
Theoretical Computer Science 765 (2019) 145–157
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

A genetically modified Hoare logic

G. Bernot a,∗, J.-P. Comet a,∗, Z. Khalis a, A. Richard a, O. Roux b,∗
a University Côte d’Azur, I3S laboratory, UMR CNRS 7271, CS 40121, 06903 Sophia Antipolis Cedex, France
b LS2N UMR CNRS 6004, BP 92101, 1 rue de la Noë, 44321 Nantes Cedex 3, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 March 2017
Received in revised form 2 October 2017
Accepted 3 February 2018
Available online 6 February 2018
Communicated by L. Kari

Keywords:
Hoare logic
Gene regulatory networks
Thomas networks
Parameter identification
Soundness and completeness

An important problem when modelling gene networks lies in the identification of
parameters, even when using a discrete framework such as the one of René Thomas. We
present in this article a new approach based on Hoare logic to generate constraints on
parameter values. Specifications of observed behaviours play a role comparable to programs
in the classical Hoare logic, and deduced weakest preconditions characterize the sets of
all compatible parameterizations, expressed as constraints on parameters. Besides being
natural and simple, our Hoare logic approach is remarkably powerful and, among others,
it allows one to express external interventions of the biologist during experiments such as
knockouts. In supplementary materials, we give a proof of soundness of our Hoare logic
for gene networks as well as a proof of completeness and decidability based on the notion
of the weakest precondition.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Different frameworks for studying the behaviour of gene networks in a systematic way have been proposed. Among them,
ordinary differential equations played an important role, which however mostly lead to numerical simulations. Besides, the
abstraction procedure of René Thomas [1], approximating sigmoid functions by step functions, makes it possible to describe
the qualitative dynamics of gene networks as paths in a finite state space. Nevertheless this qualitative description of the
dynamics is still governed by a set of parameter values, which, although becoming small integers, remain difficult to deduce
from classical experimental knowledge. In this context, we are interested in the exhaustive search of parameter values
that are consistent with specifications formalizing the experimentally observed behaviours of gene regulatory networks. In
addition an important quality of our approach, which is not addressed by other formalisms, is to take into account external
interventions of the biologists during the experiments (e.g. knockouts).

Several works were undertaken with the objective to identify the parameters. The application of temporal logic to gene
regulatory networks was presented in [2,3], then constraint programming was used in [4,5]. In this paper, we present a
somewhat unexpected application of formal methods to biology through a new approach based on Hoare logic [6] and its
associated weakest precondition calculus [7] that generates constraints on parameters. The formalism on which we decided
to apply this idea is the one of René Thomas because it is now universally recognized as the reference framework for
discrete modelling of gene networks. The key point of our proposal is to define a language able to capture the actual
traces observed by molecular biologists during a set of experiments (either at the transcriptomic or proteomic level [8]).
We have designed a language which is expressive enough to specify sets of observed traces as well as external interventions

* Corresponding authors.
E-mail addresses: bernot@unice.fr (G. Bernot), comet@unice.fr (J.-P. Comet), Olivier.Roux@irccyn.ec-nantes.fr (O. Roux).
https://doi.org/10.1016/j.tcs.2018.02.003
0304-3975/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2018.02.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:bernot@unice.fr
mailto:comet@unice.fr
mailto:Olivier.Roux@irccyn.ec-nantes.fr
https://doi.org/10.1016/j.tcs.2018.02.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2018.02.003&domain=pdf

146 G. Bernot et al. / Theoretical Computer Science 765 (2019) 145–157
during the biological experiments, while preserving the completeness of a corresponding extended Hoare logic. Since this
method avoids building the complete state graph, it results in a powerful technique to find out the constraints representing
the set of consistent parameterizations with a tangible gain for computation time. Indeed, the weakest precondition proof
strategy which extracts the constraints, goes through the trace specification syntax but is independent of the size of the
gene network.

The paper is organized as follows. The basic concepts of classical Hoare logic and its associated Dijkstra weakest precon-
dition are quickly reminded in Section 2. The classical formal definitions for Thomas discrete gene regulatory networks are
reminded in Section 3. Section 4 gives our definition of (genetically modified) Hoare triples, including the assertion language
and the trace specification language. In Section 5, an extended Hoare logic for gene networks is defined for Thomas discrete
models. In Section 6, the small example of the incoherent feedforward loop of type 1 (made popular by Uri Alon in [9,10])
highlights the whole process of our approach to find out the suitable parameter values. Section 7 sketches the previously
existing methods for formal identification of discrete parameters in gene network models. We conclude in Section 8. Supple-
mentary materials provide the mathematical semantics of these extended Hoare triples, a proof of soundness of our Hoare
logic for gene networks, and a proof of completeness and decidability.

2. Basics of Hoare logic

The Hoare logic is a formal system for reasoning about the correctness of imperative programs. In [6], Tony Hoare
introduced the notation “{P } p {Q }” to mean “If the assertion P (precondition) is satisfied before performing the program
p and if the program terminates, then the assertion Q (postcondition) will be satisfied afterwards.” This constitutes de facto
a specification of the program under the form of a triple, called the Hoare triple. In [7], Edsger Dijkstra has defined an
algorithm taking the postcondition Q and the program p as input and computing the weakest precondition P0 that ensures
Q if p terminates. In other words, weakest means that the Hoare triple {P0} p {Q } is satisfied and that for any precondition
P , {P } p {Q } is satisfied if and only if P ⇒ P0 is semantically satisfied. Notice that weakest precondition means that it does not
contain any useless condition, so, it means that the set of states that satisfy the weakest precondition is the largest one. The basic idea
is to stamp the sequential steps of a program with assertions that are inferred according to the instruction they surround.

Within the following inference rules, p, p1 and p2 stand for programs, P , P1, P2, I and Q stand for first-order assertions
on the variables of the program, v stands for a variable of the imperative program, and Q [v ← expr] means that expr is
substituted to each free occurrence of v in Q :

Assignment: {Q [v←expr]} v:=expr {Q }
Sequential composition:

{P2} p2 {Q } {P1} p1 {P2}
{P1} p1;p2 {Q }

Conditional branching:
{P1} p1 {Q } {P2} p2 {Q }

{(e∧P1)∨(¬e∧P2)} if e then p1 else p2 {Q }
Iteration:

{e∧I} p {I} ¬e∧I⇒Q
{I} while e with I do p {Q }

Empty program:
P⇒Q

{P } ε {Q } (where ε stands for the empty program)

The Iteration rule deserves some comments. The assertion I is called the loop invariant and it is well known that finding
the weakest loop invariant (if any) is undecidable in general [11,12]. So, Tony Hoare asks the programmer to give a loop
invariant explicitly (with I). There are approaches to help finding loop invariants such as the iterative approach adopted in
ASTREE [13] (abstract interpretation [14]).

Some authors prefer the following iteration rule {e∧I} p {I}
{I} while e with I do p {¬e∧I} that requires the application of the empty

program rule to become equivalent to our version. By doing so, these authors put the light on the fact that within a
program, each while instruction carries its own (sub)specification and it can consequently be proved apart from the rest
of the program.

From the standard set of Hoare logic rules, the following proof strategy builds a proof tree that computes the weakest
precondition [7].

Definition 2.1. (Dijkstra Backward strategy). Let {P } p {Q } be a Hoare triple. We call backward strategy the proof strategy
defined inductively on p as follows:

1. If p is of the form p1; p2 where p2 is made of a single instruction, then apply the Sequential composition rule.
2. If p is a single instruction, then apply the corresponding rule (Iteration rule, Conditional branching rule or assignment

rule).
3. Only after steps 1 and 2 have fully treated p, i.e. when all instructions have been treated, apply the Empty program rule.

