that (F, s) has a given dynamical property?

Particular cases:

- Limit Cycle Existence problem (LCE)
- Limit Cycle Non Existence problem (LCNE)
- Feasible Limit Cycle (FLC)
Inverse problems of update schedules

General problem

Given $F = (f_v)_{v \in V} : \{0, 1\}^n \rightarrow \{0, 1\}^n$. Does there exists an update schedule s such that (F, s) has a given dynamical property?

Particular cases:

- Limit Cycle Existence problem (LCE)
- Limit Cycle Non Existence problem (LCNE)
- Feasible Limit Cycle (FLC)
Limit Cycle Existence problem (LCE)

Given $F = (f_v)_{v \in V} : \{0, 1\}^n \to \{0, 1\}^n$. Does there exists an update schedule s such that $LC(F, s) \neq \emptyset$?

Previous works: The specific problem of determining the existence of limit cycles of a Boolean network with parallel update is known to be NP-Hard (Just, W., 2006. The steady state system problem is NP-Hard even for monotone quadratic Boolean dynamical systems. pre-print).
Limit Cycle Existence problem (LCE)

Given $F = (f_v)_{v \in V} : \{0, 1\}^n \rightarrow \{0, 1\}^n$. Does there exists an update schedule s such that $LC(F, s) \neq \emptyset$?

Previous works: The specific problem of determining the existence of limit cycles of a Boolean network with parallel update is known to be NP-Hard (Just, W., 2006. The steady state system problem is NP-Hard even for monotone quadratic Boolean dynamical systems. pre-print).
Theorem

AND-OR LCE is NP-hard.

Proof (idea): SAT \(\leq_p\) AND-OR LCE.
Definition and Notation

Limit Cycle Existence problem
Limit Cycle Non Existence problem
Feasible Limit Cycle problem

Limit Cycle Existence problem

Theorem

AND-OR LCE is NP-hard.

Proof (idea): \(\text{SAT} \leq_p \text{AND-OR LCE} \).
Remark: AND-OR LCE is NP-Hard even in the following cases:

I.- Restricted to the parallel update schedule. (In this case we remove the vertex z_3 and we add an arc from z_1 to z_2.)

II.- Restricted to sequential update schedules.

III.- Restricted to limit cycles of length 2.

IV.- Restricted to maximum in-degree equal to 2.
Theorem

SYMmetric LCE is NP-Hard.

Proof: The proof is similar with the following local activation functions: $\forall i \in \{1, \ldots, n\}$,

\[
\begin{align*}
 f_{v_i}(x) &= x_{v_i} \land x_{v_\phi} \\
 f_{v_\phi}(x) &= \phi(x_{v_i}) \land (x_{z_1} \lor x_{z_2}) \\
 f_{z_1}(x) &= x_{v_\phi} \land x_{z_2} \\
 f_{z_2}(x) &= x_{v_\phi} \land x_{z_1}
\end{align*}
\]
Limit Cycle Existence problem

Theorem

SYMMETRIC LCE is NP-Hard.

Proof: The proof is similar with the following local activation functions: \(\forall i \in \{1, \ldots, n\}, \)

\[
\begin{align*}
 f_{v_i}(x) &= x_{v_i} \land x_{v\phi} \\
 f_{v\phi}(x) &= \phi(x_{v_i}) \land (x_{z_1} \lor x_{z_2}) \\
 f_{z_1}(x) &= x_{v\phi} \land x_{z_2} \\
 f_{z_2}(x) &= x_{v\phi} \land x_{z_1}
\end{align*}
\]
Limit cycles in symmetric AND-OR networks

Defn: Given F an AND-OR function with symmetric G^F.

- Let $G_1^{\text{OR}}, \ldots, G_k^{\text{OR}}$ be the non trivial connected components of $G[V_{\text{OR}}(F)]$.
- Let $G_1^{\text{AND}}, \ldots, G_k^{\text{AND}}$ be the non trivial connected components of $G[V_{\text{AND}}(F)]$.
- We define the alternated nodes as

$$V_{\text{AO}} = V \setminus \left(\bigcup_{i=1}^{k_{\text{OR}}} V(G_i^{\text{OR}}) \cup \bigcup_{i=1}^{k_{\text{AND}}} V(G_i^{\text{AND}}) \right)$$

and we denote by $G_1^{\text{AO}}, \ldots, G_k^{\text{AO}}$, to the connected component of $G[V_{\text{AO}}]$.

- $\{ G_1^{\text{OR}}, \ldots, G_k^{\text{OR}}, G_1^{\text{AND}}, \ldots, G_k^{\text{AND}}, G_1^{\text{AO}}, \ldots, G_k^{\text{AO}} \}$ is an AOA (AND-OR ALTERNATED) decomposition of G^F.
Limit Cycles in AND-OR symmetric networks

Theorem

Given F an AND-OR function with symmetric G^F. There exists an update schedule s such that, $LC(F, s) \neq \emptyset$ if and only if there exists a bipartite element (without loops) in the AOA decomposition of G^F.

Corollary

SYMMETRIC AND-OR LCE is polynomial.

