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“But technology will ultimately and usefully be better served by following
the spirit of Eddington, by attempting to provide enough time and intellectual

space for those who want to invest themselves in exploration of levels
beyond the genome independently of any quick promises for still quicker

solutions to extremely complex problems.”

Strohman RC (1977) Nature Biotech 15:199

FOREWORD
Systems Biology includes the study of interaction networks and, in particular, their dy-
namic and spatiotemporal aspects. It typically requires the import of concepts from
across the disciplines and crosstalk between theory, benchwork, modelling and simu-
lation. The quintessence of Systems Biology is the discovery of the design principles of
Life. The logical next step is to apply these principles to synthesize biological systems.
This engineering of biology is the ultimate goal of Synthetic Biology: the rational concep-
tion and construction of complex systems based on, or inspired by, biology, and endowed
with functions that may be absent in Nature.

Just such a multi-disciplinary group of scientists has been meeting regularly at Geno-
pole, a leading centre for genomics in France. This, the Epigenomics project, is divided
into five subgroups. The GolgiTop subgroup focuses on membrane deformations involved
in the functionning of the Golgi. The Hyperstructures subgroup focuses on cell division,
on the dynamics of the cytoskeleton, and on the dynamics of hyperstructures (which are
extended multi-molecule assemblies that serve a particular function). The Observability
subgroup addresses the question of which models are coherent and how can they best
be tested by applying a formal system, originally used for testing computer programs, to
an epigenetic model for mucus production by Pseudomonas aeruginosa, the bacterium
involved in cystic fibrosis. The Bioputing group works on new approaches proposed
to understand biological computing using computing machine made of biomolecules or
bacterial colonies. The SMABio subgroup focuses on how multi-agents systems (MAS)
can be used to model biological systems.

This annual School started in 2002. It was the first School dedicated to Systems
Biology in France, and perhaps in Europe. Since 2005, Synthetic Biology has played
an increasingly important role in the School. Generally, the topics covered by the School
have changed from year to year to accompany and sometimes precede a rapidly evolving
scientific landscape. Its title has evolved in 2004 and again in 2012 to reflect these
changes. The first School was held near Grenoble after which the School has been
held in various locations. It started under the auspices of Genopole R©, and has been
supported by the CNRS since 2003, as well as by several other sponsors over the years.

This book gathers overviews of the talks, original articles contributed by speakers,
subgroups and students, tutorial material, and poster abstracts. We thank the sponsors
of this conference for making it possible for all the participants to share their enthusiasm
and ideas in such a constructive way.

Patrick Amar, Gilles Bernot, Marie Beurton-Aimar, Attila Csikasz-Nagy, Jürgen Jost,
Ivan Junier, Marcelline Kaufman, François Képès, Pascale Le Gall, Reinhard Lipowsky,
Jean-Pierre Mazat, Victor Norris, William Saurin, El Houssine Snoussi.
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Richard Kitney1

1 Imperial College London, UK

Abstract
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Non-canonical amino acids as building blocks

Birgit Wiltschi1

1 Junior Group Synthetic Biology, Austrian Centre of Industrial Biotechnology
ACIB GmbH, Graz, Austria

Abstract

Non-canonical amino acids (ncAAs) can be used as building blocks for the
biosynthesis of synthetic proteins. Though not encoded by the genetic code,
these analogs of the canonical amino acids participate in ribosomal protein
translation under tightly controlled conditions. Most of the ncAAs carry un-
usual side chains. Their translation into a target protein sequence can provoke
structural, chemical, or functional modifications normally not found in nature.
Thus, protein engineering with ncAAs offers an extension to classical genetic
engineering approaches for protein modification. It is an emerging research
area in the field of synthetic biology at the interface of biology and chemistry
that bears unprecedented biotechnological potential.

The incorporation of ncAAs into proteins requires the reprogramming of
protein biosynthesis. This can be achieved by skillful manipulation of the
different components of the translational machinery. Aminoacyl-tRNA syn-
thetases (AARSs) are crucial players in the genetic code interpretation and,
therefore, represent a main target for engineering efforts. The manipulation
of the catalytic activity of these enzymes provides the clue for the efficient
incorporation of ncAAs into target proteins. Currently, two approaches for
controlling amino acid selection and catalytic turnover are employed. The first
exploits the natural substrate tolerance of the AARSs in the context of amino
acid auxotrophies for global substitution of an amino acid by its non-canonical
analog. Alternatively, site-specific introduction of an ncAA is achieved by in-
frame stop codon suppression in combination with the mutation of the sub-
strate specificity of an AARS. This approach requires the development of
AARS/suppressor tRNA pairs that are orthogonal. The orthogonal pair must
be specific for its cognate amino acid and must not exhibit cross-reactivity with
AARS/tRNA pairs of the host.

In my presentation, I will focus on the basic requirements for the modifi-
cation of proteins with ncAAs by the two complementary approaches. Using
examples from the literature and from our own work, I will illustrate the
potentials of protein engineering with ncAAs.
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Beyond BioBricks: Using machine learning methods to
discover and optimize complex systems in synthetic

biology

Mark Bedau1

1 Reed College, Portland OR, USA

Abstract

This talk has two main messages. The first is that emergence plays a cen-
tral role in complex synthetic biology mechanisms. Emergence has a con-
troversial history in both philosophy and science, but the controversy is now
dissipating, in part because of growing awareness of a new conception of
emergence (termed ”weak” emergence) concerning global states produced by
complex causal networks. Complex causal networks are characterized by high
parallelism (many independent variables), high nonlinearity (of response of
each variable), and high synergy (the response of a variable depends on the
responses of other variables). One main way to understand and control the
emergent properties produced by complex causal webs is through Edisonian
trial and error, involving extensive empirical observation and experimentation.
(Another is by means of computer simulations.) The mechanisms constructed
in synthetic biology are typically very complex, and the resulting weak emer-
gent properties explain why experimental troubleshooting dominates work in
synthetic biology laboratories. Hence my first main message: synthetic biolo-
gists should embrace rather than ignore the emergent properties in the complex
biochemical systems that they synthesize. My second main message is to
demonstrate a new and powerful method to engineer systems to have desired
emergent properties.

This method puts machine-learning algorithms in control of high-throughput
experimental technology, in order to ”program” an experimental system’s de-
sired emergent properties. The programming is indirect because it starts by
specifying the desired goal state (the desired emergent properties) and then
conducts a sequence of experiments that efficiently optimizes the desired prop-
erties. In addition to high experimental throughput, this method’s keys to
success are (i) a precisely defined library of potential experiments, (ii) an
effective measurement of the degree to which a given experiment exhibits the
desired emergent property, and (iii) an ability to create any experiment in the
library on demand. Examples of successfully engineering the emergent proper-
ties of complex biochemical systems including programming synergistic drug
combinations and formulations and programming experimental conditions for
protein synthesis.
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Novel applications in synthetic biology include programming genetic sequences,
BioBrick designs, and minimal or refactored genomes.

References

[1] S. Rasmussen et al. 2008. A roadmap to protocells. In S. Rasmussen, et
al., eds., Protocells: bridging nonliving and living matter, pp. 71-100.
Cambridge: MIT Press.

[2] F. Caschera et al. 2011. Coping with complexity: machine learning opti-
mization of cell-free protein synthesis. Biotechnology and Bioengineering
108 (9): 2218-2228.
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Ricard Solé1

1 U. Pompeu Fabra, Barcelona, ES

Abstract
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Evolutionary processes driving system properties and
system properties channelling evolutionary processes

Orkun S. Soyer1

1 University of Exeter, GB

Abstract

We can not claim a complete understanding of a biological system, predict
its diversity among organisms, or hope to be able to reliable manipulate it
(in the context of medicine and synthetic biology) without understanding its
evolutionary history. In this talk, I will demonstrate mathematical and com-
putational approaches towards deciphering the evolutionary processes that can
lead to specific systems properties at the cellular level. In turn, these properties
can channel further evolution creating an interesting interplay between systems
level properties and evolutionary dynamics. Describing few recent projects in
detail, I will highlight fluctuating environments and nonlinear dynamics as an
example of this interplay and its effect of system robustness and evolvability.
The talk will conclude with general remarks on the relevance of the emerging
field of evolutionary systems biology in our quest to better understand (and
manipulate) cellular systems.

Orkun S. Soyer is a senior lecturer of systems biology at the University of
Exeter. He received a PhD from University of Michigan under the supervision
of Richard Goldstein in 2004. His postdoctoral work focused on the evolu-
tion of signalling networks, and was done under the mentorship of Sebastian
Bonhoeffer at the ETH, Zuerich. Orkun’s lab is interested in deciphering
the evolutionary and ecological principles that can explain the structure and
dynamics of biological systems at molecular level. A connected aim is to
use the resulting insights towards manipulating existing biological systems or
designing novel ones.
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Systems Biology during long-term evolution with
Escherichia coli: dynamics of regulatory networks and

mutation rates

Dominique Schneider1

1 Lab. Adaptation et Pathogénie des Microorganismes, CNRS UMR5163,
Université Joseph Fourier, Grenoble, France.

Abstract

Systems Biology, through its interdisciplinary nature, highlighted the multi-
faceted complexity of living organisms by improving our understanding of the
structure and function of genomes and cellular networks. Integrating evolu-
tionary perspectives is fully complementary by providing a dynamic view of
virtually all cellular processes. Experimental evolution is designed to repro-
duce evolution in controlled laboratory conditions and therefore provides such
an evolutionary framework. During the longest running evolution experiment,
twelve populations of Escherichia coli are independently propagated from a
common ancestor in a defined environment for more than 55,000 generations.
The full revivable fossil record of the entire evolution experiment is investi-
gated for phenotypic, genomic and global expression changes. All populations
achieved substantial fitness improvement during evolutionary time. Adaptive
changes have been shown to be associated with complex effects on global
gene expression, including widespread pleiotropy and epistasis, indicative of
important changes in regulatory networks. In addition to their expression,
bacterial genomes revealed an exceptional dynamics in their mutation rates,
reflecting a tension between adaptation and genetic load that is strongly related
to the fit of the bacterial populations to their environment.