G. Bernot et al. / Theoretical Computer Science 765 (2019) 145–157 147
Fig. 1. The graphical representation of a gene regulatory graph R = (V , M, E V , EM) with V = {x, y}, the bounds of x and y are respectively 2 and 1,
M = {μ1, μ2, μ3}, ϕμ1 is ((x � 2) ∧ μ3), ϕμ2 is (x � 1), ϕμ3 is ¬(y � 1).

Notice that, these three items being mutually exclusive, the backward strategy generates a unique proof tree. (In addition,
the remaining leafs of the proof tree must be handled using first order logic and arithmetic knowledge.)

By doing so, the precondition P0 obtained just before applying the last Empty program rule is the weakest precondition.
According to Stephen Cook [15], the Hoare logic is complete assuming that each loop invariant in the program is the weakest
loop invariant with respect to the condition computed just at the right of its while statement. More technically, a program
with a while statement is of the form: “p1 ; while e with I do p ; p2.” The Dijkstra backward strategy computes
inductively the weakest precondition Q 2 such that, after the execution of p2, the postcondition is satisfied. So Q 2 becomes
the postcondition of the while statement. Cook’s result is then valid when the invariant I is the weakest condition that
ensures Q 2 if the program exits from the while statement. All in all, Cook’s result means that the Hoare triple {P } p {Q }
is correct if and only if P ⇒ P0 is semantically satisfied. So the full completeness of the Hoare logic depends on two
things: a sufficient expressive power to express all the previously mentioned weakest loop invariants and the existence of
a first-order proof tree for P ⇒ P0 whenever it is semantically satisfied. Technically, this relies on the expressiveness of the
chosen underlying assertion language [16].

The most striking feature of the backward strategy for Hoare logic is that, owing to very simple sequences of syntactic
formula manipulations, we capture the mathematical semantics of a program within first order logic. Nevertheless, it is
worth noticing that we only address partial correctness since Hoare logic does not give any proof of the termination of the
program (while instructions may induce infinite loops).

3. Basics of discrete gene regulatory network models

This section presents the formal framework based on the discrete modelling method of René Thomas [17,18] and intro-
duced in [19]. As shown in Fig. 1, a gene regulatory graph is visualized as a labelled directed graph in which vertices are
either variables (within circles) or multiplexes (within rectangles). Variables abstract genes or their products, and multiplexes
contain propositional formulas that encode situations in which a group of variables (inputs of multiplexes) influence the
evolution of some variables (outputs of multiplexes). In the figure the simple multiplex μ2 expresses that the variable x can
help the activation of the variable y when its state is at least equal to 1. In general, multiplexes can represent combined
biological phenomena, one of the simplest being the formation of complexes (in which case the formula would simply con-
tain a conjunction). In the figure, the situation of μ1 is a little bit more elaborated: It reflects an auto-activation of x at
level 2 which is controlled by μ3. Because μ3 contains a negation, μ1 does not model a positive cooperation of x and y:
The auto-activation of x is inhibited by y.

So, in this example, there are three qualitatively interesting intervals of expression levels for x: an interval called 0,
where x can neither act on y nor on itself, an interval called 1, where x can act on y and never on itself, and an interval
called 2, where x can act on y as well as on itself provided that μ3 is satisfied. From the biological point of view, there
is a threshold (i.e. a given number of intracellular molecules produced by x) such that x is unable (resp. able) to act on its
target gene if its expression level is under (resp. over) the threshold.

We say that the bound of x is bx = 2 and similarly there are only 2 qualitatively interesting intervals for y, so the bound
of y is by = 1.

In general, this labelled directed graph is formally defined as follows.

Definition 3.1. A gene regulatory graph with multiplexes is a tuple R = (V , M, E V , E M) satisfying the following conditions:

• V and M are disjoint sets, whose elements are called variables and multiplexes respectively.
• G = (V ∪ M, E V ∪ E M) is a labelled directed graph such that:

– Edges of E V start from a variable and end to a multiplex, and edges of E M start from a multiplex and end to either
a variable or a multiplex.

– Every directed cycle of G contains at least one variable.
– Every variable v of V is labelled by a positive integer bv called the bound of v .
– Every multiplex m of M is labelled by a formula ϕm belonging to the language Lm inductively defined by:

148 G. Bernot et al. / Theoretical Computer Science 765 (2019) 145–157
Fig. 2. State graph obtained according to Definition 3.5, following Fig. 1 and arbitrarily assuming that Kx = 0, Kx,μ1 = 2, K y = 0 and K y,μ2 = 1.

− If v → m belongs to E V and s ∈N, then v � s is an atom of Lm .
− If m′ → m belongs to E M then m′ is an atom of Lm .
− If ϕ and ψ belong to Lm then ¬ϕ , (ϕ ∧ ψ) and (ϕ ∨ ψ) also belong to Lm .

All in all, the discrete values of a variable x abstract intervals of quantity of molecules produced by x within the cell.
These intervals are obtained by sorting the activation thresholds of x on its targets. Consequently only the knowledge of the
thresholds order is useful and not their actual values. The multiplexes use these abstract levels in order to encode peculiar
biological knowledge into formulas that define the conditions under which the regulation positively acts on its targets. If
there is no peculiar knowledge about cooperation over a given target, there is one multiplex per regulating gene acting on
this target, whose formula is reduced to an atom.

Successive multiplexes can be combined by flattening their formulas:

Definition 3.2. The flatten version of a formula ϕm , denoted ϕm , is obtained by recursively substituting each occurrence of
a multiplex m′ in ϕm by its formula ϕm′ (this recursive process of substitutions is well defined because G has no directed
cycle with only multiplexes).

In Fig. 1, the flatten formula ϕμ1 is (x � 2) ∧ ¬(y � 1).
As a result of the flattening transformation, all the atoms of a flatten formula are of the form v � s.
A state is obviously an assignment of integer values to the variables v of V within the intervals [0, bv]. According to a

given state, by replacing variables by their values, ϕm becomes a propositional formula whose atoms are the results of the
integer inequalities.

Definition 3.3. (States η, satisfaction relation |=N and resources ρ). Let N be a grn and V be its set of variables. A state of N is
a function η : V → N such that η(v) � bv for all v ∈ V . Let L be the set of propositional formulas whose atoms are of the
form v � s with v ∈ V and s ∈N

∗ . The satisfaction relation |=N between a state η of N and a formula ϕ of L is inductively
defined by:

• If ϕ is an atom of the form v � s, then η |=N ϕ if η(v) � s.
• If ϕ ≡ ψ1 ∧ ψ2 then η |=N ϕ if η |=N ψ1 and η |=N ψ2; and we proceed similarly for the other connectives.

Given a variable v ∈ V , a multiplex m ∈ N−(v) (where N−(v) is the set of multiplexes m such that m → v belongs to the
interaction graph of N) is a resource of v at state η if η |=N ϕm .

The set of resources of v at state η is ρ(η, v) = {m ∈ N−(v) | η |=N ϕm}.

According to Fig. 1, at the state where η(x) = 2 and η(y) = 1, ϕμ2 is satisfied and consequently μ2 is the only resource
of y. On the contrary ϕμ1 is false and consequently the set of resources of x is empty.

The equilibrium toward which the expression level of a gene v is attracted only depends on its set ω of resources. The
interval number between 0 and bv containing this equilibrium is classically denoted K v,ω [20,21,17,22,2,19].

