Abstract

An important problem when modelling gene networks lies in the identification of parameters, even when considering a discrete framework as the one of René Thomas. We present in this article a new approach based on Hoare logic to generate constraints on parameter values. Specifications of observed behaviours play a role comparable to programs in the classical Hoare logic, and deduced weakest preconditions characterize the sets of all compatible parameterizations, expressed as constraints on parameters. Finally we give, in supplementary materials, a proof of soundness of our Hoare logic for gene networks as well as a proof of completeness and decidability based on the notion of the weakest precondition.

Keywords: Hoare logic, Gene regulatory networks, Thomas’ networks, Parameter identification, Soundness and completeness

1. Introduction

Different methods for studying the behaviour of gene networks in a systematic way have been proposed. Among them, ordinary differential equations played an important role, which however mostly lead to numerical simulations. Besides, the abstraction procedure of René Thomas [1], approximating sigmoid functions by step functions, makes it possible to describe the qualitative dynamics of gene networks as paths in a finite state space. Nevertheless this qualitative description of the dynamics is still governed by a set of parameter values, which, although becoming small integers, remain difficult to deduce from classical experimental knowledge. In this context, we
are interested in the exhaustive search of parameter values that are consistent with specifications formalizing the experimentally observed behaviours of gene regulatory networks.

Several works were undertaken with the objective to identify the parameters. The application of temporal logic to biological regulatory networks was presented in [2, 3], then constraint programming was used in [5, 4].

In this paper, we present a somewhat unexpected application of formal methods to biology through a new approach based on Hoare logic [6] and its associated weakest precondition calculus [7] that generates constraints on parameters. The formalism on which we decided to apply this idea is the one of René Thomas because it is now universally recognized as the reference framework for discrete modelling of gene networks. The key point of our proposal is to define a language able to capture the actual traces observed by molecular biologists by means of a set of experiments (either at the transcriptomic or proteomic level [8]). We have designed a language which is expressive enough to specify sets of observed traces while preserving the completeness of a corresponding extended Hoare logic. Since this method avoids building the complete state graph, it results in a powerful technics to find out the constraints representing the set of consistent parameterizations with a tangible gain for computation time. Indeed, the weakest precondition proof strategy which extracts the constraints, goes through the trace specification syntax but is independent of the size of the gene network.

The paper is organized as follows. The basic concepts of classical Hoare logic and its associated Dijkstra weakest precondition are quickly reminded in Section 2. The classical formal definitions for Thomas’ discrete gene regulatory networks are reminded in Section 3. Section 4 gives our definition of (genetically modified) Hoare triples, including the assertion language and the trace specification language. In Section 5, an extended Hoare logic for gene networks is defined for Thomas’ discrete models. In Section 6, the pedagogical example of the incoherent feedforward loop of type 1 (made popular by Uri Alon in [9, 10]) highlights the whole process of our approach to find out the suitable parameter values. Section 7 (Related works) sketches the previously existing methods for formal identification of discrete parameters in gene network models. We conclude in Section 8. Supplementary materials provide the mathematical semantics of these extended Hoare triples and a proof of soundness of our Hoare logic for gene networks as well as a proof of completeness and decidability.
2. Reminders on standard Hoare logic

The Hoare logic is a formal system for reasoning about the soundness of imperative programs. In [6], Tony Hoare introduced the notation “\(\{ P \} p \{ Q \} \)” to mean “If the assertion \(P \) (precondition) is satisfied before performing the program \(p \) and if the program terminates, then the assertion \(Q \) (postcondition) will be satisfied afterwards.” This constitutes de facto a specification of the program under the form of a triple, called the Hoare triple. In [7], Edsger Dijkstra has defined an algorithm taking the postcondition \(Q \) and the program \(p \) as input and computing the weakest precondition \(P_0 \) that ensures \(Q \) if \(p \) terminates. In other words, weakest means that the Hoare triple \(\{ P_0 \} p \{ Q \} \) is satisfied and that for any precondition \(P \), \(\{ P \} p \{ Q \} \) is satisfied if and only if \(P \Rightarrow P_0 \) is semantically satisfied. Notice that weakest precondition means that it does not contain any useless condition, so, it means that the set of states that satisfy the weakest precondition is the largest one. The basic idea is to stamp the sequential steps of a program with assertions that are inferred according to the instruction they surround.

Within the following inference rules, \(p, p_1 \) and \(p_2 \) stand for programs, \(P, P_1, P_2, I \) and \(Q \) stand for first-order assertions on the variables of the program, \(v \) stands for a variable of the imperative program, and \(Q[v \leftarrow \text{expr}] \) means that \(\text{expr} \) is substituted to each free occurrence of \(v \) in \(Q \):

Assignment: \[\{ Q[v \leftarrow \text{expr}] \} v := \text{expr} \{ Q \} \]

Sequential composition: \[\frac{\{ P_2 \} p_2 \{ Q \} \quad \{ P_1 \} p_1 \{ P_2 \}}{\{ P_1 ; p_2 \} \{ Q \}} \]

Conditional branching: \[\frac{\{ P_1 \} p_1 \{ Q \} \quad \{ P_2 \} p_2 \{ Q \}}{\{ (e \land P_1) \lor (\neg e \land P_2) \} \text{ if } e \text{ then } p_1 \text{ else } p_2 \{ Q \}} \]

Iteration: \[\frac{\{ e \land I \} p \{ I \} \quad \neg e \land I \Rightarrow Q}{\{ I \} \text{ while } e \text{ with } I \text{ do } p \{ Q \}} \]

Empty program: \[\frac{P \Rightarrow Q}{\{ P \} \varepsilon \{ Q \}} \] (where \(\varepsilon \) stands for the empty program)

The **Iteration** rule deserves some comments. The assertion \(I \) is called the loop invariant and it is well known that finding the weakest loop invariant (if any) is undecidable in general [11, 12]. So, Tony Hoare asks the programmer to give a loop invariant explicitly (with \(I \)). There are approaches
to help finding loop invariants similar to the iterative approach adopted in ASTREE [13] (abstract interpretation [14]).

Some authors prefer the following iteration rule that requires the application of the empty program rule to become equivalent to our version. By doing so, these authors put the light on the fact that within a program, each while instruction carries its own (sub)specification and it can consequently be proved apart from the rest of the program.

From the standard set of Hoare logic rules, the following proof strategy builds a proof tree that computes the weakest precondition [7].

Definition 2.1. (Dijkstra Backward strategy). Let \(\{P\} p \{Q\} \) be a Hoare triple. We call backward strategy the proof strategy defined inductively on \(p \) as follows:

1. If \(p \) is of the form \(p_1; p_2 \) where \(p_2 \) is made of a single instruction, then apply the Sequential composition rule.
2. If \(p \) is a single instruction, then apply the corresponding rule (Iteration rule, Conditional branching rule or assignment rule).
3. Only after steps 1 and 2 have fully treated \(p \), i.e. when all instructions have been treated, apply the Empty program rule.

Notice that, these three items being mutually exclusive, the backward strategy generates a unique proof tree. (In addition, the remaining leafs of the proof tree must be handled using first order logic and arithmetic knowledge.)

By doing so, the precondition \(P_0 \) obtained just before applying the last Empty program rule is the weakest precondition. According to Stephen Cook [15], the Hoare logic is complete assuming that each loop invariant in the program is the weakest loop invariant with respect to the condition computed just at the right of its while statement. More technically, a program with a while statement is of the form: \(p_1; \text{while } e \text{ with } I \text{ do } p \); \(p_2 \).” The Dijkstra backward strategy computes inductively the weakest precondition \(Q_2 \) such that, after the execution of \(p_2 \), the postcondition is satisfied. So \(Q_2 \) becomes the postcondition of the while statement. The Cook result is then valid when the invariant \(I \) is the weakest condition that ensures \(Q_2 \) if the program exits from the while statement. All in all, the Cook result means that the Hoare triple \(\{P\} p \{Q\} \) is correct if and only if \(P \Rightarrow P_0 \) is semantically satisfied. So the full completeness of the Hoare logic depends on
two things: a sufficient expressive power to express all the previously men-
tioned weakest loop invariants and the existence of a first-order proof tree for \(P \Rightarrow P_0 \) whenever it is semantically satisfied. Technically, this relies on the expressiveness of the chosen underlying assertion language [16].

The most striking feature of the backward strategy for Hoare logic is that, owing to very simple sequences of syntactic formula manipulations, we capture the mathematical semantics of a program within first order logic. Nevertheless, it is worth noticing that we only address partial correctness since Hoare logic does not give any proof of the termination of the program (while instructions may induce infinite loops).

3. Reminders on discrete gene regulatory network models

This section presents the formal framework based on the discrete mod-
elling method of René Thomas [17, 18] and introduced in [19]. As shown in

![Gene Regulatory Network](image)

Figure 1: The graphical representation of a gene regulatory graph \(R = (V, M, E_V, E_M) \) with \(V = \{x, y\} \), the bounds of \(x \) and \(y \) are respectively 2 and 1, \(M = \{\mu_1, \mu_2, \mu_3\} \), \(\varphi_{\mu_1} \) is \((x \geq 2) \land \mu_3 \), \(\varphi_{\mu_2} \) is \((x \geq 1) \), \(\varphi_{\mu_3} \) is \(\neg(y \geq 1)\).