The integration of Systems Biology into this evolutionary framework there-
fore addresses how evolvable are genomic features and the molecular bases
of the evolvability of networks that has to be integrated in all the complex
Synthetic Biology projects. These interdisciplinary approaches pave the way
toward understanding precisely how the flow of information is transduced
from the environment to bacterial cells, which in turn are able to cope with
the various challenges imposed by the external conditions, including human
behaviour and need.
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The human toponome project: translating the spatial
protein network code (toponome) into efficient therapies

Walter Schubert1,2,3

1 Molecular pattern recognition research group, OvG-university
Magdeburg, Germany

2 International faculty, Max-Planck (CAS-MPG) partner institute for computational
biology, Shanghai, China

3 Human toponome project, TNL, Munich, Germany

Abstract

The recent development of parameter-unlimited super-resolution microscopy
TISTM (Toponome Imaging System) provides direct access to protein neworks
at nanometer 2D and 3D resolution in a single tissue section or inside cells.
TISTM is a device that overcomes both the spectral and the resolving power
of conventional light microscopy without having to change hardware. It is the
first ready-to-use technology for dimension- and parameter-unlimited histolog-
ical diagnostics and systematic decoding of the toponome at super-resolution
(toponome: defined as the spatial protein network code in morphologically
intact cells and tissues). TISTM is a highly flexible machine that can adapt
to the needs of the researcher: a 4-in-one microscope including (1) routine
transmitted light functions, (2) conventional fluorescence functionalities, (3)
parameter-unlimited protein network visualization in real time, and (4) super-
resolution of subcellular structures and protein clusters in tissue sections and
in cultured cells (subnanometer to 40 nm resolution).

It is a novel platform providing the robustness needed for the human to-
ponome project, combining industry partners and research institutions. The
technology has shown to solve key problems in cell-, tissue-, and clinical to-
ponomics by directly decoding cellular (disease) mechanisms in situ/in vivo, in
particuar at the target sites of cancer in human tissue. Several next-generation
toponome biomarkers and toponome drugs are on the way to clinic. The
human toponome project has at its goal to unravel the complete toponome in
all cell types and tissues in health and disease. The technology is scalable
as large cooperative parallel screening devices extracting the most relevant
disease targets from protein network hierarchies in situ: a novel efficient way to
find selective drugs, by escaping the low content trap in current drug target and
diagnostic marker discovery strategies, which, as yet, systematically disregard
the spatial topology of the protein network code.
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Using SOA and Cloud in a research project on CTCT
(Cutaneous T-Cell Lymphoma)

Andreas DRESS1

1 CAS-MPG, Shanghai Institutes for Biological Sciences (SIBS), China

Abstract

In this lecture, I will report on our vision (or dream) to develop:

• a CTCL model addressing the spatio-temporal dynamics of CTCL rele-
vant cellular, protein, and miRNA networks within cancerous as well as
non-cancerous tissue that integrates clinical, transcriptome, proteome,
and toponome data,

• an expert platform for integrating such diverse data with clinical diag-
nosis and histopathology, providing —as a basis for expert discussion
—the integrated data via the internet and, thus, allowing the project
partners to continuously check and iteratively improve systems-biology
models and their predictions in the light of new incoming data,

• and an IT platform supporting the use of our data and insights in person-
alised or —perhaps better —precision medicine for diagnosis as well as
for devising and monitoring therapies in daily clinical routine.

A recent issue of Science celebrates 40 years of cancer research and its achieve-
ments over this time. While cancer research is certainly much older than
that, the advent of molecular genetic technologies has revolutionised the field
and ushered in a rapidly accelerating development of new technologies for
elucidating the molecular biology of diseases.

Now, with increasing amount and refinement of omics data from genome,
transcriptome, proteome, metabolome and other advanced and emerging high-
throughput technologies applied to human diseases, we are ever more con-
fronted with the task of processing large and continuously increasing omics
data sets and projecting these data onto real-life patients, diseased organs,
tissues, or cells. Of course, cancer – like any other complex disease or phys-
iological state of life – is a complex biological phenomenon that cannot be
described as an isolated event or reduced to a single factor. Hence, invoking
systems biology and mathematical modelling for integrating the various data

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 23



from molecular and cell biology is indeed an inevitable requirement for success
in current cancer research.

But the approach has to go beyond just these omics data sets and must
incorporate morphological and histopathological features: Life is based on
integrated systems of well-organised molecular and cellular networks, and
diseases are deviations that can be described as alternative stable states thereof.
In fact, clinical diagnostics for over 100 years has most successfully utilised
morphological information from clinical descriptions and histopathology to
define and classify diseases and to develop guidelines for therapy.

Such morphological approaches can now be augmented by new technolo-
gies based on vastly advanced (fluorescence) microscopy with resolutions from
cell clusters down almost to single-molecule detection. In particular, TIS
technology constitutes an outstanding example that offers the unprecedented
and unique advantage of overcoming both the spectral limit and resolving
power of standard fluorescence microscopy compared even to standard super-
resolution imaging techniques such as STED, iPALM, and STORM. By pro-
viding fluorescence-microscopy images of multi-molecular distributions, it al-
lows us to extract information on:

• the spatial organisation of whole protein networks,
• the hierarchical functionality of different proteins in these networks,
• and the control such networks exert on cells and cellular interaction,

thus establishing the basis for a whole new approach to cell biology, named
toponomics.

While toponome data can be aligned with other omics data, clinical knowl-
edge and experience has been difficult to integrate with either of these. Prob-
lems are caused by the large variation of data formats and structures, levels
of certainty and quantification, types of expertise required to comprehend and
process the data, and means of communication.

This project addresses these problems in the particularly demanding con-
text of applying systems biology to clinical research and development. We
will:

• use known standard functional-genomics data that already exist,
• extend those data as required by the project’s progress,
• complement and correlate them with toponome data and other morpho-

logical and histological information,
• while simultaneously involving clinicians right from the start
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so that, in an iterative process, a validated systems-biology based model of
CTCL will result.

The project will therefore not only produce new insights regarding the dis-
ease under investigation. It will also provide strategies and tools for clinically
oriented systems biology in general. We regard our studies as an internation-
ally unique approach to clinical systems biology or systems medicine that is
likely to open up new avenues and provide new insights into individual tumour-
specific mechanisms in cancer, and new ways to treat it.
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Taking systems biology into the clinic: what we have
learned from ciliopathies

Rachel Giles1

1 Dept. Nephrology and Hypertension, University Medical Center Utrecht,
Heidelberglaan 100, 3584CX Utrecht, The Netherlands

Abstract

In clinical medicine, chronic diseases are often oligogenic and complex to
diagnose and treat. Transcriptomes, proteomes and metabolomes are currently
being catalogued for such diseases yet the systems biology frameworks being
generated by these datasets are primarily being used to study variation and
function of the human genome and relating them to health and disease states.
Recently enhanced efficiency of DNA sequencing allows powerful analytical
computational and mathematical tools aimed at understanding functional and
regulatory networks underlying the behavior of complex biological systems.
Iterative systems approaches for specific human diseases such inherited re-
nal cancer syndromes or renal ciliopathies have started making inroads to
improving diagnostic and prognostic parameters. Because of their relatively
contained yet oligogenic properties, in many ways the inherited renal cancer
syndromes and ciliopathies offer an exemplary system to describe how systems
approaches are transforming the way drugs are being developed based on com-
plex interactions between distinct but overlapping pathways. Consequently, a
perspective in which the interactions and dynamics are centrally integrated
may steer medical intervention towards interrelationships of components. The
optimal method for predictive, personalized, and preventive treatment of com-
plex chronic diseases may therefore lie in systems medicine. We illustrate our
arguments with a case report.
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Multiscale Modelling: An Approach for Developing New
Insight into Cancer?

Helen Byrne1

1 OCCAM, Univ. Oxford, UK

Abstract

Until recently most experimental and theoretical studies of biological systems
have focussed on a single scale. For example, at the tissue scale, one may
measure how tumour size changes over time in response to different treat-
ments. Alternatively, biomarkers for proliferation or apoptosis may provide
information about whether a new drug reduces tumour mass by up-regulating
apoptosis or down-regulating proliferation. Equally, proteomic and genomic
data can be used to determine the subcellular signalling pathway by which a
particular growth factor achieves its effect. In practice, these processes are
inter-related and incredibly complex. For example, the rate at which a tumour
grows depends on the rate of cell division; the rate of cell division depends
on the rate at which cells progress through the cell cycle; the rate of progress
through the cell cycle depends on the rate at which growth factors and vital
nutrients are transported to the cells of interest, and this rate depends, in turn,
on the size of the tumour!

In this talk, I will explain how multiscale models can be assembled and
used to study and understand the complex interplay between processes that
occur at different levels of spatial and temporal organisation. Attention will
focus on two case studies: a multiscale model of vascular tumour growth and
a multiscale model of the early, prevascular stages of colorectal cancer.
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Modeling Gene Regulatory Networks: A Brief Overview of
Current Approaches

Courtney Chancellor1, Francisco Chinesta2, Morgan Magnin1, Olivier Roux1

1 IRCCyN, Ecole Centrale de Nantes, France
2 GeM, Ecole Centrale de Nantes, France

Abstract

In order to handle the increasing complexity of available data in the field of
gene regulatory networks, computational tools have become invaluable. There
exist many modeling frameworks to choose from, each bringing with it its own
weaknesses and strengths, data requirements and fundamental assumptions.
By casting a network in a particular model type, one inherently limits the
resulting analysis to the bounds of that type. Here, we introduce three gen-
res of frameworks, continuous, discrete and stochastic, and illustrate relative
properties of each and apply it to a simple network of three genes.

1 Introduction

The mechanism by which a cell regulates genetic transcription and translation
is often a complex network of dependencies broadly labeled as gene regulatory
networks. As technology has advanced to aide the exploration and measure-
ment of these previously unobservable systems, the quantity of available data
has skyrocketed, drawing newfound connections between proteins and their
encoding genes. As a result, the number of potentially interacting species
in a regulatory network for any one protein may be too large to understand
intuitively. In contrast, the kinetics of these reactions are often unknown
and threaten to remain elusive since, at such a level, it becomes difficult to
experimentally isolate individual reactions and quantify the contribution of a
single component to the system as a whole. If, however, we are able to properly
construct a framework with which to model the system, it may be possible
to study the network on a deep, nonintuitive level and suggest experimental
design for more practical in vitro or in vivo observation [4]. Computational
biology and modeling tools have become invaluable to this end.

In this overview, we introduce three genres of modeling frameworks and
illustrate relative properties of each. For the sake of continuity and to more
easily compare the above model types, a single system is introduced in Section
1 and will be referenced throught the paper. While it represents no physical
system, this simple toy network can demonstrate the weaknesses and potential

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 31



power of each framework type.The classical continuous models are in the
form of differential equations in Section 2, specifically their peicewise linear
simplifications and hybrid types. Logical models, also known as Generalized
Logical Networks, as found in Section 3, consider discrete, qualitative change
and, although they can be thought of as the most simplified model in this
overview, have the potential to capture complex behaviors and come with their
own hybrid expansions. Finally, stochastic models derived from the chemical
master equation offer a contrasting paradigm to the previous two deterministic
models and are discussed in Section 4. This paper does not represent an
complete literature review of all modeling frameworks currently used [1] but,
rather, gives a brief guide to three principle categories and the links existing
between them. For example, not detailed here but certainly worth investigation
are Petri nets and the recently developed Process Hitting [12], a kind of process
algebra.