Remark: In AND-OR networks with symmetric G^F with block-sequential update there are limit cycles of length super-polynomial.
Limit Cycles in AND-OR symmetric networks

Theorem

Given F an AND-OR function with symmetric G^F. There exists an update schedule s such that, $LC(F, s) \neq \emptyset$ if and only if there exists a bipartite element (without loops) in the AOA decomposition of G^F.

Corollary

SYMMETRIC AND-OR LCE is polynomial.

Remark: In AND-OR networks with symmetric G^F with block-sequential update there are limit cycles of length super-polynomial.
Summary

1. Definition and Notation

2. Limit Cycle Existence problem

3. Limit Cycle Non Existence problem

4. Feasible Limit Cycle problem
Limit Cycle Non Existence problem (LCNE)

Given $F = (f_v)_{v \in V} : \{0, 1\}^n \rightarrow \{0, 1\}^n$. Does there exists an update schedule s such that: $LC (F, s) = \emptyset$?

Previous works:

Definition and Notation

Limit Cycle Non Existence problem

Given $F = (f_v)_{v \in V} : \{0, 1\}^n \rightarrow \{0, 1\}^n$. Does there exists an update schedule s such that: $LC(F, s) = \emptyset$?

Previous works:

Limit Cycle Non Existence problem

Theorem

LCNE is NP-Hard.

Proof (idea):
Theorem

LCNE is NP-Hard.

Proof (idea):

[Diagram of a network with nodes 1, 2, 3, ..., v_n, showing connections between nodes.]
Theorem

Let F be an OR (AND) function. Then, there exists a sequential update schedule s such that $N = (F, s)$ has only have fixed points as attractors.

Proof: Let V' be a minimum FVS of the cycles of $G^F = (V, A)$ and let consider $N = (F, s)$, with $s = s_{V'}$, defined by:

$$s_{V'}(u, v) = \begin{cases} \oplus & \text{if } (u, v) \in A_{V'} \\ \ominus & \text{otherwise} \end{cases}$$

where $A_{V'}$ is a minimal FAS from $N^+(V')$.

Nice 2014 Limit cycles and update schedules in Boolean networks
Remark: The previous Theorem is not valid in the case of AND-OR networks as shown in the following example:

\[
\begin{align*}
 f_1(x) &= x_6 \lor x_9 \lor x_{11} \\
 f_2(x) &= x_6 \lor x_7 \lor x_{12} \\
 f_3(x) &= x_6 \lor x_8 \lor x_{10} \\
 f_4(x) &= x_4 \\
 f_5(x) &= x_5 \\
 f_6(x) &= x_4 \land x_5 \\
 f_7(x) &= x_1 \land x_4 \\
 f_8(x) &= x_2 \land x_4 \\
 f_9(x) &= x_3 \land x_4 \\
 f_{10}(x) &= x_1 \land x_5 \\
 f_{11}(x) &= x_2 \land x_5 \\
 f_{12}(x) &= x_3 \land x_5
\end{align*}
\]
Summary

1. Definition and Notation
2. Limit Cycle Existence problem
3. Limit Cycle Non Existence problem
4. Feasible Limit Cycle problem
Feasible Limit Cycle problem (FLC)

Given a set V of n elements and $F = (f_v)_{v \in V} : \{0, 1\}^n \to \{0, 1\}^n$ and a sequence $C = [x^k]_{k=0}^p$ such that $x^k \in \{0, 1\}^n$, x^k are pairwise distinct and $x^p \equiv x^0$. Does there exist an update schedule s such that $C \in LC(F, s)$?
Definition and Notation
Limit Cycle Existence problem
Limit Cycle Non Existence problem
Feasible Limit Cycle problem

Feasible Limit Cycle problem

Theorem

OR FLC is NP-Complete.

Proof (idea):

\[
\begin{align*}
C_0^0 & \rightarrow C_0^1 \\
C_1^0 & \rightarrow C_1^1 \\
C_2^0 & \rightarrow C_2^1 \\
C_3^0 & \rightarrow C_3^1 \\
& \vdots \\
C_0^2 & \rightarrow C_2^2 \\
\end{align*}
\]
Feasible Limit Cycle problem

<table>
<thead>
<tr>
<th></th>
<th>C_0^0</th>
<th>C_0^1</th>
<th>C_0^2</th>
<th>C_1^0</th>
<th>C_1^1</th>
<th>C_1^2</th>
<th>C_2^0</th>
<th>C_2^1</th>
<th>C_2^2</th>
<th>z_0</th>
<th>z_1</th>
<th>z_2</th>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>v_4</th>
<th>v_{ϕ}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{0,0}$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$x_{1,0}$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$x_{2,0}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$x_{0,1}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$x_{1,1}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$x_{2,1}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$x_{0,2}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$x_{1,2}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$x_{2,2}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$x_{0,3}$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$\phi(w) = (w_1 \lor w_2 \lor \neg w_3 \lor w_4) \land (\neg w_2 \lor w_3 \lor \neg w_4) \land (\neg w_1 \lor \neg w_3)$.
Theorem

FLC is polynomial in the following cases:

- OR Symmetric
- OR and cycle of length two.
- AND-OR and cycle of length two.
Merci