Figure 1, a gene regulatory graph is visualized as a labelled directed graph in which vertices are either variables (within circles) or multiplexes (within rectangles). Variables abstract genes or their products, and multiplexes contain propositional formulas that encode situations in which a group of variables (inputs of multiplexes) influence the evolution of some variables (outputs of multiplexes). In the figure the simple multiplex \(\mu_2 \) expresses that the variable \(x \) can help the activation of the variable \(y \) when its state is at least equal to 1. In general, multiplexes can represent combined biological phenomena, one of the simplest being the formation of complexes (in which case the formula would simply contain a conjunction). In the figure, the situation of \(\mu_1 \) is a little bit more elaborated: It reflects an auto-activation of \(x \) at level 2 which is controled by \(\mu_3 \). Because \(\mu_3 \) contains a negation, \(\mu_1 \) does not model a positive cooperation of \(x \) and \(y \): The auto-activation of \(x \) is inhibited by \(y \).
So, in this example, there are three qualitatively interesting intervals of expression levels for \(x \): an interval called 0, where \(x \) can neither act on \(y \) nor on itself, an interval called 1, where \(x \) can act on \(y \) and never on itself, and an interval called 2, where \(x \) can act on \(y \) as well as on itself provided that \(\mu_3 \) is satisfied. From the biological point of view, there is a threshold (\(i.e. \) a given number of intracellular molecules produced by \(x \)) such that \(x \) is unable (resp. able) to act on its target gene if its expression level is under (resp. over) the threshold.

We say that the bound of \(x \) is \(b_x = 2 \) and similarly there are only 2 qualitatively interesting intervals for \(y \), so the bound of \(y \) is \(b_y = 1 \).

In general, this labeled directed graph is formally defined as follows.

Definition 3.1. A gene regulatory graph with multiplexes is a tuple \(R = (V, M, E_V, E_M) \) satisfying the following conditions:

- \(V \) and \(M \) are disjoint sets, whose elements are called variables and multiplexes respectively.

- \(G = (V \cup M, E_V \cup E_M) \) is a labeled directed graph such that:
 - Edges of \(E_V \) start from a variable and end to a multiplex, and edges of \(E_M \) start from a multiplex and end to either a variable or a multiplex.
 - Every directed cycle of \(G \) contains at least one variable.
 - Every variable \(v \) of \(V \) is labeled by a positive integer \(b_v \) called the bound of \(v \).
 - Every multiplex \(m \) of \(M \) is labeled by a formula \(\varphi_m \) belonging to the language \(\mathcal{L}_m \) inductively defined by:
 - If \(v \rightarrow m \) belongs to \(E_V \) and \(s \in \mathbb{N} \), then \(v \geq s \) is an atom of \(\mathcal{L}_m \).
 - If \(m' \rightarrow m \) belongs to \(E_M \) then \(m' \) is an atom of \(\mathcal{L}_m \).
 - If \(\varphi \) and \(\psi \) belong to \(\mathcal{L}_m \) then \(\neg \varphi, (\varphi \land \psi) \) and \((\varphi \lor \psi) \) also belong to \(\mathcal{L}_m \).

All in all, the discrete values of a variable \(x \) abstract intervals of quantity of molecules produced by \(x \) within the cell. These intervals are obtained by sorting the activation thresholds of \(x \) on the list of its targets. Consequently
only the knowledge of the thresholds order is useful and not their actual values. The multiplexes use these abstract levels in order to encode peculiar biological knowledge into formulas that define the conditions under which the regulation positively acts on its targets. If there is no peculiar knowledge about cooperation over a given target, there is one multiplex per regulating gene acting on this target, whose formula is reduced to an atom.

Successive multiplexes can be combined by flattening their formulas:

Definition 3.2. The flatten version of a formula φ_m, denoted $\overline{\varphi_m}$, is obtained by recursively substituting each occurrence of a multiplex m' in φ_m by its formula $\varphi_{m'}$ (this recursive process of substitutions is well defined because G has no directed cycle with only multiplexes).

In Figure 1, the flatten formula $\overline{\varphi_{\mu_1}}$ is $(x \geq 2) \land \neg(y \geq 1)$.

As a result of the flatening transformation, all the atoms of a flatten formula are of the form $v \geq s$.

A state is obviously an assignment of integer values to the variables v of V within the intervals $[0, b_v]$. According to a given state, by replacing variables by their values, $\overline{\varphi_m}$ becomes a propositional formula whose atoms are the results of the integer inequalities.

Definition 3.3. (States η, satisfaction relation \models_N and resources ρ). Let N be a grn and V be its set of variables. A state of N is a function $\eta : V \rightarrow N$ such that $\eta(v) \leq b_v$ for all $v \in V$. Let \mathcal{L} be the set of propositional formulas whose atoms are of the form $v \geq s$ with $v \in V$ and let s be a positive integer (so that $\overline{\varphi_m}$ is a formula of \mathcal{L} for every multiplex m of N). The satisfaction relation \models_N between a state η of N and a formula φ of \mathcal{L} is inductively defined by:

- If φ is an atom of the form $v \geq s$, then $\eta \models_N \varphi$ if $\eta(v) \geq s$.
- If $\varphi \equiv \psi_1 \land \psi_2$ then $\eta \models_N \varphi$ if $\eta \models_N \psi_1$ and $\eta \models_N \psi_2$; and we proceed similarly for the other connectives.

Given a variable $v \in V$, a multiplex $m \in N^{-}(v)$ (where $N^{-}(v)$ is the set of multiplexes m such that $m \rightarrow v$ belongs to the interaction graph of N) is a resource of v at state η if $\eta \models_N \overline{\varphi_m}$. The set of resources of v at state η is defined by $\rho(\eta, v) = \{ m \in N^{-}(v) \mid \eta \models_N \overline{\varphi_m} \}$.

7
According to figure 1, at the state where $\eta(x) = 2$ and $\eta(y) = 1$, φ_{μ_2} is satisfied and consequently μ_2 is the only resource of y. On the contrary φ_{μ_1} is false and consequently the set of resources of x is empty.

The equilibrium toward which the expression level of a gene v is attracted only depends on its set ω of resources. The interval number between 0 and b_v containing this equilibrium is classically denoted $K_{v,\omega}$ [20, 21, 17, 22, 2, 19].

Definition 3.4. A gene regulatory network (GRN for short) is a couple $N = (V, M, E_V, E_M, K)$ satisfying the following conditions:

- $R = (V, M, E_V, E_M)$ is a gene regulatory graph with multiplexes,
- $K = \{K_{v,\omega}\}$ is a family of integers indexed by $v \in V$ and $\omega \subset N^-(v)$, where $N^-(v)$ is the set of multiplexes m such that $m \rightarrow v$ is an edge of E_M. Each $K_{v,\omega}$ must satisfy $0 \leq K_{v,\omega} \leq b_v$.

A usual notation abuse is the following: we write K_v instead of $K_{v,\emptyset}$ and we write $K_{v,m_1m_2\ldots}$ instead of $K_{v,\{m_1,m_2,\ldots\}}$.

At a given state η, each variable v tries to evolve in the direction of parameter $K_{v,\rho(\eta,v)}$. Hence, at state η, v can increase if $\eta(v) < K_{v,\rho(\eta,v)}$, it can decrease if $\eta(v) > K_{v,\rho(\eta,v)}$, and v is stable if $\eta(v) = K_{v,\rho(\eta,v)}$.

![Figure 2: State graph obtained according to Definition 3.5, following Figure 1 and arbitrarily assuming that $K_x = 0$, $K_{x,\mu_1} = 2$, $K_y = 0$ and $K_{y,\mu_2} = 1$.](image)

In Figure 2, at the state $(2,1)$, we have $K_x = 0 < \eta(x) = 2$ and $K_{y,\mu_2} = \eta(y) = 1$, but $(0,1)$ is not a successor state of $(2,1)$ because the protein degradation occurs one protein after the other and consequently the concentration level of x cannot jump from 2 to 0. Consequently $(1,1)$ is the next state.

At $(1,0)$, both $K_x = 0 < \eta(x) = 1$ and $K_{y,\mu_2} = 1 > \eta(y) = 0$, but the probability for x and y to cross their threshold exactly at the same time is
null [20, 21, 17, 22, 2, 19]¹. Consequently, there are two possible next states:
(0, 0) if x crosses its threshold first and (1, 1) if y crosses its threshold first.

So, Thomas’ method assumes that variables evolve asynchronously and
by unit steps toward their respective target levels:

Definition 3.5. (State Graph). Let $N = (V, M, E_V, E_M, K)$ be a grn. The
state graph of N is the directed graph S whose set of vertices is the set of
states of N, and such that there exists an edge (called transition) $\eta \rightarrow \eta'$ if
one of the following conditions is satisfied:

- For all variables $v \in V$ we have $\eta(v) = K_{v, \rho(\eta,v)}$, and then $\eta' = \eta$.

- There exists $v \in V$ such that $\eta(v) \neq K_{v, \rho(\eta,v)}$, and

$$
\eta'(v) = \begin{cases}
\eta(v) + 1 & \text{if } \eta(v) < K_{v, \rho(\eta,v)} \\
\eta(v) - 1 & \text{if } \eta(v) > K_{v, \rho(\eta,v)}
\end{cases}
$$

and $\forall u \neq v, \eta'(u) = \eta(u)$.

For each variable v such that $\eta(v) \neq K_{v, \rho(\eta,v)}$, there is a transition allowing
v to evolve (± 1) toward its focal level $K_{v, \rho(\eta,v)}$. Every outgoing transition of
η is supposed to be possible, so that there is an nondeterminism as soon as η
has several outgoing transitions. Figure 2 represents a complete state graph.