1.1 Feed Forward Circuit

A system whose product further propagates a particular signal, say, a protein
which acts as its own activator, is known as a feed-forward circuit or, in bio-
jargon, a feed forward loop. These structures are very common in the bio-
logical world and must be properly represented by any potential model. The
considered network, however, is an example of an “incoherent” feed-forward
circuit in that a single species, here called x1, acts as both activator and, via a
secondary species x3, inhibitor of x2 at given thresholds θi,j . [9, 11]

x1

x2

x3

+, θ1,2

+, θ1,3
−, θ3,2

Figure 1: The toy network developed for this overview. In all examples we consider
that θ1,2 > θ1,3, that is, x3 is transcribed before x2. However, we wish to enforce
behavior such that x2 is present before the inhibiting effects of x3 can take effect.

To represent the relationship described here, a weighted, directed graph
proves to be an intuitive map of a gene regulatory network. Vertices signify
the genes, proteins and cellular conditions which influence expression of a
particular trait. The strength and type of interaction (inhibition and activation)
are then denoted by weighted, directed edges between these variables. A visual
representation of this graph can be found in Figure 1. On its own, the directed
graph can give insight to the global behaviors and suggest possible connections
within a regulatory network.
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2 Continuous Models
There exists an extensive branch of modeling which considers a dynamic pro-
cess in terms of a system of continuous, nonlinear differential equations [1].
This framework has the potential to model complex interactions between in-
teracting species and gives rich, fully deterministic evolution through time.
Here, species are represented by their concentrations, which are assumed to
demonstrate continuous change as determined by the current state of the sys-
tem described in a vecor, x. Thus, we may define the N individual species
as xi(t), t ∈ R≥0 which evolve as defined by the partial derivative ∂xi

∂t =
fi(x) i = 1...N , in which fi may express complex interactions between species,
the form of which must be known or derived from biological knowledge of
the system. In the case that an analytical solution is possible, the system is
quantitatively determined for all time and a wide range of tools are at ones
disposal for analysis, including the determination of steady states, bifurcation
analysis and the study of limit cycles. Unfortunately, the analytical solution
is often impossible and, while numerical methods have been widely applied
to nonlinear differential equations, these schemes do not always conserve re-
alistic behaviors in gene regulatory networks. By making a few simplifying
assumptions on the system, we hope to alleviate the worst of these problems.

2.1 Piecewise Linear Differential Equations

Piecewise Linear Differential Equations retain much of the same philosophy
of their nonlinear counterparts in that the evolution of each species is governed
by a partial derivative which outlines decay, growth, and interaction between
species. However, in this simplified model we eliminate nonlinear terms by
exploiting the characteristic form of regulation interactions.
The rate of change of a species is determined by the set of available resources
in the current state, that is, the presence of its activators or absence of its
inhibitors. In general, when one describes the interactions of biological reg-
ulators, one may say that the influence of a particular resource on its target
is well represented by a sigmoidal function [1, 5]: factor xj does not impact
the target species xi until reaching a given θj,i, the threshold of influence of
j on i, at which point it exhibits influence kij . How sharp the threshold is
can be captured with the choice of function. By using a step function such
that change in influence is instantaneous and by assuming that the effects of
resources, kij , are additive, one eliminates nonlinearities from the differential
system of equations and arrives at the PLDE network. Thus, we may rewrite
the form of these equations [2] as

∂xi
∂t

=

ki0 +
∑
j∈ω(i)

kij × Fxj ,θj,i

− γxi
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in which we have explicitly defined ki0, a basal synthesis rate, and γi, a decom-
position rate of xi which is directly related to its concentration. F represents
the sigmoid function of choice (though, in this paper, we will only utilize
the simple step function), and ω(i), the resources of species i. The resulting
differential system is segmented by the domains, but within each domain there
always exists an analytical solution given an initial condition xi(0),

xi(t) =
ki0 +

∑
j∈ω k

i
j

γi
−
(
ki0 +

∑
j∈ω k

i
j

γi
− xi(0)

)
e−γit

Although the state space of each variable is continuous, the nature of these
interactions naturally divides this space into domains defined by the threshold
values of resources. Within these segments, that is, when the available pool of
resources do not pass any threshold values, all trajectories go to a focal state,
ki
0+

P
j∈ω k

i
j

γi
, though not one necessarily contained within the current segment.

Within the PLDE framework, one can observe many complex dynamical be-
haviors. Regular and singular steady states can be observed, with the assurance
that all asymptotically stable steady states can be found [5]. Cyclical and
aperiodic behaviors can also be demonstrated.

This complexity comes at the cost of computation. The problem of the
PLDE becomes the search for the kinetic paramenters {kij , γi, ki0}. Since
these parameters are continuously valued, no automated, exhaustive search
method is possible. Therefore, one must search for parameters which produce
known behaviors with simulation techniques used to evaluate robustness, a
fundamental characteristic of biological systems.To limit the possible space
of parameters somewhat, constraints may be written under the guidance of
biological knowledge and experimental data.

2.2 Hybrid Models

Because the PLDE framework contains an explicit definition of time, the incor-
poration of experimental temporal data is possible [2, 9]. It is often the case
that how much time is required, say, between the instant an activator comes
to its appropriate concentration and when its effects will be present in the
system, is observable. In the case of our example model, let the threshold
values be θ1,2 = 6, θ1,3 = 5 and θ3,2 = 7. We wish to be sure that,
although x3 is transcribed first, in the time needed for it to reach its inhibiting
concentration, x2 will have already reached its active levels. We want to
include a time delay such that this is always true. How much time is required
to pass between each domain on an increasing order, d+

xi
, (or decreasing order,

d−xi
, respectively), can be analytically found by algebraic manipulation, and

chains of constraints can be written to enforce a pathway in steps of two. So, in
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our case, the desired pathway is (2, 0, 0)→ (2, 1, 0), and we would intuitively
write d+

x2
(2, 0, 0) < d+

x3
(2, 0, 0). Since x3 is activated slightly before x2, we

must incorporate the time it has already had into to transcribe into the delay
constraint as d+

x2
(2, 0, 0) < d+

x3
(2, 0, 0) − d+

x1
(1, 0, 0). By incorporating time

delays into the model, we introduce temporal domains based on the order
of the system, effectively hybridizing it to a richer description at the cost of
computation.

3 Discrete Models

First, recall the system as defined in the previous section, with each species
conveyed by its current concentration at some time, xi(t), i = 1 · · ·N , with
domains defined by thresholds θi,j . In switching to the discrete paradigm,
we must alter this definition in a fundamental way. Species are no longer
continuous functions but, rather, are followed by qualitative– not quantitative–
changes in state. Only when a variable crosses from one domain to another can
be considered in describing the system. Although this seems to be a dramatic
simplification, the Generalized Logical Network is capable of representing
complex dynamics and comes with its own analytical tools [1].

3.1 Generalized Logical Network

In this framework, we concern ourselves only with qualtitative switches in a
variable. We are given the current state of the system as described by what
regions the factors relevant to a given variable are in- that is, its available
resources- and want to determine, given those resources, to what region will
the variable tend. This is called a logical image. The definition of resources
remains the same from the previous section, but the variables are now defined
by their domains, xi = 0, 1, · · ·m. For every possible state, we must determine
the image of each variable given the list of current resources, ω. The value
given to each image is of the form Ki,ω and is equal to the numbered domain
to which the variable tends to go. The search for these logical parameters
defines the GLN completely, and, because its possible values are discrete and
finite, an automated search is possible [2, 3]. The underlying graph usually
supports a number of parameter sets exhibiting different kinds of behavior.
As before, to limit the solution space, one may write contraints based on
biological knowledge or the functionality of a positive or negative circuit [11].

The GLN as it applies to our example can be found in Figure 2. The
choice of parameters can be influenced by our understanding of the system.
Any interesting properties of the system depend on the strength of the negative
influence of x3 relative to the positive influence of x1 on x2. If the inhibition
by x3 far outweighs the activation by x1, the parameters relevant to x2 are
ranked K2,{} ≤ K2,{1} ≤ K2,{3} ≤ K2,{1,3}, the equality case representing
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x1 x2 x3 X1 X2 X3

1 0 0 K1{} K2{3} K3{1}
1 0 1 K1{} K2{} K3{1}
1 1 1 K1{} K2{} K3{1}
1 1 0 K1{} K2{3} K3{1}
2 0 0 K1{} K2{1, 3} K3{1}
2 0 1 K1{} K2{1} K3{1}
2 1 1 K1{} K2{1} K3{1}
2 1 0 K1{} K2{1, 3} K3{1}

Figure 2: To solve a logical model, one must find the domain to which each
species will tend given all possible combinations of resources (parameters Ki,ω), also
known as images. On the right can be found the table of images corresponding to the
incoherent FFL with θ1,2 = 2, θ1,3 = θ3,2 = 1. Naturally, the cases in which x1 = 0
are of very little interest to us compared to those with active x1 = 1 and 2, thus only
these values are included in the table. Inhibition by x3 is considered to be greater
than activation by x1, thus we arrive at solution K1,{} = 2, K2{1,3} = K3{1} = 1,
K2,{1} = K2,{} = K2,{3} = 0 The values of the images correspond to the
synchronous graph, demonstrated by the interior, black arrows. By allowing only
one transition at a time, we come to the asynchronous graph, exterior blue arrows, in
which any x1 = 1 square may update to the x1 = 2 plane, indicated by the large, blue
arrow.

a weak influence not great enough to push the variable to its next domain. In
contrast, the case of strong activation and weak inhibition is given by K2,{} ≤
K2,{3} ≤ K2,{1} ≤ K2,{1,3}. Although this is not dramatically significant
for this particular example, the writing of constraints is very important in
the search for plausible parameters K. GLNs may also be subjected to their
own sort of bifurcation analysis [10] in which parameters are modified one
by one in accordance to some overarching property. This can be used to
investigate deeper dynamic balances or isolate the most significant variables
on the system.

A final modification must be made in the GLN framework: currently, the
system evolves instantaneously from the current state to the image defined by
the set of parameters Ki,ω. In this representation, any number of variables are
permitted to pass multiple thesholds in one time cycle. This is known as the
synchronous state graph. While this may describe global behaviors, it does
not fit our understanding of the physical system; There is little chance that
any two reactive elements would pass thresholds simultaneously. To restore
the plausibility of our model and the investigation of more local behaviors,
we replace trajectories which pass through more than one transition state with
single trajectories which modify only one element of the system at a time.
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The new state graph is known as asynchronous, a comparison demonstrated by
Figure 2, right hand side.

Certainly, the ability to use an automated search for the needed model
parameters is a powerful feature of the logical framework. Although we have
simplified our model and reduced how much we are able to know about lo-
cal behavior, the GLN can represent rather complex dynamic behavior. The
simplification may, in fact, be merited: too often a model overfits data and
becomes a product of its framework rather than a representation of the actual
system. There remain still, however, very strong ties between the PLDE and
the GLN framework when one considers the division of the state space into
domains, and one may move easily from the former to the later by defining

parameters Ki,ω by their corresponding focal points
ki
0+

P
j∈ω k

i
j

γi
. The relation-

ship between PDE, PLDE and GLN frameworks is clearly visible.