Definition 3.4. A gene regulatory network (grn for short) is a couple N = (V , M, E V , E M , K) satisfying the following condi-
tions:

• R = (V , M, E V , E M) is a gene regulatory graph with multiplexes,
• K = {K v,ω} is a family of integers indexed by v ∈ V and ω ⊂ N−(v), where N−(v) is the set of multiplexes m such that

m → v is an edge of E M . Each K v,ω must satisfy 0 � K v,ω � bv .

A usual notation abuse is the following: we write K v instead of K v,∅ and we write K v,m1m2... instead of K v,{m1,m2,...} .
At a given state η, each variable v tries to evolve in the direction of parameter K v,ρ(η,v) . Hence, at state η, v can increase

if η(v) < K v,ρ(η,v) , it can decrease if η(v) > K v,ρ(η,v) , and v is stable if η(v) = K v,ρ(η,v) .

G. Bernot et al. / Theoretical Computer Science 765 (2019) 145–157 149
In Fig. 2, at the state (2, 1), we have Kx = 0 < η(x) = 2 and K y,μ2 = η(y) = 1, but (0, 1) is not a successor state of (2, 1)

because the protein degradation occurs one protein after the other and consequently the concentration level of x cannot
jump from 2 to 0. Consequently (1, 1) is the next state.

At (1, 0), both Kx = 0 < η(x) = 1 and K y,μ2 = 1 > η(y) = 0, but the probability for x and y to cross their threshold
exactly at the same time is null [20,21,17,22,2,19].1 Consequently, there are two possible next states: (0, 0) if x crosses its
threshold first and (1, 1) if y crosses its threshold first.

So, Thomas method assumes that variables evolve asynchronously and by unit steps toward their respective target levels:

Definition 3.5 (State graph). Let N = (V , M, E V , E M , K) be a grn. The state graph of N is the directed graph S whose set
of vertices is the set of states of N , and such that there exists an edge (called transition) η → η′ if one of the following
conditions is satisfied:

• For all variables v ∈ V we have η(v) = K v,ρ(η,v) , and then η′ = η.
• There exists v ∈ V such that η(v) = K v,ρ(η,v) , and

η′(v) =
{

η(v) + 1 if η(v) < K v,ρ(η,v)

η(v) − 1 if η(v) > K v,ρ(η,v)
and ∀u = v, η′(u) = η(u).

For each variable v such that η(v) = K v,ρ(η,v) , there is a transition allowing v to evolve (±1) toward its focal level
K v,ρ(η,v) . Every outgoing transition of η is supposed to be possible, so that there is an non-determinism as soon as η has
several outgoing transitions. Fig. 2 represents a complete state graph.

4. Syntax of Hoare triples for gene networks

In order to formalize known information about a gene network, we introduce in this section a language to express
properties of states (assertions) and a language to express properties of state transitions (trace specifications).

4.1. Assertions for discrete models of gene networks

Definition 4.1 (Terms and assertions). Let N = (V , M, E V , E M , K) be a grn. The well formed terms for N are inductively defined
by:

• Each integer n ∈N constitutes a well formed term
• For each variable v ∈ V , the name of the variable v , considered as a symbol, constitutes a well formed term.
• Similarly, for each v ∈ V and for each subset ω of N−(v), the symbol K v,ω constitutes a well formed term.
• If t and t′ are well formed terms then (t + t′) and (t − t′) are also well formed terms.

Let N = (V , M, E V , E M , K) be a grn. The assertions for N are inductively defined by:

• If t and t′ are well formed terms then (t = t′), (t < t′), (t > t′), (t � t′) and (t � t′) are atomic assertions for N .
• If ϕ and ψ are assertions for N then ¬ϕ , (ϕ ∧ ψ), (ϕ ∨ ψ) and (ϕ ⇒ ψ) are also assertions for N .

A state η of the network N satisfies an assertion ϕ if and only if its interpretation is valid in Z, after substituting each
variable v by η(v) and each symbol K v,ω by its value according to the family K. We note η |=N ϕ .

Moreover, conventionally, we denote “�” the tautology (e.g. “1 = 1”).

4.2. Trace specifications for discrete models of gene networks

When biologists observe the dynamics of gene expression levels along a set of experiments, they extract, as a direct
experimental knowledge, some sets of observed traces (see Fig. 3). It is consequently of first interest to see these sets of
observations as basic elements for the specification of gene networks.

Definition 4.2 (Trace specifications). Let N = (V , M, E V , E M , K) be a grn. The set of trace specifications for N is inductively
defined by:

1 Indeed, biologically, each threshold corresponds to a precise number of molecules produced by x or y respectively in the cell. So, there is a probability
0 for the degradation to make the number of x-molecules cross the x-threshold exactly at the same time as a new molecule produced by y makes the
y-threshold crossed (a sufficiently precise time scale will distinguish the two events).

150 G. Bernot et al. / Theoretical Computer Science 765 (2019) 145–157
• For each v ∈ V and n ∈ [0, bv] the expressions v+, v− and v := n are atomic trace specifications (respectively increase,
decrease or assignment).

• If e is an assertion for N , then the expression assert(e) is an atomic trace specification.
• If p1 and p2 are trace specifications then (p1; p2) is also a trace specification (sequential composition). Moreover the

sequential composition is associative, so that we can write (p1; p2; · · · ; pn) without intermediate parentheses.
• If p is a trace specification and if e and I are assertions for N , then (while e with I do p) is also a trace specification.

The assertion I is called the invariant of the while loop.
• If p1 and p2 are trace specifications then ∀(p1, p2) and ∃(p1, p2) are also trace specifications (quantifiers). Moreover

the quantifiers are associative and commutative, so that we can write ∀(p1, p2, · · · , pn) and ∃(p1, p2, · · · , pn) as useful
abbreviations.

Conventionally, we denote:

• ε (called the empty trace) the trace specification assert(�).
• If e then p1 else p2 (called conditional branching) the trace specification ∃(assert(e); p1 , assert(¬e); p2), where p1 and

p2 are any trace specifications and e is an assertion for N .

Intuitively, v+ (resp. v−) means that the biologist has observed that the expression level of variable v is increasing by
one unit (resp. decreasing by one unit). v := n means that the biologist has set the concentration level for gene v to the
value n during the experiment (e.g. v := 0 for a knockout or v := bv for a saturation of the product of v). assert(e) allows
one to express a property of the current state without change of state. Sequential composition allows one to concatenate
two trace specifications. The loop invariant I , as in classical Hoare logic, is a way to handle an unknown number of trace
repetitions: It will facilitate proofs of Hoare triples. Finally it becomes possible to group together several trace specifications
thanks to the quantifiers ∀ and ∃. These intuitions are formalized as follows via a binary relation between states and sets of
states.

Notation 4.3. For a state η, a variable v and i ∈ [0, bv], we note η[v ← i] the state η′ such that η′(v) = i and for all u = v ,
η′(u) = η(u).

Definition 4.4 (Mathematical semantics of a trace specification). Let N = (V , M, E V , E M , K) be a grn, let S be the state graph
of N whose set of vertices is denoted S and let p be a trace specification for N . The binary relation p� is the smallest subset
of S ×P(S) such that, for any state η:

1. If p is the atomic expression v+, then let us consider the state η′ = η[v ← (η(v) + 1)]: If η → η′ is a transition of S
then η p� {η′}.

2. If p is the atomic expression v−, then let us consider the state η′ = η[v ← (η(v) − 1)]: If η → η′ is a transition of S
then η p� {η′}.