4. Syntax of Hoare triples for gene networks

In order to formalize known information about a gene network, we intro-
duce in this section a language to express properties of states (assertions) and
a language to express properties of state transitions (trace specifications).

4.1. Assertions for discrete models of gene networks

Definition 4.1. (Terms and Assertions). Let $N = (V, M, E_V, E_M, K)$ be a grn. The well formed terms for N are inductively defined by:

- Each integer $n \in \mathbb{N}$ constitutes a well formed term

¹Indeed, biologically, each threshold corresponds to a precise number of molecules pro-
duced by x or y respectively in the cell. So, the probability for the degradation to make the
number of x-molecules cross the x-threshold exactly at the same time as a new molecule
produced by y makes the y-threshold crossed, is null (a sufficiently precise time scale will
distinguish the two events).
For each variable \(v \in V \), the name of the variable \(v \), considered as a symbol, constitutes a well formed term.

Similarly, for each \(v \in V \) and for each subset \(\omega \) of \(N^-(v) \), the symbol \(K_{v,\omega} \) constitutes a well formed term.

If \(t \) and \(t' \) are well formed terms then \((t + t') \) and \((t - t') \) are also well formed terms.

Let \(N = (V, M, E_V, E_M, \mathcal{K}) \) be a grn. The assertions for \(N \) are inductively defined by:

- If \(t \) and \(t' \) are well formed terms then \((t = t') \), \((t < t') \), \((t > t') \), \((t \leq t') \) and \((t \geq t') \) are atomic assertions for \(N \).

- If \(\varphi \) and \(\psi \) are assertions for \(N \) then \(\neg \varphi \), \((\varphi \land \psi) \), \((\varphi \lor \psi) \) and \((\varphi \Rightarrow \psi) \) are also assertions for \(N \).

A state \(\eta \) of the network \(N \) satisfies an assertion \(\varphi \) if and only if its interpretation is valid in \(\mathbb{Z} \), after substituting each variable \(v \) by \(\eta(v) \) and each symbol \(K_{v,\omega} \) by its value according to the family \(\mathcal{K} \). We note \(\eta \vDash N \varphi \).

Moreover, conventionally, we denote “\(\top \)” the tautology (e.g. “\(1 = 1 \)”).

4.2. Trace specifications for discrete models of gene networks

When biologists observe the dynamics of gene expression levels along a set of experiments, they extract, as a direct experimental knowledge, some sets of observed traces. It is consequently of first interest to see these sets of observations as basic elements for the specification of gene networks.

Definition 4.2. (Trace specifications). Let \(N = (V, M, E_V, E_M, \mathcal{K}) \) be a grn. The set of trace specifications for \(N \) is inductively defined by:

- For each \(v \in V \) and \(n \in [0, b_v] \) the expressions \(v^+ \), \(v^- \) and \(v := n \) are atomic trace specifications (respectively increase, decrease or assignment).

- If \(e \) is an assertion for \(N \), then the expression \(\text{assert}(e) \) is an atomic trace specification.
• If p_1 and p_2 are trace specifications then $(p_1; p_2)$ is also a trace specification (sequential composition). Moreover the sequential composition is associative, so that we can write $(p_1; p_2; \cdots; p_n)$ without intermediate parentheses.

• If p is a trace specification and if e and I are assertions for N, then (while e with I do p) is also a trace specification. The assertion I is called the invariant of the while loop.

• If p_1 and p_2 are trace specifications then $\forall(p_1, p_2)$ and $\exists(p_1, p_2)$ are also trace specifications (quantifiers). Moreover the quantifiers are associative and commutative, so that we can write $\forall(p_1, p_2, \cdots, p_n)$ and $\exists(p_1, p_2, \cdots, p_n)$ as useful abbreviations.

Conventionally, we denote:

• ε (called the empty trace) the trace specification $\text{assert}(\top)$.

• if e then p_1 else p_2 (called conditional branching) the trace specification $\exists(\text{assert}(e); p_1, \text{assert}(\neg e); p_2)$, where p_1 and p_2 are any trace specifications and e is an assertion for N.

Intuitively, $v+$ (resp. $v-$, $v := n$) means that the expression level of variable v is increasing by one unit (resp. decreasing by one unit, set to a particular value n during the experiment). $\text{assert}(e)$ allows one to express a property of the current state without change of state. Sequential composition allows one to concatenate two trace specifications. The loop invariant I, as in classical Hoare logic, is a way to handle an unknown number of trace repetitions: It will facilitate proofs of Hoare triples. Finally it becomes possible to group together several trace specifications thanks to the quantifiers \forall and \exists. These intuitions are formalized as follows via a binary relation between states and sets of states.

Notation 4.3. For a state η, a variable v and $i \in [0, b_v]$, we note $\eta[v \leftarrow i]$ the state η' such that $\eta'(v) = i$ and for all $u \neq v$, $\eta'(u) = \eta(u)$.

Definition 4.4. (Mathematical semantics of a trace specification). Let $N = (V, M, E_V, E_M, K)$ be a GRN, let S be the state graph of N whose set of vertices is denoted S and let p be a trace specification for N. The binary relation $\overset{p}{\rightarrow}$ is the smallest subset of $S \times \mathcal{P}(S)$ such that, for any state η:

\begin{itemize}
 \item $\varepsilon \in (\text{assert}(\top))^{\rightarrow}$
 \item if e then p_1 else $p_2 \in (\text{assert}(e); p_1, \text{assert}(\neg e); p_2)$
\end{itemize}
1. If \(p \) is the atomic expression \(v + \), then let us consider the state \(\eta' = \eta[v \leftarrow (\eta(v) + 1)] \): If \(\eta \rightarrow \eta' \) is a transition of \(S \) then \(\eta \overset{p}{\rightarrow} \{\eta'\} \).
2. If \(p \) is the atomic expression \(v - \), then let us consider the state \(\eta' = \eta[v \leftarrow (\eta(v) - 1)] \): If \(\eta \rightarrow \eta' \) is a transition of \(S \) then \(\eta \overset{p}{\rightarrow} \{\eta'\} \).
3. If \(p \) is the atomic expression \(v := i \), then \(\eta \overset{p}{\rightarrow} \{\eta[v \leftarrow i]\} \).
4. If \(p \) is of the form \(\text{assert}(e) \), if \(\eta \models_N e \), then \(\eta \overset{p}{\rightarrow} \{\eta\} \).
5. If \(p \) is of the form \(\forall(p_1, p_2) \): If \(\eta \overset{p_1}{\rightarrow} E_1 \) and \(\eta \overset{p_2}{\rightarrow} E_2 \) then \(\eta \overset{p}{\rightarrow} (E_1 \cup E_2) \).
6. If \(p \) is of the form \(\exists(p_1, p_2) \): If \(\eta \overset{p_1}{\rightarrow} E_1 \) then \(\eta \overset{p_2}{\rightarrow} E_1 \), and if \(\eta \overset{p_2}{\rightarrow} E_2 \) then \(\eta \overset{p}{\rightarrow} E_2 \).
7. If \(p \) is of the form \((p_1; p_2) \): If \(\eta \overset{p_1}{\rightarrow} F \) and if \(\{E_e\}_{e \in F} \) is a \(F \)-indexed family of state sets such that \(e \overset{p_2}{\rightarrow} E_e \), then \(\eta \overset{p}{\rightarrow} (\bigcup_{e \in F} E_e) \).
8. If \(p \) is of the form \((\text{while } e \text{ with } I \text{ do } p_0) \):
 - If \(\eta \not\models_N e \) then \(\eta \overset{p}{\rightarrow} \{\eta\} \).
 - If \(\eta \models_N e \) and \(\eta \overset{p_0}{\rightarrow} E \) then \(\eta \overset{p}{\rightarrow} E \).

Detailed comments about this definition can be found in supplementary materials Appendix A.

4.3. Hoare triples

Similarly to Section 2, two assertions and one trace specification are used to constitute a Hoare triple for gene networks.

Definition 4.5. A Hoare triple for a grn \(N \) is an expression of the form \(\{P\} \ p \ \{Q\} \) where \(P \) and \(Q \) are assertions for \(N \), called pre- and post-condition respectively, and \(p \) is a trace specification for \(N \).

In practice \(P \) can describe a set of states where cells have been synchronised at the beginning of the experiment, for example all states for which the variable \(v \) has value zero \((P \equiv (v = 0)) \), the trace specification \(p \) describes biologically observed dynamic processes, for example increase of the expression level of \(v \) \((p \equiv v+) \), and the postcondition also describes observations at the end of the experiment, for example all states for which the variable \(v \) has value one \((Q \equiv (v = 1)) \), and so on. Whether or not the triple is satisfied by a given gene network \(N \), will depend on its state transition graph, thus it will depend on the parameter values in \(K \).
Definition 4.6. (Semantics of a Hoare triple). Let $N = (V, M, E_V, E_M, K)$ be a grn and let S be the state graph of N whose set of vertices is denoted S. A Hoare triple $\{P\} p \{Q\}$ is satisfied if and only if:

For all $\eta \in S$ satisfying P, there exists E such that $\eta \xrightarrow{P} E$ and for all $\eta' \in E$, η' satisfies Q.

See supplementary materials Appendix A for more details.

5. A Hoare logic for discrete models of gene networks

In this section, we define our genetically modified Hoare logic by giving the rule for each constructor of trace specifications (Definition 4.2). First, let us introduce a few conventional names to denote formulas that will be intensively used.