3.2 Hybrid Models

The loss of an explicit definition of time, however, can be detrimental. In
our example, it is impossible to enforce a pulse in x2, that is, that the system
always moves (1, 0, 0) → (2, 0, 0) → (2, 1, 0) → (2, 1, 1) → (2, 0, 1). This
is due to the structure of the asynchronous graph: the system will always have
equal potential to increase x3 as x1 or x2, thus is non-deterministic. Intuitively,
we know that the effects of x3 on x2 will take time to sufficiently inhibit its
expression. By incorporating time delays into the discrete model, we can
effectively hybridize the system and enforce desirable physical behaviors in
our model [2, 9].
This is a relatively straightforward process: each variable xi is associated with
a clock hxi and delays for passing the decreasing domain d− and the increasing
domain d+, as was the case in the hybrid PLDE framework. When the state
is eligible to make a transition between domains, the clock starts, keeping
continuous time until reaching delay d+ (or d−), at which point the transition
fires and the clock is reset. A clock is reset whenever its variable changes order
since it is therefore subject to a different domain.

4 Stochastic Models
The previous models have made hidden, fundamental assumptions which may
not reflect the biological reality of gene regulation. The first is that concen-
trations of species in the system vary continuously. While this may seem a
straightforward assumption, most regulatory agents exist at very low concen-
trations such that a change in a very small number of individuals can have large
effects on the system as a whole. Secondly, biological events are not truly
deterministic: identical genotypes can lead to drastically different phenotypic
expression, and genetic regulation has proven to be sensitive to noise. Two sys-
tems which have the same initial state may exhibit different global behaviors.
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If we abandon these, most likely, flawed assumptions we are led to describe
the system as stochastic in nature. Rather than tracking the concentration of
species as it varies in time according to an underlying deterministic process,
we think about the system in terms of the probability of existing at a certain
state at any given time given some initial condition.

4.1 The Chemical Master Equation

Since we no longer concern ourselves with the concentrations of species in the
stochastic framework, we change syntax for ease of differentiation. Thus, the
system is described by the vector z = {z1 · · · zN} where zi ∈ N is the count
of individual molecules of species i. From a given state, reactions occur which
move it to a new configuration according to a known stoichiometry. These
reactions are subject to some propensity. For any forward reaction rj which
occurs with propensity aj the system moves as demonstrated in Figure 3,
where vj is a vector containing the net changes in the state vector.

z − vj z z + vj
aj(z − vj) aj(z)

Figure 3: Visual representation of how the system evolves according to a single
reaction, rj with propensity function aj(z). When the reaction occurs, all species
change according to the stoichiometry of the reaction, its net influence contained in
vj , to arrive at the new state.

The Chemical Master Equation describes the evolution of the probablity of
the system existing at any given state z by considering the propensities of all
reactions which leave z and those which enter z,

∂P (z, t|z0, t0)
∂t

≡
∑
j

[aj(z − vj)P (z − vj , t|z0, t0)− aj(z)P (z, t|z0, t0)]

To simplify this representation, we may aggregate these terms to express the
CME in matrix form, ∂P∂t = AP . Finding a solution to the CME has proven
extremely difficult due to its high dimensionality: the number of degrees of
freedom grows exponentially with the number of reacting species. Simulation
methods are popular to this end, but do not necessarily resolve this issue.
Monte Carlo methods demand large numbers of trials in order to approximate
the posterior distribution, a barrier which can be prohibitive even in the light of
approximation techniques such as time leaping or system partitioning. Here,
we investigate Proper Generalized Decomposition, a method which approxi-
mates the probability of the system occupying a particular state as a finite sum
of a product of separable functions, the form of which are a priori unknown [1,
6, 8].
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4.2 Proper Generalized Decomposition

In PGD, the solution is assumed to be separable in terms of each species zi and
time. This is no small assumption but is, at worst, equivalent or superior to the
dismissal of nonlinearities in the PLDE framework. The form of the solution
is as follows:

P (z, t) =
nF∑
j=1

αjF j1 (z1)⊗ F j2 (z2)⊗ . . .⊗ F jN (zN )⊗ Ft(t)

Given an initial guess for P , by plugging it back into the Chemical Master
Equation one can find its residual, that is, how well or poorly it satisfies the
equation. If it does not satisfy, one then searches for a new set of functions
to be added to P which reduce the residual. In order to conserve properties
of a probability distribution, these newfound functions are then projected to a
normalized space by an appropriate α.
In general, this enrichment/projection algorithm is computationally inexpen-
sive and flexible. Unknown parameters can easily be incorporated into PGD
at the cost of an additional dimension, which, in the field of gene regulatory
networks, is a considerable advantage. Note that the number of degrees of
freedom in this new representation is of the order of nN ×N ×nF rather than
(nN )N . This is done by restricting the domain of the problem by assuming
that the probability of occupying a state becomes negligible outside of some
interval on the one dimentional grid, giving nN degrees of freedom. We
have thereby already substantially reduced the problem size. In addition, the
presence of a function Ft(t) allows us to solve for all time at each iteration.
Overcoming the computational barrier to a stochastic framework gives this
modeling strategy a considerable advantage to its deterministic counterparts.
However, even with the powerful PGD tool to guide its solution, the Chemical
Master Equation depends on knowing the kinetics of a system and, therefore,
may be confined to well-studied systems.

5 Conclusion

The question of gene regulatory networks remains open in the field of compu-
tational biology. Although there exists a variety of approaches, no one method
fully satisfies in the depth of its description while remaining in the confines
of available data and computational cost. The frameworks described here are
representative of how each brings its own strengths and weaknesses, and even
how some of these weaknesses might be overcome. New methods may be
created by formally combining or linking existing ones, or possibly from the
construction of novel paradigms. This search is of primary interest and will
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be the topic of papers to come. Currently, connections between the Chemical
Master Equation and a new formalism known as Process Hitting may be of
interest [12].
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Abstract

In this paper, the Process Hitting (PH), a recently introduced framework to
model concurrent processes, is introduced. It is notably suitable to model Bi-
ological Regulatory Networks (BRNs) with partial knowledge of cooperations
by defining the most permissive dynamics. On the other hand, the qualitative
modeling of BRNs has been widely addressed using René Thomas’ formalism,
which is also depicted. A translation from PH to Thomas’ representation of
BRNs is finally presented. It relies on an analysis of all regulations to infer the
Interaction Graph, then the possible parametrizations.

1 Introduction

As regulatory phenomena play a crucial role in biological systems, they need
to be studied accurately. Biological Regulatory Networks (BRNs) consist in
sets of either positive or negative mutual effects between the components.
Besides continuous models of physicists, often designed through systems of
ordinary differential equations, a discrete modeling approach was initiated by
René Thomas in 1973 [16] allowing the representation of the different levels
of a component, such as concentration or expression levels, as integer values.
Nevertheless, these dynamics can be precisely established only with regard
to some kind of “focal points”, related to as Thomas’ parameters, indicating
the evolutionary tendency of each component. This modeling has motivated
numerous works (see [12, 9, 15, 1]), and other approaches related to our work,
which rely on temporal logic [7] and constraint programming [4, 5], aim at
determining models consistent with partial data on the regulatory structure and
dynamics. While the formal checking of dynamical properties is often limited
to small networks because of the state graph explosion, the main drawback of
this framework is the difficulty to specify Thomas’ parameters, especially for
large networks.

In order to address the formal checking of dynamical properties within
very large BRNs, we recently introduced in [10] a new formalism, named the
“Process Hitting” (PH), to model concurrent systems having components with
a few qualitative levels. A PH describes, in an atomic manner, the possible
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evolutions of a “process” (representing one component at one level) triggered
by the hit of at most one other “process” in the system. This particular structure
makes the formal analysis of BRNs with hundreds of components tractable
[11]. PH is suitable, according to the precision of this information, to model
BRNs with different levels of abstraction by capturing the most general dy-
namics.

In [6] we showed that starting from one PH model, it is possible to find
the underlying interactions, then the underlying Thomas’ parameters. This
method relies on an exhaustive search of the interactions between components
of the PH model, and an enumeration of the (possibly large) nesting set of
valid parameters, so that the resulting dynamics are ensured to respect the PH
dynamics, i.e. no spurious transitions are made possible. The first benefit of
this approach is that it makes possible the construction refining of BRNs with a
partial and progressively brought knowledge in PH, while being able to export
such models in the Thomas’ framework. Our second contribution is to enhance
the knowledge of the formal links between both modelings. The method can
be applied to large BRNs (up to 40 components).

2 Frameworks
2.1 The Process Hitting framework

A Process Hitting (PH) (Def. 1) gathers a finite number of concurrent processes
grouped into a finite set of sorts. A sort stands for a component of the system
while a process, which belongs to a unique sort, stands for one of its expression
levels. A process is noted ai where a is the sort and i is the process identifier
within the sort a. At any time, exactly one process of each sort is present; a
state of the PH corresponds to such a set of processes.

The concurrent interactions between processes are defined by a set of ac-
tions. Actions describe the replacement of a process by another of the same
sort conditioned by the presence of at most one other process in the current
state. An action is denoted by ai → bj � bk, which is read as “ai hits bj to
make it bounce to bk”, where ai, bj , bk are processes of sorts a and b, called
respectively hitter, target and bounce of the action.

Definition 1 (Process Hitting) A Process Hitting is a triple (Σ, L,H), where:

• Σ = {a, b, . . . } is the finite set of sorts;

• L =
∏
a∈Σ La is the set of states with La = {a0, . . . , ala} the finite

set of processes of sort a ∈ Σ and la a positive integer, with a 6= b ⇒
La ∩ Lb = ∅;
• H = {ai → bj � bk ∈ La×Lb×Lb | (a, b) ∈ Σ2 ∧ bj 6= bk ∧ a = b⇒
ai = bj} is the finite set of actions.
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Given a state s ∈ L, the process of sort a ∈ Σ present in s is denoted by s[a].
An action h = ai → bj � bk ∈ H is playable in s ∈ L if and only if s[a] = ai
and s[b] = bj . In such a case, (s ·h) stands for the state resulting from the play
of the action h in s, with (s · h)[b] = bk and ∀c ∈ Σ, c 6= b, (s · h)[c] = s[c].

Modeling cooperation. As described in [10], the cooperation between pro-
cesses to make another process bounce can be expressed in PH by building a
cooperative sort. Fig. 1 shows an example of a cooperative sort bc between
sorts b and c, defined with 4 processes (one for each sub-state of the presence
of processes b1 and c1). For the sake of clarity, processes of bc are indexed
using the sub-state they represent. Hence, bc01 represents the sub-state 〈b0, c1〉,
and so on. Each process of sort b and c hit bc, which makes it bounce to the
process reflecting the status of the sorts b and c (e.g., b1 → bc00 � bc10 and
b1 → bc01 � bc11). Then, to represent the cooperation between processes b1
and c1, the process bc11 hits a1 to make it bounce to a2 instead of independent
hits from b1 and c1. The same cooperative sort is used to make b0 and c0

cooperate to hit a1 and make it bounce to a0.