3. If p is the atomic expression v := i, then η p� {η[v ← i]}.

4. If p is of the form assert(e), if η |=N e, then η p� {η}.

5. If p is of the form ∀(p1, p2): If η p1� E1 and η p2� E2 then η p� (E1 ∪ E2).

6. If p is of the form ∃(p1, p2): If η p1� E1 then η p� E1, and if η p2� E2 then η p� E2.

7. If p is of the form (p1; p2): If η p1� F and if {Ee}e∈F is a F -indexed family of state sets such that e p2� Ee , then η p�
(
⋃

e∈F Ee).
8. If p is of the form (while e with I do p0):

• If η |=N e then η p� {η}.

• If η |=N e and η p0;p� E then η p� E .

Detailed comments about this definition can be found in Supplementary materials Appendix A.

4.3. Hoare triples

Similarly to Section 2, two assertions and one trace specification are used to constitute a Hoare triple for gene networks.

Definition 4.5. A Hoare triple for a grn N is an expression of the form {P } p {Q } where P and Q are assertions for N ,
called pre- and post-condition respectively, and p is a trace specification for N .

In practice P can describe a set of states where cells have been synchronised at the beginning of the experiment, for
example all states for which the variable v has value zero (P ≡ (v = 0)), the trace specification p describes biologically ob-

G. Bernot et al. / Theoretical Computer Science 765 (2019) 145–157 151
Fig. 3. A classical example of normalised expression profiles for three Boolean genes a, b and c resulting from an experimental campaign. Thresholds for
each gene are tuned according to biological knowledge. Then the trace specification for this figure is b−; a+; c+; a−; b+.

served dynamic processes, for example increase of the expression level of v (p ≡ v+), and the postcondition also describes
observations at the end of the experiment, for example all states for which the variable v has value one (Q ≡ (v = 1)), and
so on.

More precisely we show in Fig. 3 a classical representation of expression profiles obtained after an experimental cam-
paign. From our numerous case studies, it is a good heuristics to consider by default equidistributed thresholds (e.g. a
threshold of 0.5 for Boolean genes). If necessary, some thresholds are tuned after discussing with biologists. Then, succes-
sive crossings between a gene profile and its threshold give directly the trace specification. In practice when two crossings
are very close, a ∃ statement is used (∃(x+; y + , y+; x+)) and the other primitives of trace specifications are often
introduced in order to mix together and generalise several observed trace specifications.

Whether or not the triple is satisfied by a given gene network N , will depend on its state transition graph, thus it will
depend on the parameter values in K.

Definition 4.6 (Semantics of a Hoare triple). Let N = (V , M, E V , E M , K) be a grn and let S be the state graph of N whose set
of vertices is denoted S . A Hoare triple {P } p {Q } is satisfied if and only if:

For all η ∈ S satisfying P , there exists E such that η p� E and for all η′ ∈ E , η′ satisfies Q .

See Supplementary materials Appendix A for more details.

5. A Hoare logic for discrete models of gene networks

In this section, we define our genetically modified Hoare logic by giving the rule for each constructor of trace specifications
(Definition 4.2). First, let us introduce a few conventional names to denote formulas that will be intensively used.

Notation 5.1. For each variable v of a grn N , we conventionally use the following notations:

1. For each subset ω of N−(v) we denote by �ω
v the following formula

�ω
v ≡ (

∧
m ∈ ω

ϕm) ∧ (
∧

m ∈ N−(v)�ω

¬ϕm)

where N−(v) �ω stands for the complementary subset of ω in N−(v).
From Definition 3.3, for all states η, η |=N �ω

v if and only if ω = ρ(η, v), that is, ω is the set of resources of v at state η.
Consequently, for each v , there exists a unique ω such that η |=N �ω

v .
2. We denote by �+

v the following formula

�+
v ≡

∧
ω⊂N−(v)

(�ω
v =⇒ K v,ω > v)

From Definition 3.5, we have η |=N �+
v if and only if there is a transition (η → η[v ← v + 1]) in the state graph S , that

is, if and only if the variable v can increase.
3. We denote by �−

v the following formula

�−
v ≡

∧
ω⊂N−(v)

(�ω
v =⇒ K v,ω < v)

Similarly, η |=N �−
v if and only if the variable v can decrease from the state η in the state graph S .

See Section 6 where examples of these formulas are given.
Our Hoare logic for discrete models of gene networks is then defined by the following inference rules, where v is a

variable of the grn and k ∈ [0, bv].

152 G. Bernot et al. / Theoretical Computer Science 765 (2019) 145–157
1. Rules encoding Thomas discrete dynamics.

Increase: { �+
v ∧ Q [v←v+1] } v+ {Q }

Decrease: { �−
v ∧ Q [v←v−1] } v− {Q }

2. Rules coming from Hoare logic. These rules are similar to the ones given in Section 2. Obvious rules for the expression
assert(�), and for the quantifiers, are added:

Assert: { � ∧ Q } assert(�) { Q }

Universal quantifier:
{P1} p1 {Q } {P2} p2 {Q }

{P1∧P2} ∀(p1,p2) {Q }

Existential quantifier:
{P1} p1 {Q } {P2} p2 {Q }

{P1∨P2} ∃(p1,p2) {Q }
Assignment: {Q [v←k]} v:=k {Q }

Sequential composition:
{P1} p1 {P2} {P2} p2 {Q }

{P1} p1;p2 {Q }

Iteration:
{e∧I} p {I} ¬e∧I⇒Q

{I} while e with I do p {Q }

Empty trace:
P ⇒ Q

{P } ε {Q }
3. Boundary axiom asserting that all values stay between their bounds, for each v ∈ V and ω ⊂ N−(v):

0 � v ∧ v � bv ∧ 0 � K v,ω ∧ K v,ω � bv

Remark 5.2.

• (�+
v ⇒ v < bv) can be deduced from the boundary axioms: �+

v implies that for ω corresponding to the current set of
resources, K v,ω > v and, using the boundary axiom K v,ω � bv , we get v < bv .

• Similarly, we have (�−
v ⇒ v > 0).

These implications will be used in Section 6.
The conditional branching rule of the standard Hoare logic has not been reproduced here because the trace specification

(if e then p1 else p2) is a shorthand for ∃(assert(e); p1 , assert(¬e); p2). The conditional branching rule remains sound.

We prove in Supplementary materials Appendix B that this modified Hoare logic is sound and complete and we show
that the weakest loop invariants can always be computed. This implies the decidability of the (partial) correctness of any
genetically modified Hoare triple. More precisely, the proof strategy called backward strategy, already described at the end
of Section 2, also applies here: It automatically computes the loop invariants and the weakest precondition W of the Hoare
triple {P } p {Q }, and the implication P ⇒ W is decidable.

Similarly to classical Hoare logic which reflects a partial correctness of imperative programs, the previous definition does
not imply termination of while loops.

6. Illustrative examples

6.1. Alon’s interpretation of the incoherent feedforward loop of type 1

In [9,10] Uri Alon and co-workers have studied the most common in vivo patterns involving at most four genes. Among
them, even without considering feedback loops such as in [23], there are interesting patterns whose dynamics is less obvious
than it seems. In particular they have emphasized the incoherent feedforward loop of type 1. It is composed by a transcription
factor a that activates a second transcription factor c, and both a and c regulate a gene b. The gene a is an activator of b
whereas the gene c is an inhibitor of b. There is a “short” positive action of a on b and a “long” negative action via c: a
activates c which inhibits b. The left hand side of Fig. 4 shows such a feedforward loop. Supposing that both thresholds of
actions of a are equal leads to a Boolean network since, in that case, the variable a can take only the value 0 (a has no
action) or 1 (a activates both b and c). The right hand side of the figure shows the corresponding grn with multiplexes: σ
encodes the “short” action of a on b, whilst l followed by λ constitutes the “long” action.