Notation 5.1. For each variable v of a grn N, we conventionally use the following notations:

1. For each subset ω of $N^-(v)$ we denote by Φ^ω_v the following formula

$\Phi^\omega_v \equiv (\bigwedge_{m \in \omega} \lnot \phi_m) \land (\bigwedge_{m \in N^-(v) \setminus \omega} \lnot \phi_m)$

where $N^-(v) \setminus \omega$ stands for the complementary subset of ω in $N^-(v)$. From Definition 3.3, for all states η, $\eta \models_N \Phi^\omega_v$ if and only if $\omega = \rho(\eta, v)$, that is, ω is the set of resources of v at state η. Consequently, for each v, there exists a unique ω such that $\eta \models_N \Phi^\omega_v$.

2. We denote by Φ^+_v the following formula

$\Phi^+_v \equiv \bigwedge_{\omega \subset N^-(v)} (\Phi^\omega_v \implies K_{v, \omega} > v)$

From Definition 3.5, we have $\eta \models_N \Phi^+_v$ if and only if there is a transition $(\eta \rightarrow \eta[v \leftarrow v + 1])$ in the state graph S, that is, if and only if the variable v can increase.

3. We denote by Φ^-_v the following formula

$\Phi^-_v \equiv \bigwedge_{\omega \subset N^-(v)} (\Phi^\omega_v \implies K_{v, \omega} < v)$

Similarly, $\eta \models_N \Phi^-_v$ if and only if the variable v can decrease from the state η in the state graph S.

13
See Section 6 where examples of these formulas are given.

Our Hoare logic for discrete models of gene networks is then defined by the following inference rules, where \(v \) is a variable of the GRN and \(k \in [0, b_v] \).

1. Rules encoding Thomas’ discrete dynamics.

Incrementation:

\[
\{ \Phi_v^+ \land Q[v\leftarrow v+1] \} \quad v+ \{ Q \}
\]

Decrementation:

\[
\{ \Phi_v^- \land Q[v\leftarrow v-1] \} \quad v- \{ Q \}
\]

2. Rules coming from Hoare logic. These rules are similar to the ones given in Section 2. Obvious rules for the expression \(\text{assert}(\Phi) \), and for the quantifiers, are added:

Assert:

\[
\{ \Phi \land Q \} \quad \text{assert}(\Phi) \quad \{ Q \}
\]

Universal quantifier:

\[
\{ P_1 \} \quad p_1 \{ Q \} \quad \{ P_2 \} \quad p_2 \{ Q \} \quad \{ P_1 \land P_2 \} \quad \forall(p_1, p_2) \quad \{ Q \}
\]

Existential quantifier:

\[
\{ P_1 \} \quad p_1 \{ Q \} \quad \{ P_2 \} \quad p_2 \{ Q \} \quad \{ P_1 \lor P_2 \} \quad \exists(p_1, p_2) \quad \{ Q \}
\]

Assignment:

\[
\{ Q[v\leftarrow k] \} \quad v:=k \quad \{ Q \}
\]

Sequential composition:

\[
\{ P_1 \} \quad p_1 \{ Q \} \quad \{ P_2 \} \quad p_2 \{ Q \} \quad \{ P_1 \land P_2 \} \quad p_1; p_2 \quad \{ Q \}
\]

Iteration:

\[
\{ e \land I \} \quad p \{ I \} \quad \neg e \land I \Rightarrow Q \quad \{ I \} \quad \text{while } e \text{ with } I \text{ do } p \quad \{ Q \}
\]

Empty trace:

\[
\{ P \} \Rightarrow Q \quad \{ P \} \Rightarrow \varepsilon \quad \{ Q \}
\]

3. **Boundary axioms** asserting that all values stay between their bounds, for each \(v \in V \) and \(\omega \subset N^-(v) \):

\[
0 \leq v \land v \leq b_v \land 0 \leq K_{v,\omega} \land K_{v,\omega} \leq b_v
\]

Remark 5.2.

- \((\Phi_v^+ \Rightarrow v < b_v)\) can be deduced from the boundary axioms: \(\Phi_v^+ \) implies that for \(\omega \) corresponding to the current set of resources, \(K_{v,\omega} > v \) and, using the boundary axiom \(K_{v,\omega} \leq b_v \), we get \(v < b_v \).
Similarly, we have $(\Phi_v \Rightarrow v > 0)$.

These implications will be used in Section 6.

The conditional branching rule of the standard Hoare logic has not been reproduced here because the trace specification (if e then p_1 else p_2) is a shorthand for $\exists (\text{assert}(e); p_1, \text{assert}(\neg e); p_2)$. The conditional branching rule remains correct.

We prove in Supplementary Materials Appendix B that this modified Hoare logic is sound and complete and we show that the weakest loop invariants can always be computed. More precisely, the proof strategy called backward strategy, already described at the end of Section 2, also applies here: It computes the weakest precondition.

Nevertheless, similarly to classical Hoare logic which reflects a partial soundness of imperative programs, the previous definition does not imply termination of while loops.

6. A pedagogical example

In [9, 10] Uri Alon and co-workers have studied the most common in vivo patterns involving at most four genes. Among them, even without considering feedback loops such as in [23], there are interesting patterns whose dynamics is less obvious than it seems. In particular they have emphasized the incoherent feedforward loop of type 1. It is composed by a transcription factor a that activates a second transcription factor c, and both a and c regulate a gene b. The gene a is an activator of b whereas the gene c is an inhibitor of b. There is a “short” positive action of a on b and a “long” negative action via c: a activates c which inhibits b. The left hand side of Figure 3 shows such a feedforward loop. Supposing that both thresholds of actions of a are equal leads to a Boolean network since, in that case, the variable a can take only the value 0 (a has no action) or 1 (a activates both b and c). The right hand side of the figure shows the corresponding GRN with multiplexes: σ encodes the “short” action of a on b, whilst l followed by λ constitute the “long” action.

Classical interpretation: Uri Alon and many biologists have in mind that if a is equal to 0 for a sufficiently long time, both b and c will also be equal to 0, because b and c need a as a resource in order to reach the state 1. They also have in mind that the function of this feedforward...
Figure 3: (Left) Boolean “incoherent feedforward loop of type 1” according to Uri Alon. (Right) Corresponding grn $N=\{V,M,E_M,E_V,K\}$. $V=\{a,b,c\}$ with $b_a=b_b=b_c=1$. $M=\{l,\lambda,\sigma\}$, $\phi_l \equiv (a \geq 1)$, $\phi_\lambda \equiv (\neg (c \geq 1))$, $\phi_\sigma \equiv (a \geq 1)$. $K=\{K_a,K_c,K_{c,l},K_b,K_{b,\sigma},K_{b,\lambda},K_{b,\sigma\lambda}\}$.

A transitory activity of b that signals when a has switched from 0 to 1. The idea is that a activates the productions of b and c, and then c stops the production of b.

Here, we revisit this affirmation via four different trace specifications, and we prove formally that the affirmation is only valid under some constraints on the parameters of the network, and only under the assumption that b starts its activity before c.

Is a transitory production of b possible? The simple popular idea that b is activated and then the activation of c inhibits b is specified by the Hoare triple $\{P\} P_1 \{Q_0\}$ where $P \equiv (a = 1 \land b = 0 \land c = 0)$, $P_1 \equiv (b+; c+; b-)$ and $Q_0 \equiv (b = 0)$. The backward strategy using our genetically modified Hoare logic on this example gives the following successive conditions.

- The weakest precondition obtained through the last expression “$b-$” is $\Phi_b^\circ \land Q_0[b \leftarrow b-1]$ (Decrementation rule):

\[
\begin{align*}
\Phi_b^\circ &\Rightarrow K_b < b \\
\Phi_b^\sigma &\Rightarrow K_{b,\sigma} < b \\
\Phi_b^\lambda &\Rightarrow K_{b,\lambda} < b \\
\Phi_b^{\sigma\lambda} &\Rightarrow K_{b,\sigma\lambda} < b \\
b - 1 = 0
\end{align*}
\]

\[
\begin{align*}
\neg \neg (c \geq 1) \land \neg (a \geq 1) &\Rightarrow K_b < b \\
\neg \neg (c \geq 1) \land (a \geq 1) &\Rightarrow K_{b,\sigma} < b \\
\neg (c \geq 1) \land \neg (a \geq 1) &\Rightarrow K_{b,\lambda} < b \\
\neg (c \geq 1) \land (a \geq 1) &\Rightarrow K_{b,\sigma\lambda} < b \\
b - 1 = 0
\end{align*}
\]
which simplifies as
\[
Q_1 \equiv \begin{cases}
 b = 1 \\
 ((c \geq 1) \land (a < 1)) \Rightarrow K_b = 0 \\
 ((c \geq 1) \land (a \geq 1)) \Rightarrow K_{b,\sigma} = 0 \\
 ((c < 1) \land (a < 1)) \Rightarrow K_{b,\lambda} = 0 \\
 ((c < 1) \land (a \geq 1)) \Rightarrow K_{b,\sigma\lambda} = 0
\end{cases}
\]