Example 1 Fig. 1 represents a PH (Σ, L,H) with Σ = {a, b, c, bc}, and:

La = {a0, a1, a2}, Lb = {b0, b1},
Lbc = {bc00, bc01, bc10, bc11}, Lc = {c0, c1}.

This example models a BRN where the component a has three qualitative
levels, components b and c are Boolean and bc is a cooperative sort. In this
BRN, a inhibits b at level 2 while b and c activate a with independent actions
(e.g. b0 → a2 � a1) or through the cooperative sort bc (e.g. bc11 → a1 � a2).
Indeed, the reachability of a2 and a0 is conditioned by a cooperation of b and
c, as explained above.

A Process Hitting model can be obtained from the literature or from a BRN
as described in [10]. In both methods, the identification of interactions allows
to define the set of actions leading to the desired dynamics, but an under- or
over-approximation can also be built if the interactions are not precisely known
(by adding or removing all actions allowing a given behavior). This can be
used especially in cases where a cooperative sort cannot be built because of a
lack of information.

2.2 Thomas’ modeling

Thomas’ formalism, here inspired by [13, 3], lies on two complementary de-
scriptions of the system. First, the Interaction Graph (IG) models the structure

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 43



b

0 1

c

0 1

a

0

1

2

bc
00 01 10 11

Figure 1: A PH example with four sorts: three components (a, b and c) and a
cooperative sort (bc). Actions targeting processes of a are in thick lines.

of the system by defining the components’ mutual influences. Its nodes rep-
resent components, while its edges labeled with a threshold stand for either
positive or negative interactions (Def. 2); la denotes the maximum level of a
component a.

Definition 2 (Interaction Graph) An Interaction Graph (IG) (Γ, E+, E−) is a
triple where:

• Γ is a finite number of components,

• E+ (resp. E−) ⊂ {a t−→ b | a, b ∈ Γ ∧ t ∈ [1; la]} is the set of positive
(resp. negative) regulations between two nodes, labeled with a threshold.

A regulation from a to b is unique, i.e. if a t−→ b ∈ E+ (resp. E−), then there

is no regulation a t′−→ b in E− (resp. E+), and no other regulation a t′′−→ b in
E+ (resp. E−) with t′′ 6= t.

For an interaction of the IG to take place, the expression level of its head com-
ponent has to be higher than its threshold; otherwise, the opposite influence is
expressed. For any component a ∈ Γ, Γ−1(a) is the set of its regulators:

Γ−1(a) = {b ∈ Γ | ∃b t−→ a ∈ E+ ∪ E−} .
A state s of an IG (Γ, E+, E−) is an element in

∏
a∈Γ[0; la] and s[a] refers to

the level of component a in s.
The specificity of Thomas’ approach lies in the use of discrete parameters

to represent focal level intervals (Def. 3). The use of intervals instead of single
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values for parameters allows a wider range of expressiveness, by allowing
behaviors impossible to define with single values.

Definition 3 (Discrete parameter Kx,A,B and Parametrization K) Let x ∈
Γ be a given component and A (resp. B)⊂ Γ−1(x) a set of its activators (resp.
inhibitors), such thatA∪B = Γ−1(x) andA∩B = ∅. The discrete parameter
Kx,A,B = [i; j] is a non-empty interval so that 0 ≤ i ≤ j ≤ lx. With regard
to the dynamics, x will tend towards Kx,A,B in the states where its activators
(resp. inhibitors) are the regulators in setA (resp.B), except in the case where
x ∈ Kx,A,B for which it does not evolve.
The complete map K = (Kx,A,B)x,A,B of discrete parameters for an IG is
called a parametrization of this IG.

At last, dynamics are defined in BRN in a unitary and asynchronous way:
from a given state s, a transition to another state s′ is possible provided that
only one component a will evolve of exactly one level towards Ka,A,B , where
A (resp. B) is the set of activators (resp. inhibitors) of a in s, provided that
a 6∈ Ka,A,B in s.

Example 2 Fig. 2(left) represents the Interaction Graph (Γ, E+, E−) with
Γ = {a, b, c}, and:

E+ = {b 1−→ a, c
1−→ a} E− = {a 2−→ b} .

In particular, Γ−1(a) = {b, c}. Fig. 2(right) gives a possible parametrization
of this IG. In this BRN, the following transitions are possible:

〈a0, b1, c1〉 → 〈a1, b1, c1〉 → 〈a2, b1, c1〉 → 〈a2, b0, c1〉 → 〈a1, b0, c1〉,
where ai is the component a at level i.

3 BRN Inference

This section focuses on the inference of a complete BRN with Thomas’ pa-
rameters from a given PH.

In order to infer a BRN, one has to find the Interaction Graph (IG) first,
as some constraints on the parametrization rely on it. Inferring the IG is an
abstraction step which consists, from atomistic actions of a PH, in determining
the global influence of every component on each of its successors.

Then, given the IG inferred from a PH, one can find the discrete parameters
that model the behavior of the studied PH. As some parameters may remain
undetermined, another step allows to enumerate all parametrizations compati-
ble with the inferred parameters.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 45



ab c

1+

1+

2− Ka,{b,c},∅ = [2; 2] Kb,{a},∅ = [0; 1]

Ka,{b},{c} = [1; 1] Kb,∅,{a} = [0; 0]

Ka,{c},{b} = [1; 1]

Ka,∅,{b,c} = [0; 0] Kc,∅,∅ = [0; 1]

Figure 2: (left) IG example. Regulations are represented by the edges labeled
with their sign and threshold. For instance, the edge from b to a is labeled
“1+”, which stands for: b 1−→ a ∈ E+. (right) One admissible parametrization
of the left IG.

3.1 Interaction Graph inference

This step assumes that the studied PH defines two types of sorts: the sorts
corresponding to BRN components, which will appear in the IG, and the co-
operative sorts, as defined in Subsect. 2.1. The identification of these two sets
of sorts relies on the observation of their possible behavior, which in both cases
observe some rules, and can be automated. For instance, given the definition
of cooperative sorts, if the actions hitting a sort lead to a unique fixed point
for any configuration of its predecessors, then we can deduce that this sort is
a cooperative sort. Conversely, because of the BRN dynamics explained in
Subsect. 2.2, if all actions hitting a sort make its processes bounce at most one
level away (e.g. if a1 can bounce to a0 or a2 but not to a3), then this sort is
likely to correspond to a BRN component.

Inferring global influences of a predecessor b on a component a requires to
find “local influences” from this predecessor first, by considering a given state
of the PH and changing only the active process of b. The aim is to compare the
set of processes towards which the component a will evolve, for each active
process of b, leaving the active process of all the other sorts unchanged. Indeed,
if after increasing the level of b, i.e. activating a higher process of b, we notice
that a tends to reach a higher (resp. lower) level, we can then deduce that b
activates (resp. inhibits) a in this selected state. Of course, only predecessors
of a have to be considered.

This has to be observed on every possible state in order to infer a local
influence. Indeed, if all local influences of b on a are the same (activations or
inhibitions) we can deduce that the global influence of b on a is also the same,
and the related threshold is the lowest level of b for which we can observe such
an influence. An unsigned edge with no threshold is inferred if two different
local influences are found, or in other particular cases (when a behavior cannot
be represented as a BRN).
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Example 3 Consider, in the PH of Fig. 1, the sub-state σ = 〈b0, c0, bc00〉 of
predecessors of a. In this sub-state, a can be hit by the following actions:

Hσa = {b0 → a2 � a1, c0 → a2 � a1, bc00 → a1 � a0} .
Thus, if a evolves, it will eventually reach process a0. But if a higher process
of b is activated, that is, b1 instead of b0, thus considering the sub-state σ′ =
〈b1, c0, bc10〉, then a can be hit by the two following actions:

Hσ′
a = {b1 → a0 � a1, c0 → a2 � a1} ,

and will eventually reach process a1.
Therefore, in this sub-state of predecessors of a, b locally activates a. Fur-

thermore, if this analysis is carried for all possible sub-states of predecessors
of a, only local activations are found, thus giving: b 1−→ a ∈ E+.

After applying this method to all pairs of influence, the IG given in Fig. 2
is inferred.

3.2 Parameters inference

This subsection presents some results related to the inference of independent
discrete parameters from a given PH, equivalent to those presented in [10].
We suppose in the following that the considered PH is well-formed for pa-
rameters inference, i.e. its inferred IG does not contain any unsigned edge,
and in each sort, all processes activating (resp. inhibiting) another component
share the same behavior. Let Ka,A,B be the parameter we want to infer for a
given component a ∈ Γ, and A ⊂ Γ−1(a) (resp. B ⊂ Γ−1(a)) a set of its
activators (resp. inhibitors). This inference, as for the IG inference, relies on
the search of processes of a towards which it will eventually evolve for the
given configuration A,B of its regulators.

For each sort b ∈ Γ−1(a), we define a context that contains all processes
of b activating (resp. inhibiting) a if b ∈ A (resp. B). From all contexts of
all predecessors of a, we create a global context CA,B that represents the
configuration A,B (including the cooperative sorts involved). The parameter
Ka,A,B specifies towards which values a eventually evolves as long as the
configuration A,B holds, which can now be computed by considering the
dynamics of a in the global context CA,B .

Example 4 Consider the PH of Fig. 1, from which the IG of Fig. 2 is inferred.
Inferring the parameter Ka,{b,c},∅ requires to understand the behavior of a
in the sub-state 〈b1, c1, bc11〉. In this sub-state, a tends to eventually reach
process a2; thus, we can deduce the parameter: Ka,{b,c},∅ = [2; 2]. Inferring
all parameters leads to the complete parametrization given in Fig. 2.
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3.3 Admissible parametrizations enumeration

The previous inference step may leave several parameters undetermined, due to
missing cooperations or behaviors impossible to represent in a BRN. If it is not
possible to change the PH model in order to remove these inconclusive cases,
one can perform a last step to enumerate all valid values for each parameter that
could not be inferred given the above results. We consider that a parameter
is valid if any transition it involves in the resulting BRN is allowed by the
studied PH by actions that represent this behavior. We also add some biological
constraints on the whole parametrizations, given in [3]. These constraints lead
to a family of admissible parametrizations which we can enumerate and are
ensured to observe a coherent behavior that is included in the original PH.