G. Bernot et al. / Theoretical Computer Science 765 (2019) 145–157 153
Fig. 4. (Left) Boolean “incoherent feedforward loop of type 1” according to Uri Alon. (Right) Corresponding grn N = (V , M, E V , EM , K). V = {a, b, c} with
ba = bb = bc = 1. M = {l, λ, σ }, φl ≡ (a � 1), φλ ≡ (¬(c � 1)), φσ ≡ (a � 1). K = {Ka, Kc , Kc,l, Kb, Kb,σ , Kb,λ, Kb,σλ}.

Classical interpretation: Uri Alon and many biologists have in mind that if a is equal to 0 for a sufficiently long time, both b and c
will also be equal to 0, because b and c need a as a resource in order to reach the state 1. They also have in mind that the function
of this feedforward loop is to ensure a transitory activity of b that signals when a has switched from 0 to 1. The idea is that a
activates the productions of b and c, and then c stops the production of b.

In the following subsections, we revisit this affirmation via four different trace specifications, and we prove formally that
the affirmation is only valid under some constraints on the parameters of the network, and only under the assumption that
b starts its activity before c.

6.2. Is a transitory production of b possible?

The simple popular idea that b is activated and then the activation of c inhibits b is specified by the Hoare triple
{P } P1 {Q 0} where P ≡ (a = 1 ∧ b = 0 ∧ c = 0), P1 ≡ (b+; c+; b−) and Q 0 ≡ (b = 0). The backward strategy using our
genetically modified Hoare logic on this example gives the following successive conditions.

• The weakest precondition obtained through the last expression “b−” is �−
b ∧ Q 0[b ← b −1] (Decrease rule):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�
∅

b ⇒ Kb < b
�σ

b ⇒ Kb,σ < b
�λ

b ⇒ Kb,λ < b
�

σ,λ
b ⇒ Kb,σλ < b

b − 1 = 0

≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(¬¬(c � 1) ∧ ¬(a � 1)) ⇒ Kb < b
(¬¬(c � 1) ∧ (a � 1)) ⇒ Kb,σ < b
(¬(c � 1) ∧ ¬(a � 1)) ⇒ Kb,λ < b
(¬(c � 1) ∧ (a � 1)) ⇒ Kb,σλ < b
b − 1 = 0

which simplifies as Q 1 ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b = 1
((c � 1) ∧ (a < 1)) =⇒ Kb = 0
((c � 1) ∧ (a � 1)) =⇒ Kb,σ = 0
((c < 1) ∧ (a < 1)) =⇒ Kb,λ = 0
((c < 1) ∧ (a � 1)) =⇒ Kb,σλ = 0

• Then, the weakest precondition obtained through the expression “c+” is �+
c ∧ Q 1[c ← c + 1]:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

¬(a � 1) ⇒ Kc > c
a � 1 ⇒ Kc,l > c
b = 1
((c + 1 � 1) ∧ (a < 1)) ⇒ Kb = 0
((c + 1 � 1) ∧ (a � 1)) ⇒ Kb,σ = 0
((c + 1 < 1) ∧ (a < 1)) ⇒ Kb,λ = 0
((c + 1 < 1) ∧ (a � 1)) ⇒ Kb,σλ = 0

which simplifies as Q 2 ≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c = 0
a < 1 ⇒ Kc = 1
a � 1 ⇒ Kc,l = 1
b = 1
a < 1 ⇒ Kb = 0
a � 1 ⇒ Kb,σ = 0

using the boundary axioms

and Remark 5.2.
• Lastly, the weakest precondition obtained through the first “b+” of the trace is �+

b ∧ Q 2[b ← b + 1] which simplifies as

Q 3 ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a < 1 ⇒ Kb,λ = 1
a � 1 ⇒ Kb,σλ = 1
c = 0
a < 1 ⇒ Kc = 1
a � 1 ⇒ Kc,l = 1
b = 0
a < 1 ⇒ Kb = 0
a � 1 ⇒ K = 0
b,σ

154 G. Bernot et al. / Theoretical Computer Science 765 (2019) 145–157
Then, using the Empty trace rule, it follows that P =⇒ Q 3 i.e. (a = 1 ∧ b = 0 ∧ c = 0) =⇒ Q 3. After simplification we get
correctness if and only if Kb,σλ = 1 and Kc,l = 1 and Kb,σ = 0. So, under these three hypotheses and whatever the values of
the other parameters, the system can exhibit a transitory production of b in response to a switch of a from 0 to 1.

6.3. Is a transitory production of b possible without increasing c?

The previous trace specification P1 is not the only one reflecting a transitory production of b, there may be other
realisations of this property. For example one can consider the trace specification

P2 ≡ (b+;b−).

With respect to this trace specification, the weakest precondition obtained through the last expression “b−” is of course Q 1

as previously. Then, the weakest precondition obtained through “b+” is

Q 4 ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b = 0
((c � 1) ∧ (a < 1)) =⇒ ((Kb = 1) ∧ (Kb = 0))

((c � 1) ∧ (a � 1)) =⇒ ((Kb,σ = 1) ∧ (Kb,σ = 0))

((c < 1) ∧ (a < 1)) =⇒ ((Kb,λ = 1) ∧ (Kb,λ = 0))

((c < 1) ∧ (a � 1)) =⇒ ((Kb,σλ = 1) ∧ (Kb,σλ = 0))

Q 4 is not satisfiable: It implies that each parameter associated with b is both equal to 0 and 1. The trace (b+; b−) is not
realisable (inconsistent weakest precondition).

6.4. The existence of the trace (b+, c+, b−) does not imply a transitory production of b for all traces in the same gene network

When Kb,σλ = 1, Kc,l = 1 and Kb,σ = 0, that is when trace (b+, c+, b−) is realisable, this does not prevent from some
other traces that do not exhibit a transitory production of b. For instance the simple trace specification P3 ≡ c+ leaves b
constantly equal to 0, and the Hoare triple{

a = 1 ∧ b = 0 ∧ c = 0 ∧
Kb,σλ = 1 ∧ Kc,l = 1 ∧ Kb,σ = 0

}
c + {

b = 0
}

is satisfied, as the corresponding weakest precondition Q 5 is clearly implied by the precondition.

Q 5 ≡ �+
c ∧ Q 0[c ← c + 1] ≡

⎧⎪⎪⎨
⎪⎪⎩

c = 0
a = 0 =⇒ Kc = 1
a = 1 =⇒ Kc,l = 1
b = 0

6.5. Once a constantly equals 1, if c reaches level 1 before b, even transitorily, then no production of b is possible anymore

We prove this property by showing that the following triple is inconsistent, whatever the loop invariant I:⎧⎨
⎩

a = 1 ∧ b = 0 ∧
c = 1 ∧ Kb,σλ=1 ∧
Kc,l =1 ∧ Kb,σ =0

⎫⎬
⎭while b<1 with I do ∃(b+,b−, c+, c−)︸ ︷︷ ︸

P4

{b=1}

The sub-trace specification ∃(b+, b−, c+, c−) reflects the fact that a stays constant but b or c evolves. Thus, the while
statement allows b and c to evolve freely until b becomes equal to 1.