- Then, the weakest precondition obtained through the expression “c+” is \(\Phi_c^+ \land Q_1[c \leftarrow c + 1] \):
 \[
 \begin{cases}
 \neg(a \geq 1) \Rightarrow K_c > c \\
 a \geq 1 \Rightarrow K_{c,l} > c \\
 b = 1 \\
 ((c + 1 \geq 1) \land (a < 1)) \Rightarrow K_b = 0 \\
 ((c + 1 \geq 1) \land (a \geq 1)) \Rightarrow K_{b,\sigma} = 0 \\
 ((c + 1 < 1) \land (a < 1)) \Rightarrow K_{b,\lambda} = 0 \\
 ((c + 1 < 1) \land (a \geq 1)) \Rightarrow K_{b,\sigma\lambda} = 0
 \end{cases}
 \]
 which simplifies as

\[
Q_2 \equiv \begin{cases}
 c = 0 \\
 a < 1 \Rightarrow K_c = 1 \\
 a \geq 1 \Rightarrow K_{c,l} = 1 \\
 b = 1 \\
 a < 1 \Rightarrow K_b = 0 \\
 a \geq 1 \Rightarrow K_{b,\sigma} = 0
\end{cases}
\]

- Lastly, the weakest precondition obtained through the first “b+” of the trace is \(\Phi_b^+ \land Q_2[b \leftarrow b + 1] \) which simplifies as

\[
Q_3 \equiv \begin{cases}
 a < 1 \Rightarrow K_{b,\lambda} = 1 \\
 a \geq 1 \Rightarrow K_{b,\sigma\lambda} = 1 \\
 c = 0 \\
 a < 1 \Rightarrow K_c = 1 \\
 a \geq 1 \Rightarrow K_{c,l} = 1 \\
 b = 0 \\
 a < 1 \Rightarrow K_b = 0 \\
 a \geq 1 \Rightarrow K_{b,\sigma} = 0
\end{cases}
\]

Then, using the Empty trace rule, it follows that \(P \implies Q_3 \) i.e. \((a = 1 \land b = 0 \land c = 0) \implies Q_3\). After simplification we get correctness if and only if \(K_{b,\sigma\lambda} = 1 \) and \(K_{c,l} = 1 \) and \(K_{b,\sigma} = 0 \). So, under these three hypotheses and whatever the values of the other parameters, the system can exhibit a transitory production of \(b \) in response to a switch of \(a \) from 0 to 1.

Is a transitory production of \(b \) possible without increasing \(c \)? The previous trace specification \(P_1 \) is not the only one reflecting a transitory production
of b, there may be other realisations of this property. For example one can consider the trace specification
\[P_2 \equiv (b+; b-) \]

With respect to this trace specification, the weakest precondition obtained through the last expression “$b-$” is of course Q_1 as previously. Then, the weakest precondition obtained through “$b+$” is
\[Q_4 \equiv \begin{cases}
 b = 0 \\
 (c \geq 1) \land (a < 1) \implies ((K_b = 1) \land (K_b = 0)) \\
 (c \geq 1) \land (a \geq 1) \implies ((K_b,\sigma = 1) \land (K_b,\sigma = 0)) \\
 (c < 1) \land (a < 1) \implies ((K_b,\lambda = 1) \land (K_b,\lambda = 0)) \\
 (c < 1) \land (a \geq 1) \implies ((K_b,\sigma\lambda = 1) \land (K_b,\sigma\lambda = 0))
 \end{cases} \]

Q_4 is not satisfiable: It implies that each parameter associated with b is both equal to 0 and 1. The trace $(b+; b-)$ is not realisable (inconsistent weakest precondition).

The existence of the trace $(b+, c+, b-)$ does not imply a transitory production of b for all traces in the same gene network. When $K_{b,\sigma\lambda} = 1$, $K_{c,\lambda} = 1$ and $K_{b,\sigma} = 0$, that is when trace $(b+, c+, b-)$ is realisable, this does not prevent from some other traces that do not exhibit a transitory production of b. For instance the simple trace specification $P_3 \equiv c+$ leaves b constantly equal to 0, and the Hoare triple
\[\{ a = 1 \land b = 0 \land c = 0 \land K_{b,\sigma\lambda} = 1 \land K_{c,\lambda} = 1 \land K_{b,\sigma} = 0 \} \quad c+ \quad \{ b = 0 \} \]
is satisfied, as the corresponding weakest precondition Q_5 is clearly implied by the precondition.

\[Q_5 \equiv \Phi_c^+ \land Q_0[c \leftarrow c + 1] \equiv \begin{cases}
 c = 0 \\
 a = 0 \implies K_c = 1 \\
 a = 1 \implies K_{c,\lambda} = 1 \\
 b = 0
 \end{cases} \]

Once a constantly equals 1, if c reaches level 1 before b, even transitorily, then no production of b is possible anymore. We prove this property by showing that the following triple is inconsistent, whatever the loop invariant I:
\[\begin{cases}
 a = 1 \land b = 0 \\
 c = 1 \land K_{b,\sigma\lambda} = 1 \\
 K_{c,\lambda} = 1 \land K_{b,\sigma} = 0
 \end{cases} \quad \text{while } b < 1 \text{ with I do } \exists (b+, b-, c+, c-) \{ b = 1 \} \]

18
The subtrace specification $\exists(b+,b−,c+,c−)$ reflects the fact that a stays constant but b or c evolves. Thus, the while statement allows b and c to evolve freely until b becomes equal to 1.

Applying the Iteration rule, I has to satisfy $\neg(b < 1) \land I \implies (b = 1)$: This property is trivially satisfied whatever the assertion I, due to the boundary axioms. I has also to satisfy $\{b < 1 \land I\} \exists(b+,b−,c+,c−) \{I\}$ which gives via the existential quantifier rule:

$$Q_6 \equiv \begin{cases} (\Phi_b^+ \land I[b \leftarrow b + 1]) \lor (\Phi_b^- \land I[b \leftarrow b - 1]) \lor \\ (\Phi_c^+ \land I[c \leftarrow c + 1]) \lor (\Phi_c^- \land I[c \leftarrow c - 1]) \end{cases}$$

Consequently I must be any assertion such that

$$(b = 0 \land I) \implies Q_6$$

Let us denote P the precondition of the trace specification \mathcal{P}_4. Applying the Empty trace rule, it results that I must also satisfy $P \implies I$. So, because $P \implies (b = 0)$, we have $P \implies (b = 0 \land I)$, which, in turn implies Q_6. Moreover, let us remark that $Q_6 \implies (\Phi_b^+ \lor \Phi_b^- \lor \Phi_c^+ \lor \Phi_c^-)$. Consequently, if the Hoare triple of \mathcal{P}_4 is correct, then $P \implies (\Phi_b^+ \lor \Phi_b^- \lor \Phi_c^+ \lor \Phi_c^-)$ which is impossible because, if P is satisfied then

- Φ_b^+ is false, as $a = 1$, $c = 1$ and $K_{b,\sigma} = 0$
 (indeed, Φ_b^+ implies $a = 1 \land c = 1 \implies K_{b,\sigma} > 0$)
- Φ_b^- is false, as $b = 0$ (Φ_b^- implies $b > 0$)
- Φ_c^+ is false, as $c = 1$ (Φ_c^+ implies $c < 1$)
- Φ_c^- is false, as $a = 1$, $c = 1$ and $K_{c,l} = 1$
 (Φ_c^- implies $a = 1 \land c = 1 \implies K_{c,l} < 1$).

So, we have formally proved that when a is constantly equal to 1, as soon as c has reached the level 1, it becomes never possible for b to increase to 1. As announced at the beginning of this section, this proof contradicts the universality of the classical interpretation of this incoherent feedforward loop of type 1.

7. Related Works

What motivates the introduction of formal methods in discrete modelling of gene networks (or any complex system) is of course the automation of parameter identification.
First approaches based on Thomas’ modelling used hand-made identification taking benefit from known mathematical properties on circuits and using simulations, on a “trial and error” method [24, 25]. Later on, simulation softwares helped systematic simulations, mainly GNA [26] and GIN-sim [27] that also include some tools for the determination of invariants. On biological systems where sufficient biological knowledge drastically limits the possible parameter values, approaches purely based on simulations remain efficient [28].

The first use of the power of formal methods really comes with temporal logics and model checking with the software SMBioNet [2]. Later on, GNA also included some aspects of model checking and Alexander Bockmayr and Heike Siebert [29] introduced timed automata using UPPAAL. Constraint solving efficiently complemented the temporal logic approach [5, 4] as well as symbolic execution technics [3]. More detailed descriptions of these methods and their variants can be found in [30, 31]. These approaches fully take benefit from biological expertise, formalizing knowledge into temporal formulas but they need a large interpretation capacity of the experimental observations. This was our motivation to introduce Hoare Logic which uses trace specifications directly extracted from experiments.

Following the same motivation, Heike Siebert and co-workers [32] encoded time-series measurements into CTL formulas. Their approach is able to take into account partially known time-series measurements using repeatedly encapsulated EF statements. Then, they use softwares such as SMBioNet in order to identify the parameters. The price to pay is a huge computation time to identify the parameters, compared to constraint solving. Also, compared to our Hoare Logic, neither assignment, nor quantifier nor iteration are possible. Notice that although the Siebert’s approach is based on a modal logic, a procedure based on tableau semantics [33, 34], does not apply because the objective of using time-series from biological experiments is, similarly to our approach, to extract constraints on the Thomas’ parameters; it is not to prove the satisfiability of the considered time-series2.

On the semantic side, Definition 4.4 is in fact rather natural and similar

2Notice also that, although both Dijkstra weakest precondition algorithm and the tableau procedure for LTL go backwards, they are intrinsically different. In particular, in the Hoare approach as well as ours, the size of the formulas built by the Dijkstra algorithm increases up to the final constraint, contrarily to tableau procedure that builds a sequence of decreasing subformulas of the considered formula.
ideas have been used for concurrent systems in computer science, such as for instance in [35, 36] where the authors defined a mathematical semantics for concurrent propositional dynamic logic. Our definition has a slightly different treatment of quantifiers, disjunctions and conjunctions in order to cope with the biological meaning of non-determinism.