Answer Set Programming (ASP) [2] turns out to be effective for the enu-
merative searches developed in this paper, as it efficiently tackles the inherent
complexity of the models we use, thus allowing an efficient execution of the
formal tools developed. Furthermore, ASP finds a particularly interesting
application in the research of admissible parametrizations regarding the prop-
erties presented above, as this enumeration can be naturally formulated by
using of aggregates and constraints.

3.4 Implementation

The inference method described in this paper has been implemented as a tool
named ph2thomas, as part of PINT1, a library gathering PH related tools.
Our implementation mainly consists of ASP programs that are solved using
Clingo2.

In the previous sections, the methods and results are illustrated on a toy
example considered as a very small network containing 3 components (a, b and
c). But our approach can also successfully handle large PH models of BRNs
found in the literature such as an ERBB receptor-regulated G1/S transition
model from [14] which contains 20 components, and a T-cells receptor model
from [8] which contains 40 components3. For each model, IG and parameters
inferences are performed together in less than a second on a standard desktop
computer.

4 Conclusion

This work establishes the abstraction relationship between PH, which is more
abstract and allows incomplete knowledge on cooperations, and Thomas’ ap-
proach for qualitative BRN modeling. This motivates the concretization of PH

1Available at http://process.hitting.free.fr
2Available at http://potassco.sourceforge.net
3Both models are available as examples distributed with PINT.
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models into a set of compatible Thomas’ models in order to benefit from the
complementary advantages of these two formal frameworks and extract some
global information about the influences between components.

As an extension of the present work, we plan to explore new semantics of
BRNs to be able to tackle influences currently represented by unsigned edges.
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Abstract

In this paper we describe a computer-aided methodology for reverse engi-
neering of parametric models of Genetic Regulatory Networks (GRN). In the
discrete framework introduced by R.Thomas, when observations over time are
translated into temporal logic properties, then classical model-checking tech-
niques can state whether a model with instantiated parameters satisfies or not
a given observation. In order to avoid the high level of combinatorial choices
of parameters even for networks of small size, we customise model-checking
techniques by manipulating classes of models by constraints over parameters:
instances fulfilling the desired temporal property are defined by parameter
values satisfying the resulting constraint. We provide insights concerning our
prototype and we illustrate our approach with a 6-gene network governing the
inducibility of cytotoxicity in Pseudomonas Aeruginosa.

1 Context

1.1 Thomas’ discrete modelling of regulatory networks

Biological considerations. Gene expression is a biological process by means
of which proteins are synthesised as the end result of a process that consists of
two basic steps: transcription (through which an mRNA molecule is produced
by a gene) and translation (through which the resulting protein is obtained
from the transcribed mRNA). The dynamics of gene expression depends on
the presence of other proteins, referred to as transcription factors (TF); if the
concentration of a TF is sufficient, it may activate or inhibit the transcription
of a gene into mRNA, hence it regulates the synthesis of the end proteins.

The expression of one gene may be regulated by several TFs, including
the protein issued by the gene itself (i.e. self-regulation). The entire collection
of regulatory inter-dependencies for a given set of genes is called a Genetic
Regulatory Network (GRN).

Interaction graph. An interaction graph is a formal and abstract represen-
tation of these interactions, it is a directed graph whose vertices represent the
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elements (i.e. the genes) of the GRN and whose arcs represent the interactions
between them. Each edge α→ β is labelled with a sign (”+” or ”−”) to indicate
if α can activate (+) or inhibit (−) the expression of β. In Thomas’ models
[11, 10], continuous concentrations are discretised into a finite set of so-called
levels of expression. We denote by xα the level of expression of the gene α.
Thus, each edge α → β also carries a positive integer, called threshold, which
corresponds to the minimal level of expression α needs in order to influence
the expression of β. If a value labels an outgoing edge from α, then all lower
(non null) values must be used on edges outgoing from α.
An example of interaction graph is given in Figure 1, with two genes: α and
β. α activates β with a threshold of 1 and itself with a threshold of 2, and β

inhibits α with a threshold of 1.

α β

[2,+]

[1,+]

[1,−]

Figure 1: Example of interaction graph

Dynamics. We call dynamics (or models) of a GRN the evolution over time
of the levels of expression of genes. For a gene α, the evolution of its level of
expression (increase, decrease or stagnation) depends on the genes regulating
it and is given by a set of parameters which indicates the value to which xα

tends. These parameters are of the form Kα(ω) where ω denotes the subset
of regulating genes β with a level of expression above the threshold of the
corresponding action β → α. We consider an asynchronous model of dynamics,
where the levels of expression change at most of one unit and one after one.
From a state (i.e. a possibility of levels of expression of genes), there may
be several possible next states; we do not know the speed of reactions (such
as synthesis or binding of regulatory proteins), the model contains thus all the
possibilities of evolution. Figure 2 gives an example of representation of one
dynamic for the interaction graph in Figure 1 (with Kα({}) = 2, Kα({α}) = 2,
Kα({β}) = 0, Kα({α, β}) = 1, Kβ({}) = 0 and Kβ({α}) = 1), in the form of a
state transition graph. Each vertex represents a state and the arcs represent
the transitions between a state and its successors. For example, the successors
of the state (xα, xβ) = (1, 0) are the states (2, 0) and (1, 1) because xα tends to
Kα({}) = 2 (since neither xα nor xβ are above their respective thresholds of
regulation of α) and xβ tends to Kβ({α}) = 1 (since xα is above the threshold of
α→ β).

Exhaustive analysis of possible dynamics. Different values of the pa-
rameters lead to different dynamics. The actual values of such parameters
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xα

xβ

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

Figure 2: A state transition graph of the interaction graph in Figure 1

depend on a set of biological properties (for instance the affinity between
proteins which can cause formation of protein complexes) and they are mostly
unknown. Thus, in order to study the entire set of possible dynamics of a
GRN, one has to consider each possible combination of values, i.e. more
or less

∏
α∈G(|G+(α)| + 1)2

|G−(α)| , with G+(α) the set of genes regulated by
α and G−(α) the set of genes regulating α. This explains the high level of
combinatorial explosion of the problem of parameter identification of a GRN.

1.2 Computer-aided search of parameters

Biological knowledge and hypothesis. Let us stress that not all of the
dynamics included within a GRN are consistent with observed (in vivo or in
vitro) biological behaviours or with biological hypotheses. For instance, exper-
imenters can detect homoeostasis and non-accessibility or ordered sequence
of combinations of expression levels. This knowledge can be used directly to
determine the value of some parameters or can be translated in the form of
constraints that parameters should comply with.

Use of model-checking techniques. Computationally hard problems, such
as that of exhaustively searching the parameter space of a GRN model, may be
dealt thanks to computer science.

In Bernot et al.[1], a given model of the GRN is considered and model-
checking techniques are applied to verify whether it fulfils some relevant bio-
logical properties. In order to exhaustively search the parameters’ space, the
model-checking procedure is re-iterated over all possible models defined by
all possible parameters’ values. As a consequence such a schema may be
applied only to small GRNs with few unknown parameters. This approach
is implemented in the SMBioNet tool [9], which supports the encoding of
standard properties (such as functional cycles or parameter sets with shared
transition graph) into formulae of Computation Tree Logic (CTL).

Klarner et al.[5] define an approach which considers different models of
a GRN by using an encoding technique enabling the sharing of computations
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between different models. Sets of models are encoded by a binary vector,
one bit (or colour) per model, and (coloured) model-checking algorithms are
extended with Boolean operations on vectors to identify models fitting time
series measurements. These, in turns, are expressed through the temporal
operator Finally (F) of Linear Temporal Logic (LTL).

Similarly, our approach [8] considers several instances of a GRN at the
same time. But unlike [5], instances are not manipulated using an explicit enu-
meration, but are implicitly referenced as the solutions of constraints defined
on the parameters. For that, a parametric GRN modelling is considered (i.e. a
modelling that represents a number of possible regulatory dependencies, hence
a set of GRN models) alongside a target behaviour (a property that the model
should meet). Such an approach may be referred to as reverse engineering of
a parametric GRN. In Corblin et al. [3], the tool GNBox is based on constraint
logic programming and target behaviours are expressed as some kinds of finite
paths that models have to satisfy; a more recent tool of Corblin et al., SysBiOX
[2], uses also spatio-temporal data in order to make a selection within possible
interaction graphs. Our approach also uses a parametric GRN modelling:
biological parameters are processed as symbols within constraints and we use
temporal formulae expressed in LTL over the set of expression levels of genes.
These formulae are built from a set of atomic propositions using the usual
logical operators in {>, ⊥, ¬, ∧, ∨} and the temporal operators X (for neXt
time), G (Globally), F, U (Until) and R (Release). For instance, the existence
of a steady state (i.e. a state which is itself its own successor) in the dynamics
of the interaction graph in Figure 1 in (xα, xβ) = (2, 1) is encoded with the
following formula: G

(
(xα = 2 ∧ xβ = 1)→ X(xα = 2 ∧ xβ = 1)

)
.

Using parameterised formulae to denote a set of models allows us a priori to
be less subject to the problem of size of GRNs.

2 Symbolic LTL model-checking

PTS models. The methodology for reverse engineering of Thomas’ net-
works is based on a specific type of modelling formalism, namely that of
Parametric Transitions Systems (PTSs) [7]. A PTS is essentially a symbolic
form of state-transition graph: i.e. a transition system (TS), whose dynamics
(i.e. transitions) are represented by means of some parameters.
Starting from the interaction graph of a GRN, a PTS is built so that it cap-
tures all the static and dynamic constraints of gene expression concisely. The
dynamics constraints (encoded as logical formulae over biological parameters
and expression levels labelling the transitions of a PTS) are the conditions
representing the evolution of gene expression. The static constraints, on the
other hand, are the conditions that are always fulfilled (encoded as logical
formulae labelling the states of a PTS).
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PTS instantiation through LTL model-checking. Given a PTS represent-
ing a certain (parametric) GRN modelling, the problem we face is to find out
instances of the PTS (i.e. actual TSs obtained by assigning values to the GRN
parameters) that fulfils a target LTL formula. This can be achieved through an
adaptation of the LTL model checking problem to the PTS-based parameter
search problem, thus resulting in the so-called symbolic LTL model-checking
schema (Figure 3). Intuitively such a schema works as follows: given a PTS
model (M) and a target LTL formula (φ) , whose negation (¬φ) is encoded
by a Büchi Automaton (BA, i.e. A¬φ), the cross-product model (M×A¬φ),
named Accepting PTS (APTS), is built. The adaptation of LTL model checking
to PTS-based parameter search, hence, boils down to find models that allow for
paths in the APTS containing at least an accepting state occurring infinitely
often in it, in accordance with the properties of the BA (A¬φ). Searching of
paths (i.e. symbolic executions) that reach an accepting location of the APTS
requires looking for solutions of the (symbolic) constraints labelling the edges
of the PTS. To this aim, in every state of the ATPS (starting from the initial
one), a constraint solving step is applied (specifically in our prototype tool
we employ the CHOCO constraint solver [6]) to find out which transitions
are enabled, and hence continuing in the construction of symbolic executions
that lead to an accepting path. Each accepting path gives us a constraint
on parameters (the set of formulae that has been verified to reach a node).
With this constraints, we can determine the dynamical behaviours of the GRN
compatible with the biological knowledge. Figure 3 summarises the different
steps of such procedure.