Applying the Iteration rule, I has to satisfy ¬(b < 1) ∧ I =⇒ (b = 1): This property is trivially satisfied whatever the
assertion I , due to the boundary axioms. I has also to satisfy {b < 1 ∧ I} ∃(b+, b−, c+, c−) {I} which gives via the existential
quantifier rule:

Q 6 ≡
{

(�+
b ∧ I[b ← b + 1]) ∨ (�−

b ∧ I[b ← b − 1]) ∨
(�+

c ∧ I[c ← c + 1]) ∨ (�−
c ∧ I[c ← c − 1])

Consequently I must be any assertion such that

(b = 0 ∧ I) =⇒ Q 6

Let us denote P the precondition of the trace specification P4. Applying the Empty trace rule, it results that I must also
satisfy P =⇒ I . So, because P =⇒ (b = 0), we have P =⇒ (b = 0 ∧ I), which, in turn implies Q 6. Moreover, let us remark
that Q 6 =⇒ (�+

b ∨ �−
b ∨ �+

c ∨ �−
c). Consequently, if the Hoare triple of P4 is correct, then P =⇒ (�+

b ∨ �−
b ∨ �+

c ∨ �−
c)

which is impossible because, if P is satisfied then

G. Bernot et al. / Theoretical Computer Science 765 (2019) 145–157 155
• �+
b is false, as a = 1, c = 1 and Kb,σ = 0 (indeed, �+

b implies a = 1 ∧ c = 1 ⇒ Kb,σ > 0)
• �−

b is false, as b = 0 (�−
b implies b > 0)

• �+
c is false, as c = 1 (�+

c implies c < 1)
• �−

c is false, as a = 1, c = 1 and Kc,l = 1 (�−
c implies a = 1 ∧ c = 1 ⇒ Kc,l < 1).

So, we have formally proved that when a is constantly equal to 1, as soon as c has reached the level 1, it becomes never
possible for b to increase to 1.

As mentioned in the beginning of this section, this proof contradicts the universality of the classical interpretation of this
incoherent feedforward loop of type 1. We believed interesting to use our genetically modified Hoare logic for synthesising
the parameter values for which the presupposed function of the incoherent feedforward loop of type 1 can hold. In [9,10]
the pulse of b in response of the switch of a is meant as a robust property. As formally established here, this robustness
does not mean that the property holds for all parameter values, nor for the parameter values where the pulse can arise. As
established in Subsections 6.4 and 6.5, it is necessary to ensure, in addition, that b will always increase before c in a robust
manner.

6.6. About the scalability of the approach

The incoherent feedforward loop of type 1 example is of particularly small size for pedagogical reasons. We used our
genetically modified Hoare logic on several examples including the classical epigenetic switch of λ phage [24] and, in
cooperation with biologists, other examples of credible size such as the mucus production in P. aeruginosa [25], the circadian
clock [26] or the cell cycle in mammals [27]. In all examples the computation of the weakest precondition takes less than
one tenth of a second on a standard laptop (dual core, 2 GHz) [24,28]. What can take time is the resolution of constraints,
varying from ten seconds to one day, depending on the chosen constraint solver and the problem under consideration (CTL
based softwares require several days to model check all the possible sets of parameter values).

On the mammal cell cycle example, inspired by the model proposed by John Tyson in [29], we made a discrete model
with 5 variables and 11 multiplexes. We obtained a set of 339,738,624 possible valuations, each model with 48 states and
26 parameters. From biological knowledge we extracted 12 trace specifications. After applying our Hoare logic method, 13
parameters were entirely identified (50%) and only 8,192 valuations remained possible according to the generated constraints
(0.002%). Lastly additional reachability properties (endoreplication and quiescent phase) have been necessary to identify all
parameters by formalizing them into temporal logic. For more details, see [27] in which the obtained discrete model has
then been extended into a hybrid model with real time behaviour.

7. Related works

One of the main motivations for the introduction of formal methods in discrete modelling of gene networks (or any
complex system) is the automation of parameter identification. Our genetically modified Hoare logic is entirely dedicated to
this problem of parameter identification for discrete gene networks. There are other formal methods which address this
question, which we summarize briefly in this section.

The first approaches based on Thomas modelling used hand-made identification. They used known mathematical prop-
erties on circuits2 in order to reduce the number of admissible parameter values and then, René Thomas and Marcelle
Kaufman used simulations on a “trial and error” method [32,33]. Later on, simulation softwares helped systematic simula-
tions, mainly the Hidde de Jong et al. system GNA [34] and the Denis Thieffry et al. system GINsim [35] that also include
some tools for the determination of invariants. On biological systems where sufficient biological knowledge drastically limits
the possible parameter values, approaches purely based on simulations remain efficient [36]. See also the article of Jasmin
Fisher and Thomas Henzinger [37] for a complementary survey on simulation and mathematical models for biology.

The first use of the power of formal methods really comes with temporal logics and CTL model checking with our
software SMBioNet [2]. Later on, GNA also included some aspects of CTL model checking and Alexander Bockmayr and
Heike Siebert [38] introduced timed automata using UPPAAL. Mirco Giacobbe et al. [39] proposed a simplified (synchronous
and deterministic) dynamics for gene networks, and a modified LTL model checking allowed for efficient generation of
constraints on parameters. With respect to the general asynchronous and non deterministic dynamics, constraint solving
introduced by Laurent Trilling and co-workers efficiently complemented the CTL temporal logic approach [4,5] as well
as symbolic execution techniques [3] introduced by Pascale Legall and co-workers. More detailed descriptions of these
methods and their variants can be found in [40,25]. These approaches fully take benefit from biological expertise, formalizing
knowledge into temporal formulas but they need a large interpretation capacity of the experimental observations. This was
our motivation to introduce Hoare Logic which uses trace specifications directly extracted from experiments.

Following the same motivation, Heike Siebert and co-workers [41] encoded time-series measurements into CTL formulas.
Their approach is able to take into account partially known time-series measurements using repeatedly encapsulated E F

2 An observed homeostasy is necessarily generated by a so-called negative circuit and a notion of “characteristic states” provides necessary inequalities
on parameter values. Similarly, an observed multistationarity is necessarily generated by a so-called positive circuit in the gene network and characteristic
states of positive circuits play a similar role. For more results about circuits, oscillations and attraction basins, see [17,30,31] among others.

156 G. Bernot et al. / Theoretical Computer Science 765 (2019) 145–157
statements. Then, they use softwares such as SMBioNet in order to identify the parameters. The price to pay is a huge
computation time to identify the parameters, compared to constraint solving. Also, compared to our Hoare Logic, neither
assignment, nor quantifier nor iteration are possible. Notice that although Siebert’s approach is based on a modal logic,
a procedure based on tableau semantics [42,43], does not apply because the objective of using time-series from biological
experiments is, similarly to our approach, to extract constraints on the Thomas parameters; it is not to prove the satisfiability
of the considered time-series.3

On the semantic side, Definition 4.4 is in fact rather natural and similar ideas have been used by David Peleg and by
Matthew Hennessy for concurrent systems in computer science [44,45] where the authors defined a mathematical semantics
for concurrent propositional dynamic logic. Our definition has a slightly different treatment of quantifiers, disjunctions and
conjunctions in order to cope with the biological meaning of non-determinism.

Last but not least, whatever the aforementioned formalism, there is no possibility to model an intervention of the biolo-
gist during the experiment. Knockouts of genes are typical examples of such interventions. In our formalism they are easy to
express in trace specifications, using assignment expressions (such as v := 0). They are not directly expressible in the other
formalisms, including CTL or LTL, because the logic formulas they consider are by definition satisfied (or not) according to
the paths within a given model. Indeed, a model of any of the aforementioned formalisms is, to some extend, based on the
exhaustive set of transitions between states that can be triggered in “normal” conditions, that means without any external
intervention. Consequently, such interventions do not correspond to transitions of the model. Because the semantics of tem-
poral logics is defined on paths within the model (sequences of transitions inside the model), these logics cannot directly
address external interventions.