Last but not least, whatever the aforementioned formalism, there is no possibility to model an intervention of the biologist during the experiment. Knock-Outs of genes are typical examples of such interventions. In our formalism they are easy to express in trace specifications, using assignment expressions (such as \(v := 0 \)). They are not directly expressible in the other formalisms, including CTL or LTL, because the logic formulas they consider are by definition satisfied (or not) according to the paths within a given model which is a transition graph deduced from the gene network: knock-outs do not correspond to transitions.

Let us additionally remark that abstract interpretation [14] subsumes the Hoare logic, so a natural question is should we use genetically modified abstract interpretation instead of genetically modified Hoare logic? The point is that the dynamics of Thomas’ networks is formalized in a easy way using Hoare inference rules, whereas abstract interpretation would make things more complicated without actual benefit. Hoare triples facilitate discussions with biologists.

8. Conclusion

As a consequence of our results, when a genetically modified Hoare triple is correct, we are always able to automatically generate all the weakest loop invariants and to build a syntactic proof tree that establishes the soundness. In other words, the assertion language of Definition 4.1 is expressive enough to ensure the purely logical soundness and decidability of our genetically modified Hoare logic with while loops and quantifiers. This is an important step towards a systematic exploitation of the numerous gene expression traces available in biological databases.

We used our genetically modified Hoare logic on several examples including the classical epigenetic switch of \(\lambda \) phage and, in cooperation with biologists, other examples of credible size such as the circadian clock or the cell cycle in mammals. In all examples the computation of the weakest precondition takes less than one tens of second on a standard laptop (dual core, 2GHz). What can take time is the resolution of constraints, varying from
ten seconds to one day, depending on the chosen constraint solver and the problem under consideration (CTL based softwares require several days to model check all the possible sets of parameter values). On the mammal cell cycle example, inspired by the model proposed by John Tyson in [37], we made a discrete model with 5 variables and 11 multiplexes. We obtained a set of 339 738 624 possible valuations, each model with 48 states and 26 parameters. From biological knowledge we extracted 12 trace specifications. After applying our Hoare logic method, 13 parameters were entirely identified (50%) and only 8192 valuations remained possible according to the generated constraints (0.002%). Lastly additional reachability properties (endoreplication and quiescent phase) have been necessary to identify all parameters by formalizing them into temporal logic.

One may easily imagine similar works for many applications besides gene networks. When modelling any complex system, the cornerstone lies, whatever the application domain, in the identification of the parameters. Hoare logic was initially designed for proofs of imperative programs. In this paper, we divert this approach for exhibiting constraints on parameters of gene network models. One can imagine several other adaptations for several types of discrete complex systems, the key point is to extract from the considered underlying modelling framework, a first order formula that characterizes the conditions under which a transition exists.

Acknowledgment

The authors thank the French National Agency for Research (ANR-14-CF09-0011 HyClock project) for its support. This work has also been partly supported by the ANR-10-BLANC-0218 BioTempo project, by the CNRS PEPII project CirClock and by the European PHC PROCOPE project TiGeRNet.

References

Supplementary materials

Appendix A. Semantics of Hoare triples for gene networks

We define the semantics of a trace specification via a binary relation between states and sets of states. This relation characterises all the possible realisations of the trace specification. The general ideas that motivate our definition are the following:

- Starting from an initial state \(\eta \), a trace specification without existential or universal quantifier is either realised by associating with \(\eta \) another state \(\eta' \) or is not realisable so that \(\eta' \) does not exist. For example, the atomic expression \(v+ \) associates \(\eta' \) with \(\eta \) (where \(\forall u \neq v, \eta'(u) = \eta(u) \) and \(\eta'(v) = \eta(v) + 1 \)) if and only if the transition \(\eta \rightarrow \eta' \) exists in the state space. If, on the contrary, this transition does not exist, the trace specification is not realisable.

- Existential quantifiers open a sort of space of possibilities for \(\eta' \): According to the chosen trace specification under each existential quantifier one may get different associated states. Consequently, one cannot define the semantics as a partial function that associates a unique \(\eta' \) with \(\eta \); a binary relation is a more suited mathematical object (denoted \(\sim \) in the sequel).

- A universal quantifier induces a sort of unity/solidarity between all the states \(\eta' \) that can be obtained through each trace specification under its scope. We will see later (Definition Appendix A.2) that all these states have to satisfy the postcondition. For this reason, we define a binary relation that associates a set of states \(E \) with the initial state \(\eta \): “\(\eta \sim E \)”. Such a set \(E \) can be understood as grouping together the states it contains in preparation for checking the forthcoming post condition.

- When the trace specification \(p \) contains both existential and universal quantifiers, we may consequently get several sets \(E_1, \ldots, E_n \) such that \(\eta \sim_{p} E_i \), each of the \(E_i \) being a possibility through the existential quantifiers of \(p \) and all the states belonging to a given \(E_i \) being together through the universal quantifiers of \(p \). On the contrary, if \(p \) is not realisable, then there is no set \(E \) such that \(\eta \sim_{p} E \) (not even the empty set).
Definition Appendix A.1. (Mathematical semantics of a trace specification). Let \(N = (V, M, E_V, E_M, K) \) be a GRN, let \(S \) be the state graph of \(N \) whose set of vertices is denoted \(S \) and let \(p \) be a trace specification for \(N \). The binary relation \(\sim_p \) is the smallest subset of \(S \times P(S) \) such that, for any state \(\eta \):

1. If \(p \) is the atomic expression \(v+ \), then let us consider the state \(\eta' = \eta[v \leftarrow (\eta(v) + 1)] \): If \(\eta \to \eta' \) is a transition of \(S \) then \(\eta \sim_p \{\eta'\} \).
2. If \(p \) is the atomic expression \(v- \), then let us consider the state \(\eta' = \eta[v \leftarrow (\eta(v) - 1)] \): If \(\eta \to \eta' \) is a transition of \(S \) then \(\eta \sim_p \{\eta'\} \).
3. If \(p \) is the atomic expression \(v := i \), then \(\eta \sim_p \{\eta[v \leftarrow i]\} \).
4. If \(p \) is of the form \(\text{assert}(e) \), if \(\eta \models_N e \), then \(\eta \sim_p \{\eta\} \).
5. If \(p \) is of the form \(\forall(p_1, p_2) \): If \(\eta \models_p E_1 \) and \(\eta \models_p E_2 \) then \(\eta \models_p (E_1 \cup E_2) \).
6. If \(p \) is of the form \(\exists(p_1, p_2) \): If \(\eta \models_p E_1 \) then \(\eta \models_p E_1 \), and if \(\eta \models_p E_2 \) then \(\eta \models_p E_2 \).
7. If \(p \) is of the form \((p_1; p_2) \): If \(\eta \models_p F \) and if \(\{E_e\}_{e \in F} \) is a \(F \)-indexed family of state sets such that \(e \models_p E_e \), then \(\eta \models_p (\bigcup_{e \in F} E_e) \).
8. If \(p \) is of the form \((\text{while } e \text{ with } I \text{ do } p_0) \):
 - If \(\eta \not\models_N e \) then \(\eta \sim_p \{\eta\} \).
 - If \(\eta \models_N e \) and \(\eta \models_p E \) then \(\eta \models_p E \).

This definition calls for several comments.

The relation \(\sim_p \) exists because (i) the set of all relations that satisfy the properties 1–8 of the definition is not empty (the relation which links all states to all sets of states satisfies the properties) and (ii) the intersection of all the relations that satisfy the properties 1–8, also satisfies the properties.

A simple atomic expression such as \(v+ \) may not be realisable in a state \(\eta \) (if \(\eta \to \eta' \) is not a transition of \(S \)). In this case, there is no set \(E \) such that \(\eta \vDash E \). The same situation happens when the trace specification is an assertion that is not satisfied at the current state \(\eta \).

Universal quantifiers propagate non-realisable trace specifications: If one of the \(p_i \) is not realisable then \(\forall(p_1, \ldots, p_n) \) is not realisable. It is not the case for existential quantifiers: If \(\eta \models_p E_i \) for one of the \(p_i \) then \(\eta \vDash (p_1 \ldots p_n) E_i \) even if one of the \(p_j \) is not realisable.

When a \(\text{while} \) loop does not terminate, there is no set \(E \) such that \(\eta \vDash E \). This is due to the minimality of the binary relation \(\sim_p \). On
the contrary, when the *while* loop terminates, it is equivalent to a trace specification containing a finite number of occurrences of the subtrace p_0 in sequence, starting from η.

The semantics of sequential composition may seem unclear for readers not familiar with commutations of quantifiers. We give an example to explain the construction of $p_1; p_2$ (see Figure A.4):

- Let us assume that starting from state η, two sets of states are possible via p_1: $\eta \xrightarrow{p_1} F_1 = \{\eta_a, \eta_b\}$ and $\eta \xrightarrow{p_2} F_2 = \{\eta_c\}$. It intuitively means that p_1 permits a choice between F_1 and F_2 through some existential quantifier and that the trace specification leading to F_1 contains a universal quantifier grouping together η_a and η_b.