Implementation. The PTS-based method has been implemented in a proto-
type software tool (in Java) called SPUTNIK1. In order to assess the SPUTNIK

tool we considered a classical case-study of epigenetic switch in bacteriophage
lambda (4 genes, 10 interactions) which has also been analysed in [5], through
the coloured LTL model-checking approach. The number of solutions obtained
with SPUTNIK (i.e. 480 solutions out of roughly 7 billion total possibilities)
with a runtime of a few minutes, is comparable (same order of magnitude) to
those illustrated in [5] (the difference in the number of solutions is probably
due to the difference in the initial constraints).

3 Example

We develop an example taken from [4], concerning the inducibility of cyto-
toxicity in Pseudomonas Aeruginosa. The goal of this study is to test the
possibility of an epigenetic switch of the Type III Secretion System (T3SS)
of the bacterium, by computer modelling and experimentation (in [4] this has

1Symbolic Parameters of Thomas’ Networks Inference
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Symbolic model checking

GRN

Interaction graph

PTS

Biological knowledge and hypothesis

LTL

BA⊗

APTS

Constraint on parameters

Highlighting of specificities

Conclusion

description of interactions

parametric modelling

formalisation

transcription

parametric product

symbolic execution

processing

biological interpretation

selection, adjustment

Figure 3: Resolution steps

been done with the SMBioNet [1] software tool). We begin by considering a
minimal interaction graph of the system [4] consisting of only three elements
and comparing the results computed with SPUTNIK with those obtained with
SMBioNet [4]. Then we study a more comprehensive version of this GRN
(from which the minimal graph is derived).

Such a GRN is involved in the secretion of toxins by the Pseudomonas
Aeruginosa bacterium, via the T3SS. When the T3SS is activated, it causes
the injection of toxic effectors directly in the target cell and thus the death or
dysfunction of the cell. The role of T3SS is harmful to vulnerable people,
especially those with cystic fibrosis. In vivo, this activation occurs in contact
with the cell; in vitro, one of the factors might be the calcium depletion of the
growth medium. In some cases, it seems that the T3SS is not activated despite
the signals in vivo or in vitro and although no gene mutation of the system has
been identified; this state is called non inducible. An epigenetic switch from
inducible to non inducible is suspected to explain this phenomenon.

3.1 Minimal system
The minimal interaction graph (considered as being under calcium depletion)
is presented in Figure 4. In fact we consider two variants of such minimal
interaction graph: the one in Figure 4 and the other one obtained by inversion
of the thresholds, with thresholds of 2 for ExsA→ ExsD and of 1 for ExsA→
ExsA.
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ExsA ExsDToxins-T3SS

[2,+]

[2,+]
[1,+]

[1,−]

Figure 4: Interaction graph of minimal GRN

For such (minimal) interaction graph we obtain 324 different instantiations of
parameters (648 in total, considering the two versions of interaction graph),
i.e. 324 models complying with the dynamics of the GRN are possible (the
complex Toxins-T3SS is not taken into account since it is not a regulator).

We have two biological properties about the system. In the case of an in-
ducible strain, cytotoxicity of the bacterium (where expression level of Toxins-
T3SS is maximum) is activated recurrently. In the case of a non inducible
strain, expression level of ExsA is assumed too low to increase the expression
level of T3SS: a non inducible strain remains non inducible. Such knowledge
can be encoded in the following LTL formula:

φ1 : G(xExsA=2 → XF(xExsA=2)) ∧ G(xExsA=0 → ¬F(xExsA=2))

To represent inducible state, we use a formula over ExsA (xExsA = 2) rather
than over Toxins-T3SS (xToxins−T3SS = 1) but it is equivalent since we have
necessarily KToxins−T3SS({}) = 0∧KToxins−T3SS({ExsA}) = 1: thus xExsA = 2
causes activation of T3SS and secretion of toxins.

After computation, we obtain two models, one for each variant of the
interaction graph in Figure 4, like in [4]. The state transition graphs obtained
are represented in Figure 5.

xExsA

xExsD

solution 1

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

xExsA

xExsD

solution 2

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

Figure 5: Models in the form of state transition graph

The two models are in accordance with the epigenetic hypothesis. Increase
(resp. decrease) of ExsA modifies the phenotype of the bacterium, from a stable
non-cytotoxic (resp. cytotoxic) state to a stable cytotoxic (resp. non-cytotoxic)
state. The concentration in ExsD is not involved in this phenomenon.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 57



Filopon et al. have proceeded to experimentations to test this behaviour in vivo
and in vitro and confirmed the possibility of an epigenetic switch of the T3SS
of Pseudomonas Aeruginosa.

3.2 Study of an extended GRN

The GRN presented above is a simplified model of a more complex network.
From indications given in [4] and some discussions with one of its authors, we
now study the interaction graph represented in Figure 6.

ExsA

ExsCExsE

ExsD

CD

Toxins

T3SS

[2,+]

[3,+]

[1,+
]

[2
,+

]

[1,+]
[2,+]

[1,−]

[1,−] [1,−]

[1,−]

[1,−]

Figure 6: Interaction graph of extended GRN

In Figure 6, the genes constituting the T3SS are regulated by the ExsA TF.
ExsA is also the regulator of three other genes (ExsC, ExsD and ExsE) and
controls the genes coding the toxins. CD indicates if the growth medium is on
Calcium Depletion or not. 4 million different models are possible.

To the biological knowledge that we have in the small GRN (see φ1),
we add two other informations to represent the role of calcium depletion in
activation of the T3SS. We obtain the following formula:

φ2 : G(xExsA≥2 → XF(xExsA≥2)) ∧ G(xExsA=0 → ¬F(xExsA≥2))
∧ G((xExsA≥2 ∧ CD=1) → XF(xExsA=3))
∧ G((xExsA≥2 ∧ CD=0) → XF(xExsA=2))

We have also informations on parameters. The action of calcium and
T3SS is joined, hence the following equalities: KExsE({}) = KExsE({CD}) =

KExsE({t3ss}) andKExsE({ExsA}) = KExsE({ExsA, t3ss}) = KExsE({CD,ExsA}).
If ExsD inhibits ExsA, then there is no toxins production, so its expression
level is strictly below the production threshold of toxins, consequently we
have: KExsA({ExsA,ExsD}) ≤ 2. Inhibition of ExsC on ExsD is stronger than
activation of ExsA: ExsC makes a complex with ExsD as soon there are ExsC

58 ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY



and ExsD: thus KExsD({ExsA,ExsC}) = 0. Similarly, inhibition of ExsE on
ExsC is stronger than activation of ExsA: KExsC({ExsA,ExsE}) = 0.

Taking into account all these biological hypotheses, we obtain two models
with SPUTNIK. Thus, this extended GRN is consistent with results of [4]:
both with the selected properties on the small GRN and with the experiments
on epigenetic switch of T3SS.

The interaction graph represented in Figure 6 is not the only possibility
to represent the GRN. We test also another interaction graph that combines
Toxins and T3SS in one element Toxins-T3SS (in the same manner than the
small example). Several thresholds are possible for the following interactions:
ExsA → ExsE, ExsA → ExsD, ExsA → ExsA and ExsA → Toxins−T3SS. By
hypothesis, ExsA→ ExsE and ExsA→ ExsC have the same threshold and we
assume that the threshold of ExsA→ Toxins−T3SS is either the greatest level or
the greatest level plus one (it changes the upper limit of KExsA(ExsA,ExsD)).
With our hypotheses, it remains 26 different possibilities of interaction graphs.
Figure 7 represents one of this possibilities (with respective thresholds: 2, 3, 1
and 3).

ExsA

ExsCExsE

ExsD

CD

Toxins-T3SS

[1,+]

[3,+]

[2,
+
]

[3,+]
[2,+]

[1,−]

[1
,−

]

[1,−]

[1,−]

[1,−]

Figure 7: Another possibility of interaction graph of extended GRN

We tested all these possibilities, only 3 of them satisfy the expected properties.
The combinations of values of unknown thresholds defining these 3 possibili-
ties are given in Table 1.

Interactions Threshold values
ExsA→ ExsE 1 2 2
ExsA→ ExsD 1 3 3
ExsA→ ExsA 1 1 1

ExsA→ Toxins−T3SS 1 3 4

Table 1: Thresholds admitting solutions
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Systems proposed in this section allow to obtain solutions corroborating the
hypothesis of an epigenetic switch of T3SS. Properties highlighted in the min-
imal graph have been found in some larger interaction graphs. However, all
26 investigated configurations do not guarantee the existence of models sat-
isfying the targeted properties: only some values of thresholds are possible.
To identify the actual interaction graph, we need an additional feedback from
biologists, either to confirm some choices of thresholds or to provide more in-
formations on the expected behaviours of the GRN. However we have demon-
strated that SPUTNIK provides flexibility to explore different possibilities.

4 Ongoing works

Beyond the first promising results, we want to look for optimisations to effi-
ciently process larger GRNs. Some tracks are to investigate the use of other
constraint solvers, of further simplifications of formulae during processing or
of parallelisation mechanisms as Klarner et al. [5].
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Abstract

Recent advances in genomics have led to new methods for identification of
diseases from their “signature” at transcriptional level. The goal of this article
is to design a computational method to classify clinical samples based on
transcriptomics data analysis. The possible applications range from improved
diagnosis and identification of disease-associated pathways, to prediction of
response to new medicines [1] and prediction of development of a disease. The
method designed was applied to identify normal vs psoriatic skin based only
on the transcriptome of a skin biopsy from the GEO Dataset GSE13355 [2].
Using machine learning algorithms there were identified 14 probe sets out of
54,000 that might have an influence in psoriasis prediction.

Our results can be applied to improve diagnosis of psoriasis using gene
marker analysis and to identify disease-associated pathways.

1 Introduction

Psoriasis is the most prevalent autoimmune disease in the U.S; according to
current studies, as many as 7.5 million Americans —approximately 2.2 per-
cent of the population —have psoriasis. This is a chronic inflammatory and
hyperproliferative skin disease, which, in addition to cutaneous manifestation,
is accompanied with inflammatory arthritis in up to 40% cases.

The economic burden of psoriasis is estimated to be approximately US$
11.2 billion in the US, and CHF 314-458 million in Switzerland [3].

The disease is diagnosed following physical examination of the skin le-
sions. Microscopic analysis of psoriatic skin biopsy shows thick, red, flaky
cells with no sign of inflammation ; blood tests can be used to differentiate
psoriatic from rheumatoid arthritis.