Let us additionally remark that Patrick and Radhia Cousot’s abstract interpretation [14] subsumes the Hoare logic, so
a natural question is should we use genetically modified abstract interpretation instead of genetically modified Hoare logic? The
technical point is that the dynamics of Thomas networks is formalized in an easy way using Hoare inference rules, whereas
abstract interpretation would make things more complicated. The empirical point is that Hoare triples facilitate discussions
with biologists because trace specifications cope very well with classical normalised expression profiles obtained experi-
mentally, see Section 4.3 and Fig. 3.

8. Conclusion

In this paper, based on the discrete Thomas framework, we have developed a trace specification language that easily
captures experimental observations of biologists when they study a gene network. This language can also take into account
the possible interventions of the biologist during the experiments. Based on Hoare logic and Hoare triples as well as Dijkstra
weakest precondition calculus, we have developed an automatic extraction of constraints that fully characterizes under
which conditions a Thomas model is compatible with these experimental observations. The proposed approach has the
advantage of being simple, leading to an efficient algorithm that depends only on the size of the trace specification (and
not on the size of the gene network), without requiring simplifications.

As a consequence of our theorems, when a genetically modified Hoare triple is correct, we are always able to automat-
ically generate all the weakest loop invariants and to build a syntactic proof tree that establishes the correctness.4 In other
words, the assertion language of Definition 4.1 is expressive enough to ensure the purely logical soundness and decidability
of our genetically modified Hoare logic with while loops and quantifiers. This is an important step towards a systematic
exploitation of the numerous gene expression traces available in biological databases.

One may easily imagine similar works for many applications besides gene networks. When modelling any complex sys-
tem, the cornerstone lies, whatever the application domain, in the identification of the parameters. Hoare logic was initially
designed for proofs of imperative programs. In this paper, we divert this approach for exhibiting constraints on parame-
ters of gene network models. One can imagine several other adaptations for several types of discrete complex systems, the
key point is to extract from the considered underlying modelling framework, a first order formula that characterizes the
conditions under which a transition exists.

Acknowledgements

The authors thank the French National Agency for Research (ANR-14-CF09-0011 HyClock project) for its support. This
work has also been partly supported by the ANR-10-BLANC-0218 BioTempo project, by the CNRS PEPII project CirClock and
by the European PHC PROCOPE project TiGeRNet.

Appendix. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.tcs.2018.02.003.

3 Notice also that, although both Dijkstra weakest precondition algorithm and the tableau procedure for LTL go backwards, they are intrinsically different.
In particular, in the Hoare approach as well as ours, the size of the formulas built by the Dijkstra algorithm increases up to the final constraint, contrarily
to tableau procedure that builds a sequence of decreasing sub-formulas of the considered formula.

4 Assuming that the path specification terminates.

https://doi.org/10.1016/j.tcs.2018.02.003

G. Bernot et al. / Theoretical Computer Science 765 (2019) 145–157 157
References

[1] R. Thomas, Regulatory networks seen as asynchronous automata: a logical description, J. Theoret. Biol. 153 (1991) 1–23.
[2] G. Bernot, J.-P. Comet, A. Richard, J. Guespin, Application of formal methods to biological regulatory networks: extending Thomas’ asynchronous logical

approach with temporal logic, J. Theoret. Biol. 229 (3) (2004) 339–347.
[3] D. Mateus, J.-P. Gallois, J.-P. Comet, P. Le Gall, Symbolic modeling of genetic regulatory networks, J. Bioinform. Comput. Biol. 5 (2B) (2007) 627–640.
[4] E. Fanchon, F. Corblin, L. Trilling, B. Hermant, D. Gulino, Modeling the molecular network controlling adhesion between human endothelial cells:

inference and simulation using constraint logic programming, in: CMSB, 2004, pp. 104–118.
[5] F. Corblin, S. Tripodi, E. Fanchon, D. Ropers, L. Trilling, A declarative constraint-based method for analyzing discrete genetic regulatory networks,

Biosystems 98 (2) (2009) 91–104.
[6] C. Hoare, An axiomatic basis for computer programming, Commun. ACM 12 (10) (1969) 576–585.
[7] E.W. Dijkstra, Guarded commands, nondeterminacy and formal derivation of programs, Commun. ACM 18 (1975) 453–457.
[8] A. Bernot, Genome Transcriptome and Proteome Analysis, John Wiley & Sons, 2004.
[9] S. Shen-Orr, R. Milo, S. Mangan, U. Alon, Network motifs in the transcriptional regulation network of escherichia coli, Nat. Genet. 31 (2002) 64–68.

[10] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Network motifs: simple building blocks of complex networks, Science 298 (2002)
824–827.

[11] W. Hatcher, A semantic basis for program verification, J. Cybern. 4 (1) (1974) 61–69.
[12] A. Blass, Y. Gurevich, Inadequacy of computable loop invariants, ACM Trans. Comput. Log. 2 (1) (2001) 1–11.
[13] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Min, D. Monniaux, X. Rival, The ASTREE analyser, in: M. Sagiv (Ed.), ESOP 2005 The European Symposium

on Programming, in: LNCS, vol. 3444, Springer, 2005, pp. 21–30.
[14] P. Cousot, R. Cousot, Basic concepts of abstract interpretation, in: R. Jacquard (Ed.), Building the Information Society, Kluwer Academic, 2004,

pp. 359–366.
[15] S.A. Cook, Soundness and completeness of an axiom system for program verification, SIAM J. Comput. 7 (1) (1978) 70–90.
[16] D. Kozen, J. Tiuryn, On the completeness of propositional Hoare logic, Inform. Sci. 139 (3) (2001) 187–195.
[17] R. Thomas, R. d’Ari, Biological Feedback, CRC Press, 1990.
[18] R. Thomas, M. Kaufman, Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback

circuits, Chaos 11 (2001) 180–195.
[19] Z. Khalis, J.-P. Comet, A. Richard, G. Bernot, The SMBioNet method for discovering models of gene regulatory networks, Genes, Genomes and Genomics

3 (Special Issue 1) (2009) 15–22.
[20] R. Thomas, A. Gathoye, L. Lambert, A complex control circuit. Regulation of immunity in temperate bacteriophages, Eur. J. Biochem. 71 (1) (1976)

211–227.
[21] R. Thomas, Logical analysis of systems comprising feedback loops, J. Theoret. Biol. 73 (4) (1978) 631–656.
[22] E. Snoussi, R. Thomas, Logical identification of all steady states: the concept of feedback loop characteristic states, Bull. Math. Biol. 55 (5) (1993)

973–991.
[23] B. Yordanov, G. Batt, C. Belta, Model checking discrete-time piecewise affine systems: application to gene networks, in: Control Conference (ECC), 2007

European, IEEE, 2007, pp. 2619–2626.
[24] Z. Khalis, Logique de Hoare et identification formelle des paramètres d’un réseau génétique, Ph.D. thesis, University of Evry-Val d’Essonne, 2010.
[25] G. Bernot, J.-P. Comet, H. Snoussi, Formal methods applied to gene network modelling, in: L. Farinas del Cerro, K. Inoue (Eds.), Logical Modeling of