- Let us also assume that
 - starting from the state η_a, two sets of states are possible via p_2: $\eta_a \xrightarrow{p_2} E_1$ and $\eta_a \xrightarrow{p_2} E_2$,
 - starting from the state η_b, two sets of states are possible via p_2: $\eta_b \xrightarrow{p_2} E_3$ and $\eta_b \xrightarrow{p_2} E_4$,
 - and there are no set E such that $\eta_c \xrightarrow{p_2} E$.

When focusing on the traces of $(p_1; p_2)$ that encounter F_1 after p_1, the traces such that p_1 leads to η_a must be grouped together with the ones that lead to η_b. Nevertheless, for each of them, p_2 permits a choice of possibilities:
between E_1 or E_2 for η_a and between E_3 or E_4 for η_b. Consequently, when grouping together the possible futures of η_a and η_b, one needs to consider the four possible combinations: $\eta^{p_1; p_2} (E_1 \cup E_3)$, $\eta^{p_1; p_2} (E_1 \cup E_4)$, $\eta^{p_1; p_2} (E_2 \cup E_3)$ and $\eta^{p_1; p_2} (E_2 \cup E_4)$.

Lastly, when focusing on the traces of $(p_1; p_2)$ that encounter F_2 after p_1, since η_c has no future via p_2, there is no family indexed by F_2 as mentioned in the definition and consequently it adds no relation into $p_1; p_2$.

Let us remark that, if $\eta^{p, E}$ then E cannot be empty; it always contains at least one state. The proof is easy by structural induction of the trace specification p (using the fact that a while loop which terminates is equivalent to a trace specification containing a finite number of occurrences of the subtrace p_0).

Definition Appendix A.2. (Semantics of a Hoare triple). Given a grn $N = (V, M, E_N, V, E_M, K)$, let S be the state graph of N whose set of vertices is denoted S. A Hoare triple $\{P\} p \{Q\}$ is satisfied if and only if:

For all $\eta \in S$ satisfying P, there exists E such that $\eta \xrightarrow{p} E$ and for all $\eta' \in E$, η' satisfies Q.

The previous definition implies the consistency of all the traces described by the trace specification p with the state graph: If the specification p is not realisable starting from one of the states satisfying pre-condition P, then the Hoare triple cannot be satisfied. For instance if some v^+ is required by the trace specification p but the increasing of v is not possible according to the state graph, then the Hoare triple is not satisfied.

For example, let us consider the grn in Figure A.5 and its state graph.

1. The Hoare triple $\{(a = 0) \land (b = 0)\} a+; a+; b+ \{ (a = 2) \land (b = 1)\}$ is satisfied, because

 - for all states that do not satisfy the pre-condition, the Hoare triple is satisfied by definition,
 - there is, in this example, a unique state satisfying the precondition $(a = 0) \land (b = 0)$ and from this state, the trace specification $a+; a+; b+$ is possible and leads to the state $(2, 1)$ and
 - the state $(2, 1)$ satisfies the postcondition $(a = 2) \land (b = 1)$.

2. The Hoare triple $\{(a = 2) \land (b = 0)\} b+; a--; a- \{ (a = 0) \land (b = 1)\}$ is not satisfied because from the state satisfying the precondition, the
first expression \(b^+ \) is realisable and necessarily leads to the state \((2, 1)\) from which the next expression \(a^- \) is not consistant with the state graph.

3. The following Hoare triple contains two existantial quantifiers and a universal one:
 \[
 \{(a = 0) \land (b = 0)\} \quad \forall(a^+, b^+); \exists(a^+, b^+); \exists(\varepsilon, b^+) \{(b = 1)\} \quad \text{(remember that} \ \varepsilon \ \text{denotes the empty trace and is an abbreviation for} \ \text{assert} (\top) \ \text{where} \ \top \ \text{stands for a tautology).}
 \]

 - We have clearly \((0, 0) \nrightarrow ((1, 0), (0, 1))\)
 - Since we have \((1, 0) \nleftrightarrow (2, 0)\) and \((1, 0) \nleftrightarrow (1, 1)\), we deduce \((0, 0) \nleftrightarrow (1, 1)\) and \((0, 0) \nleftrightarrow (1, 2)\).
 - We have trivially \((1, 1) \nleftrightarrow (1, 1)\)
 - Moreover we have both \((2, 0) \nleftrightarrow (2, 0)\) and \((2, 0) \nleftrightarrow (2, 1)\)
 - We deduce that the considered trace specification \(p \) can lead to 3 different sets of states: \((0, 0) \nleftrightarrow \{(1, 1), (2, 0)\}\) and \((0, 0) \nleftrightarrow \{(1, 1)\}\).

Because the postcondition is satisfied in both states \((1, 1)\) and \((2, 1)\), the two last sets of states which are in relation with \((0, 0)\), satisfy the postcondition. Consequently although the first set does not, one can deduce that the Hoare triple is satisfied.
Appendix B. Partial Soundness and Completeness

As usual in Hoare logic, “partial” has to be understood here as “assuming that the while loops of the considered trace specification terminate.”

Appendix B.1. Partial soundness

The soundness of our modified Hoare logic means that: Given a network \(N = (V, M, E_V, E_M, K) \), if \(\vdash \{P\} p \{Q\} \) according to the inference rules of Section 5 (and after substituting the symbols \(K \) by their value in \(N \)), then for all states \(\eta \) that satisfies \(P \), if there exists \(E \) such that \(\eta \preceq E \), then there exists \(E' \) such that \(\eta \preceq E' \) and \(\forall \eta' \in E', \eta' \models_N Q \).

The proof is made as usual by induction on the proof tree of \(\vdash \{P\} p \{Q\} \).

Hence, we have to prove that each rule of Section 5 is correct. Here we develop only the Incrementation rule and the Sequential composition rule since the correctness of the other inference rules is either similar (Decrementation rule), trivial (Assert rule, Quantifier rules, Assignment rule, Empty trace rule and Boundary axioms) or standard in Hoare logic (Iteration rule). Let us note that the correctness of the Sequential composition rule is not trivial because its semantics is enriched to cope with the quantifiers.

Let \(\eta \) be any state of \(N \).

Incrementation rule:
\[
\{ \Phi^+_v \land Q[v \leftarrow v+1] \} \ x \ {\{Q\}}
\]

(where \(v \) is a variable of \(N \))

From Definition Appendix A.2, the hypothesis is

\[
\begin{array}{c}
\Box \ H \quad \eta \models_N \Phi^+_v \\
\text{and} \quad \eta \models_N Q[v \leftarrow v + 1]
\end{array}
\]

and we have to prove the conclusion

\[
\begin{array}{c}
\Box \ C \quad \there exists \ E \subset S \text{ such that } \eta \preceq E \text{ and } \forall \eta' \in E, \ \eta' \models_N Q
\end{array}
\]

Let us choose \(E = \{\eta'\} \) with \(\eta' = \eta[v \leftarrow \eta(v) + 1] \). From Notation 5.1, the hypothesis \(\eta \models_N \Phi^+_v \) is equivalent to \(\eta \rightarrow \eta' \in S \), which in turn, according to Definition 4.4, implies \(\eta \preceq \{\eta'\} \). Hence, it only remains to prove that \(\eta' \models_N Q \), which results from the hypothesis \(\eta \models_N Q[v \leftarrow v + 1] \). \(\square \)
Sequential composition rule: \[
\{P_1\} p_1 \{P_2\} p_2 \{Q\} = \{P_1; p_2\} \{Q\}
\]

From Definition Appendix A.2, we consider the following three hypotheses:

- \(H_1\) for all \(\eta_1 \in S\) such that \(\eta_1 \models_N P_1\) there exists \(E_1\) such that \(\eta_1 \xrightarrow{p_1} E_1\) and \(\forall \eta' \in E_1, \eta' \models_N P_2\)
- \(H_2\) for all \(\eta_2 \in S\) such that \(\eta_2 \models_N P_2\) there exists \(E_2\) such that \(\eta_2 \xrightarrow{p_2} E_2\) and \(\forall \eta'' \in E_2, \eta'' \models_N Q\)
- \(H_3\) \(\eta \models_N P_1\)

and we have to prove the conclusion:

- \(C\) there exists \(E \subset S\) such that \(\eta \xrightarrow{p_1; p_2} E\) and \(\forall \eta'' \in E, \eta'' \models_N Q\)

Let us arbitrarily choose a set \(E_1\) such that \(\eta \xrightarrow{p_1} E_1\) and \(\forall \eta' \in E_1, \eta' \models_N P_2\) (we know that \(E_1\) exists from \(H_1\) and \(H_3\)).

For each \(\eta' \in E_1\), we similarly choose a set \(E_2^{\eta'}\) such that:
- \(\eta' \xrightarrow{p_2} E_2^{\eta'}\) and \(\forall \eta'' \in E_2^{\eta'}, \eta'' \models_N Q\) (we know that the family \(\{E_2^{\eta'}\}_{\eta' \in E_1}\) exists from \(H_2\) and the fact that \(\eta' \models_N P_2\) for all \(\eta' \in E_1\))

Let \(E = (\bigcup_{\eta' \in E_1} E_2^{\eta'})\), we have: \(\eta \xrightarrow{p_1; p_2} E\) from Definition 4.4 and \(\forall \eta'' \in E, \eta'' \models_N Q\) (from the way the union is built).