Biological Systems, in: Bioengineering and Health Science Series, ISTE & Wiley, ISBN 978-1-84821-680-8, 2014, pp. 245–289.
[26] E. Cornillon, Modèles qualitatifs de réseaux génétiques: réduction de modèles et introduction d’un temps continu, Ph.D. thesis, Université Cote d’Azur,

2017.
[27] J. Behaegel, J.-P. Comet, G. Bernot, E. Cornillon, F. Delaunay, A hybrid model of cell cycle in mammals, J. Bioinform. Comput. Biol. 14 (1) (2016) 1640001.
[28] M. Folschette, Application de la logique de Hoare aux réseaux de régulation génétique avec multiplexes, Master’s thesis, ECN, Nantes, France, 2011.
[29] J. Tyson, B. Novak, Temporal organization of the cell cycle, Curr. Biol. 18 (17) (2008) R759–R768.
[30] A. Richard, Negative circuits and sustained oscillations in asynchronous automata networks, Adv. in Appl. Math. 44 (4) (2010) 378–392.
[31] A. Richard, J.-P. Comet, Necessary conditions for multistationarity in discrete dynamical systems, Discrete Appl. Math. 155 (18) (2007) 2403–2413.
[32] M. Kaufman, J. Urbain, R. Thomas, Towards a logical analysis of the immune response, J. Theoret. Biol. 114 (4) (1985) 527–561.
[33] R. Thomas, M. Kaufman, Multistationarity, the basis of cell differentiation and memory. I & II, Chaos 11 (2001) 170–195.
[34] H. de Jong, J. Geiselmann, C. Hernandez, M. Page, Genetic network analyzer: qualitative simulation of genetic regulatory networks, Bioinformatics 19 (3)

(2003) 336–344.
[35] A. Gonzalez, A. Naldi, L. Sanchez, D. Thieffry, C. Chaouiya, Ginsim: a software suite for the qualitative modelling, simulation and analysis of regulatory

networks, Biosystems 84 (2) (2006) 91–100.
[36] R. Khoodeeram, G. Bernot, J.-Y. Trosset, An Ockham razor model of energy metabolism, in: P. Amar, F. Képès, V. Norris (Eds.), Proc. of the Thematic

Research School on Advances in Systems and Synthetic Biology, EDP Science, 2017, pp. 81–101.
[37] J. Fisher, T. Henzinger, Executable cell biology, Nat. Biotechnol. 25 (11) (2007) 1239.
[38] H. Siebert, A. Bockmayr, Temporal constraints in the logical analysis of regulatory networks, Theoret. Comput. Sci. 391 (3) (2008) 258–275.
[39] M. Giacobbe, C. Guet, A. Gupta, T. Henzinger, T. Paixao, T. Petrov, Model checking gene regulatory networks, in: International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, Springer, 2015, pp. 469–483.
[40] G. Bernot, J.-P. Comet, C. Risso-de Faverney, Regulatory networks, in: B. Reisfeld, A. Mayeno (Eds.), Computational Toxicology, vol. II, Humana Press,

USA, ISBN 978-1-62703-058-8, 2013, pp. 215–234.
[41] H. Klarner, A. Streck, D. Šafránek, J. Kolčák, H. Siebert, Parameter identification and model ranking of Thomas networks, in: Computational Methods in

Systems Biology, Springer, 2012, pp. 207–226.
[42] M. Reynolds, A traditional tree-style tableau for LTL, CoRR, arXiv:1604.03962. URL http://arxiv.org/abs/1604.03962.
[43] M. Bertello, N. Gigante, A. Montanari, M. Reynolds, Leviathan: a new LTL satisfiability checking tool based on a one-pass tree-shaped tableau, in: IJCAI,

2016, pp. 950–956.
[44] D. Peleg, Concurrent dynamic logic, J. ACM 34 (2) (1987) 450–479.
[45] M. Hennessy, Algebraic Theory of Processes, MIT Press, 1988.

http://refhub.elsevier.com/S0304-3975(18)30080-X/bib5448303931s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib61727469636C654A544232303034s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib61727469636C654A544232303034s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib61727469636C654A42434232303037s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib46616E63686F6E435448473034s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib46616E63686F6E435448473034s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib436F72626C696E32303039s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib436F72626C696E32303039s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib6C6F67697175652D486F6172652D31393639s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib44696A6B737472613A313937353A47434E3A3336303933332E333630393735s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib6265726E6F743230303467656E6F6D65s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib416C6F6E323030322D61s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib416C6F6E323030322D62s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib416C6F6E323030322D62s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib4841544348455231393734s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib426C61737332303031s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib436F75736F743230303561s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib436F75736F743230303561s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib436F75736F743230303461s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib436F75736F743230303461s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib636F6F6B31393738736F756E646E657373s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib6B6F7A656E32303031636F6D706C6574656E657373s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib54413930s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib544B323030312D62s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib544B323030312D62s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib47474732303039s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib47474732303039s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib54474C31393736s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib54474C31393736s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib543738s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib535431393933s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib535431393933s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib796F7264616E6F76323030376D6F64656Cs1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib796F7264616E6F76323030376D6F64656Cs1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib5A6F6872614B68616C6973506844s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib636861707465724C6F67696332303134s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib636861707465724C6F67696332303134s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib456D696C69656E436F726E696C6C6F6E506844s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib456D696C69656E436F726E696C6C6F6E506844s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib61727469636C654A42434232303136s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib4D6178466F736368657474654D32s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib7479736F6E3230303874656D706F72616Cs1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib52696368617264323031304E6567s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib61727469636C6544414D32303037s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib6B6175666D616E31393835746F7761726473s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib544B323030312D6162s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib644A32303033s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib644A32303033s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib676F6E7A616C657A3230303667696E73696Ds1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib676F6E7A616C657A3230303667696E73696Ds1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib72616A65657632303137s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib72616A65657632303137s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib6669736865723230303765786563757461626C65s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib736965626572743230303874656D706F72616Cs1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib676961636F626265323031356D6F64656Cs1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib676961636F626265323031356D6F64656Cs1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib63686170746572546F7832303133s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib63686170746572546F7832303133s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib6B6C61726E657232303132706172616D65746572s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib6B6C61726E657232303132706172616D65746572s1
http://arxiv.org/abs/1604.03962
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib62657274656C6C6F323031366C657669617468616Es1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib62657274656C6C6F323031366C657669617468616Es1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib70656C656731393837636F6E63757272656E74s1
http://refhub.elsevier.com/S0304-3975(18)30080-X/bib48656E6E6573737931393838s1

	A genetically modiﬁed Hoare logic
	1 Introduction
	2 Basics of Hoare logic
	3 Basics of discrete gene regulatory network models
	4 Syntax of Hoare triples for gene networks
	4.1 Assertions for discrete models of gene networks
	4.2 Trace speciﬁcations for discrete models of gene networks
	4.3 Hoare triples

	5 A Hoare logic for discrete models of gene networks
	6 Illustrative examples
	6.1 Alon's interpretation of the incoherent feedforward loop of type 1
	6.2 Is a transitory production of b possible?
	6.3 Is a transitory production of b possible without increasing c?
	6.4 The existence of the trace (b+,c+,b-) does not imply a transitory production of b for all traces in the same gene network
	6.5 Once a constantly equals 1, if c reaches level 1 before b, even transitorily, then no production of b is possible anymore
	6.6 About the scalability of the approach

	7 Related works
	8 Conclusion
	Acknowledgements
	Appendix Supplementary material
	References