Appendix B.2. Completeness and weakest precondition

Completeness of Hoare logic is defined as follows. Given a network \(N = (V, M, E_V, E_M, K)\), if the Hoare triple \(\{P\} p \{Q\}\) is satisfied in \(N\) (according to Definition Appendix A.2) then \(\vdash \{P\} p \{Q\}\) (using the inference rules of Section 5 and after substituting the symbols \(K\) by their value in \(N\)). We prove the completeness by establishing that one can compute the weakest invariants of all \(\text{while}\) loops and that the backward strategy gives a proof of \(\{P\} p \{Q\}\).

The main difference with respect to the classical completeness proof is that we navigate into a finite state space, so that we will not have to care about the incompleteness of arithmetic or restrictions about weakest loop invariants. In the following proposition, we see that one can compute the weakest invariant for each \(\text{while}\) occurrence in the trace specification. Only
practical reasons in order to facilitate proofs justify to ask the specifier to include loop invariants into trace specifications: Often, a slightly non minimal invariant considerably simplifies the proof tree.

Proposition Appendix B.1. (Existence of the weakest loop invariant). Given a GRN $N = (V, M, E_V, E_M, K)$, let us consider two assertions Q and e, and a trace specification p. There exists a weakest loop invariant I such that the Hoare triple $\{I\}$ while e with I do $p \{Q\}$ is correct.

The following proof is constructive and gives a way to compute I (see remark Appendix B.4).

Proof:

1. In the first step of the proof, we build a set \mathcal{D} as a countable union.
 - Let $q_0 = \{ \eta \in S \mid \eta \models_N Q \land \neg e \}$ be the set of all states that satisfy Q without entering the while loop.
 - given q_i, let $q_{i+1} = \{ \eta \in S \mid \exists E \subseteq S, \eta \leadsto E \land E \subset q_i \}$. From Definition Appendix A.2, for each i, q_i is the set of states that induce exactly i while loops and such that the resulting states satisfy Q.
 - Let $\mathcal{D}_n = \bigcup_{i=0}^n q_i$. The sequence of \mathcal{D}_n is increasing and because S is finite, it is stationary. So $\mathcal{D} = \bigcup_{i=0}^{\infty} q_i$ exists and can be inductively computed.

2. In the second step of the proof, we show that the characteristic formula of \mathcal{D} is a loop invariant.
 - Because \mathcal{D} is finite, there is a formula I such that $\eta \models N I$ if $\eta \in \mathcal{D}$: $I \equiv \bigvee_{\eta \in \mathcal{D}} 1_\eta$ where $1_\eta \equiv \bigwedge_{v \in V} v = \eta(v)$
 - I is a loop invariant because for each state η that satisfies I, there is an integer i such that $\eta \in q_i$.
 - If $i > 0$, then η satisfies $I \land e$ and by definition, there is a set E such that $\eta \leadsto E \land E \subset q_{i-1}$, consequently E satisfies I because every state of q_{i-1} satisfies I.
 - If $i = 0$, then $\eta \models_N \neg e$, thus $\eta \not\models_N e \land I$, which implies that $\{e \land I\} p \{I\}$ is satisfied for η, according to Definition Appendix A.2 and elementary truth tables.
3. In the last step of the proof, we show that each state of D satisfies any minimal loop invariant.

- Let J be a minimal loop invariant. Assume that there is a state $\eta \in D$ that does not satisfy J. Then $J \lor 1_\eta$ (where 1_η is the formula characterizing the state η), is strictly weaker than J. But it is also an invariant since after i iterations of the while loop from η, one of the resulting sets of states E satisfies Q. This contradicts the minimality of J.

- Consequently I is the weakest loop invariant. \hfill \Box

Theorem Appendix B.2. (Completeness theorem on the genetically modified Hoare logic). *Given a grn N, a trace specification p and a postcondition Q, the backward strategy defined at the end of Section 2, with the inference rules of Section 5, computes after steps 1 and 2 the weakest precondition P_0 such that $\{P_0\} p \{Q\}$ is satisfied. In other words, for any assertion P, if $\{P\} p \{Q\}$ is satisfied, then $P \Rightarrow P_0$ is satisfied (that is, the third step of the backward strategy).

This theorem has an obvious corrolary.

Corollary Appendix B.3. *Given a grn N, our modified Hoare logic is complete.*

Proof of the corollary: if $\{P\} p \{Q\}$ is satisfied, then, from the theorem above, there is a proof tree that infers the Hoare triple if there is a proof tree for the property $P \Rightarrow P_0$ (which is semantically satisfied because P_0 is the weakest precondition). First order logic being complete and the number of possible substitutions being finite (the state space being finite), the proof tree for $P \Rightarrow P_0$ exists. \hfill \Box

Proof of the soundness theorem:
Under the following two hypotheses

$\square H_1$ the Hoare triple $\{P\} p \{Q\}$ is satisfied, i.e., for all η satisfying P, there exists E such that $\eta \overset{\eta}{\rightarrow} E$ and for all $\eta' \in E$, η' satisfies Q,

$\square H_2$ for all while statements of p, the corresponding loop invariant I is the weakest one (Proposition Appendix B.1),

one has to prove the conclusion:
\[C \] \(P \Rightarrow P_0 \) is satisfied, where \(P_0 \) is the precondition computed from \(p \) and \(Q \) by the steps 1 and 2 of the backward strategy with the inference rules of Section 5.

The proof is done by structural induction according to the backward strategy on \(p \).

- If \(p \) is of the form \(v + \), then the only set \(E \) such that \(\eta \overset{v+}{\rightarrow} E \) is \(E = \{ \eta[v \leftarrow v + 1] \} \). The hypothesis \(H_1 \) becomes:

\[H_1 \text{ for all } \eta \text{ satisfying } P, \quad \eta' = \eta[v \leftarrow v + 1] \text{ satisfies } Q \text{ and } \eta \rightarrow \eta' \text{ is a transition of } S \]

and from the Incrementation rule, the conclusion becomes:

\[C \] \(P \Rightarrow (\Phi_{v+}^+ \land Q[v \leftarrow v + 1]) \) is satisfied.

So, \(H_1 \Rightarrow C \) straightforwardly results from the definition of \(\Phi_{v+}^+ \) (Notation 5.1) and we do not use \(H_2 \).

- If \(p \) is of the form \(p_1 ; p_2 \), then we firstly inherit the two structural induction hypotheses:

\[H_3 \text{ for all assertions } P' \text{ and } Q', \text{ if } \{ P' \} p_1 \{ Q' \} \text{ is satisfied then } P' \Rightarrow P_1 \text{ is satisfied, where } P_1 \text{ is the precondition computed from } Q' \text{ via the backward strategy} \]

\[H_4 \text{ for all assertions } P'' \text{ and } Q'', \text{ if } \{ P'' \} p_2 \{ Q'' \} \text{ is satisfied then } P'' \Rightarrow P_2 \text{ is satisfied, where } P_2 \text{ is the precondition computed from } Q'' \text{ via the backward strategy} \]

Moreover the hypothesis \(H_1 \) becomes (Definition 4.4):

\[H_1 \text{ for all } \eta \text{ satisfying } P, \text{ there exists a family of state sets } \mathcal{F} = \{ E_e \}_{e \in F} \text{ such that } \eta \overset{p_1}{\rightarrow} F \text{ and } e \overset{p_2}{\rightarrow} E_e \text{ for all } e \in F \text{ and for all } \eta' \in E = (\bigcup_{e \in F} E_e), \eta' \text{ satisfies } Q \]

Lastly, from the Sequential composition rule, the conclusion becomes:

\[C \] \(P \Rightarrow P_1 \) is satisfied, where \(P_1 \) is the weakest precondition of \(\{ \cdots \} p_1 \{ P_2 \} \), \(P_2 \) being the weakest precondition of \(\{ \cdots \} p_2 \{ Q \} \).
From H_4 (with $Q'' = Q$) it results that all the states $e \in F$ of hypothesis H_1 satisfy P_2. Consequently $\{P\} p_1 \{P_2\}$ is satisfied. Thus, from H_3 (with $Q' = P_2$ and $P' = P$) it comes $P \Rightarrow P_1$, which proves the conclusion.

- If p is of the form while e with I do p', then, by construction of the backward strategy, applying the Iteration rule, we get $P_0 = I$, and the conclusion results immediately from H_2.

- Similarly to the soundness proof, we do not develop here the other cases of the structural induction. They are either similar to already developed cases (Decrementation rule) or trivial (Assert rule, Quantifier rules, and Assignment rule).

This ends the proof. \square

Remark Appendix B.4. Soundness and completeness being now established, one can extend Proposition Appendix B.1 by giving a purely symbolic computation of the weakest loop invariant I of a while loop. Following the notations of the proof of Proposition Appendix B.1:

- The set of states q_0 is characterised by the formula $Q_0 \equiv \neg e \land Q$,

- In addition, assuming that the trace specification p terminates, the set of states q_{i+1} is inductively characterised by the weakest precondition Q_{i+1} obtained via the backward strategy of the proof of $\{Q_i\} p \{Q_i\}$ (this is due to the soundness and completeness of our calculus).

- From this construction, we deduce that the first integer n such that $q_{n+1} \subset D_n$ (where $D_n = \bigcup_{i=0}^{n} q_i$) is the first n such that $Q_{n+1} \Rightarrow \bigvee_{i=0}^{n} Q_i$. This implication is decidable because the set of possible substitutions is finite.

Proposition Appendix B.1 implies that the integer n mentioned before exists. Consequently $I = \bigvee_{i=0}^{n} Q_i$ can be expressed in a purely symbolic way. And more importantly, this can be done from the solely knowledge of the interaction graph. The assertion I is then a constraint on states and parameters K_{\ldots}, what we used in Section 6.