Psoriasis is typically treated with topical application of both steroids and
non-steroids and phototherapy: UVB and UVA with light-sensitizing medica-
tion. New drugs that target the autoimmune response and specific parts of the
immune system (TNF, interleukin) are becoming available.
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The data used in this study were obtained from [5] as part of Diagnostic
Signature Challenge. The challenge was to verify that a robust diagnostic
signature for Psoriasis can be extracted from gene expression data. Participants
were asked to develop and then submit a classifier that could stratify skin
samples into one of two phenotypic groups —Psoriasis or Control [5].

2 Materials and Methods
The sample dataset —GSE13355 —was obtained from “Gene expression data
of skin from psoriatic patients and normal controls” [2].

Total RNA was extracted from punch biopsies taken from 58 psoriatic
patients and 64 normal healthy controls. Punch biopsy is the primary technique
to obtain diagnostic skin specimens. It is performed using a circular blade
attached to a pencil-like handle rotated down through the epidermis and dermis
into the subcutaneous fat [4].

Two biopsies were taken from each patient; one 6mm punch biopsy was
obtained from lesional skin of each patient (involved sample) and the other
from non-lesional skin (uninvolved sample), taken at least 10 cm away from
any active plaque.

One biopsy was obtained from each healthy control. Totally 180 samples
were run on Affymetrix HU133 Plus 2.0 microarrays containing >54,000 gene
probes [2].
Affymetrix Human Genome U133A 2.0 Array annotation data (chip hgu133a2)
is assembled using data from public repositories [15].

In the training data, control includes both healthy individuals and unin-
volved skin of psoriasis patients. [2] All samples were acquired from living
patients. Skin samples from control patients were mostly acquired from reduc-
tion surgeries due to obesity [5]. In total, 180 samples were run on Affymetrix
HU133 Plus 2.0 microarrays (chip hgu133a2) [15] containing >54,000 gene
probes [2].

The analysis reported here used the Affymetrix GeneChip Human Genome
U133 Plus 2.0 Array, which contains more than 54,000 probe sets [17]. A
probe set is a collection of probes designed to interrogate a given sequence.
Each gene transcript is represented on hgu133a2 by a probe set [18]. By design
it is possible that multiple probe sets are mapping to the same gene [18]. Gene
expression was measured in this study by extracting mRNA from the cells,
obtaining the corresponding cDNA samples, and hybridising the cDNA to the
probes on the microarray.

2.1 Statistical Analysis of microarray data
Both training and test data used in this article were obtained from [5] as part
of Diagnostic Signature Challenge. Test dataset was licensed from GeneLogic
(http://www.genelogic.com) [5].
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The training dataset contains 180 samples —122 healthy skin samples, 58
lesional psoriatic skin. Each sample had an associated .cel file available for
download from [2].
The test data consists of 62 samples that need to be classify as healthy/psoriatic.
Additional information included age, gender, treatment, and comorbidities
were available. The .CEL file is a binary file that store the results of the in-
tensity calculations on the pixel values like intensity value, standard deviation
of the intensity, the number of pixels used to calculate the intensity value [19].
The files were read using the Affymetrix [12] package of Bioconductor [11]
and the result was saved as a 54675x181 matrix, the first column being the
probeset id. A similar 54675x63 matrix was created for test data.

2.1.1 Data normalization
Data normalization was done in R [10] via Robust Multi-array Average (RMA)
[6] on all training and test samples. The data processing steps applied were
background correction, quantile normalization and summarization. The Affy-
metrix microarray data was first arranged in an expression matrix. Then the
raw intensity values were background corrected, log2 transformed and quantile
normalized [6].

2.1.2 Feature selection
Using the entire probe set for classification of samples could lead to incorrect
predictions: the models are difficult to train and the estimated parameters will
not return accurate results on test sets. One solution is to select a subset of
features that are most “relevant” for gene expression analysis.

Here we selected a set of differentially expressed genes using linear regres-
sion analysis (LIMMA package [13]) to summarize the transcriptional profile
of each sample and employed a machine learning algorithm for classification
of samples. The first step in selecting the features necessary for sample clas-
sification was to fit a linear model (lmFit function in LIMMA) for each probe
set. In its simplest form lmFit [13] uses as parameters an object containing the
log-values of expression for a series of microarrays and the design matrix [20]
of the microarray experiment. We created a design matrix in which each row
corresponds to one of the 180 arrays (samples) in the experiment and each
column corresponds to a class (psoriatic/control). Column values were defined
as either one or zero, samples of healthy skin from psoriatic patients were
considered healthy (0). The matrix defines a model of the relationship between
the 180 samples as explanatory variables and the classes (psoriatic/control)
as dependent variable. For example X(4, 2) =1 signifies that the 4th sample
belongs to a healthy person.

Using regression analysis implemented in LIMMA package, we produced
a table of the top ranking genes, sorted by default by their log-odds for dif-
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ferential expression [13]. The top ranking probe sets were selected for further
classification of the samples.

2.2 Sample Classification
We used as for sample classification Support Vector Machines [7], a super-
vised method introduced in the 1990s. SVMs are defined as hyperplanes that
separate the training data by a maximal margin. The training instances closest
to the hyperplane are called support vectors [7]. Compared to neural networks
support vector machine are faster, can be used with a larger number of genes
and are deterministic [8].

From the top ranking probeset list we found that 14 probe sets give the best
classification. Tests were performed using up to 500 probe sets but the results
were not satisfactory: most of the time all samples were classified either as
psoriatic or healthy. Sample classification was performed using the Support
Vector Machine(SVM) implementation in Matlab. We used svmclassify func-
tion to classifies each row of the data in the matrix corresponding to the test
dataset, using the information in a support vector machine classifier structure
SVMStruct, created with the svmtrain function on the training matrix.

3 Results and Discussion

The 14 differentially expressed probe sets retained for classification were con-
verted to gene id using Bioconductor’s annotation packages [15]. Some probe-
sets from the short list of 14 were mapped to the same gene id. The most
frequent genes in the list are: PI3 peptidase inhibitor 3, skin-derived, DEFB4A
defensin, beta 4A and KYNU kynureninase. DEFB4A is expressed in the skin
and respiratory tract and is induced by inflammation [21]. Since psoriasis is
an autoimmune disease, it appears that DEFB4A selection for training set was
appropriate.

The output of the svmtrain/svmclassify functions is an array of 62 el-
ements, each element corresponding to a sample. There were 11 samples
classified as psoriatic(value 1) the others were classified as healthy(value 0).
According to the classification of test data, published later by the organizators,
there were 35 control and 27 psoriasis samples [5]. Out of the 11 samples that
we classified as psoriatic there were no false positives; however there was an
important percentage of psoriatic samples left out (false negatives).

4 Conclusions

The performance of our psoriasis classification study illustrate the learning
methods dilemma of generalization vs. specialization. Classifier performance
depends on the optimal selection of features, on the size of the training set
and on its capacity to capture discriminatory features of the input space. We
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experimented here with a limited set of combinations of gene sets for sample
classification. Further investigations of training and test datasets could explain
the causes of misclassification. We intend to study optimal features selection
for classification as well as other statistical learning methods to increase the
robustness of classification for small training datasets.

Based on the gene list we have produced, we can perform a pathway
and gene ontology analysis using information from bioinformatics databases.
Clustering genes that share related pathways could help identify new functions
for genes in the same cluster. Reverse engineering techniques (i.e bayesian
networks) [16] can be used to infer gene regulatory networks based on gene
expression levels measured by affymetrix microarrays. These gene regulatory
networks could help identify key regulators for a list of genes.
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Abstract

From the last decade, researches on Systems Biology have been mainly inter-
ested in analysis of large networks. To analyze the function and dysfunction
components of such systems by a simple visual inspection is infeasible due
to their complex organization. As biological networks can be modeled as
graph, algorithms coming from graph theory can be reused to write procedures
to analyze them. In order to do it, we have concentrated on the analysis of
metabolic networks and the way to discover structural properties of metabolic
networks. In this context, Elementary Flux Modes (EFMs) analysis is one
of the robust tools to give us a deeper insight into such metabolic networks.
Using EFMs analysis, one can identify all the feasible routes through a given
network. However, computing EFMs gives a large number of solutions of
which analysis in detail is hard generally. Recently, a dual approach to EFMs
has been developed with calculation of Minimal Cut Sets (MCSs), that is
identification of the reaction sets which dismiss a given objective reaction.
Giving a metabolic network, the results of computing MCSs are expected to
be smaller than those of computing EFMs. In order to verify this hypothesis,
we have tested this assumption with 4 networks each having different sizes and
structures. We will see in the last section the hypothesis could be verified but
only when EFMs computing provides a very huge result.

Introduction

Metabolic network structure is often described as one of the most complex
cellular systems [37]. It represents biochemical reactions catalyzed by en-
zymes which connect one or several substrates to one or several products. In
this context, needs of specific modeling and analysis methods can become a
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bottleneck to work in System Biology. A lot of studies have concentrated on
the characterization of metabolic networks by means of graph theory to gain
an insight into the global network structure. In that way, finding topological
properties can help to analyze biological structures [1, 5, 40]. Depending on
the goals of the analysis, these works appear in different research themes:
graph-theoretical analysis [17, 5, 16], flux balance analysis [19, 28], metabolic
pathway analysis [32, 24, 26].

The purpose of our work is to study the way to compute MCSs and to
evaluate the obtained results with the 4 concrete examples. First we introduce
the concepts of cut set, definitions and notations. Then we present some
classical algorithms for computing all cut sets. Next, we examined the specific
algorithms to compute all the minimal cut sets in metabolic networks. Finally,
the result of computing MCSs is compared to the one obtained with EFMs
computation for the 4 different networks.

1 Graph cut sets

H. Whitney [38] is one of the precursors that used the concept of cut sets
with planar graphs in the early 1930s. Then in 1956, Ford and Fulkerson [12]
introduced the basic concepts of flow, cut, etc. and first stated the maximum-
flow minimum-cut theorem. This theorem is considered as the fundamental
contribution for developing theory of network flows. The main idea of MCSs
theory can be resumed as follows: if there are several edges of a network to
be failed with a certain probability and only these edges can disconnect the
network, the set of the edges is called a minimal cut set.

Now we present some definitions and notations about cut, cut set, s-t cut set,
and minimal cut set [15, 35]. Let G = (V,E) be an undirected graph. Let
n = |V |,m = |E|. For S ⊂ V , the set δ(S) = {(u, v) ∈ E : u ∈ S, v ∈
S} is a cut set since their removal from G disconnects G into more than one
subgraphs. The size of a cut is the number of the edges in δ(S). Formally, we
define that a cut C of an undirected graph G is a partition of the vertices V (G)
into two separate non-empty subsets, that is,C = {S, S}where S∪S = V (G)
and S ∩ S = ∅. Consequently, the set of the edges (e.g., δ(S)) that crossed
between the two subsets is called a cut set. The number of the elements of δ(S)
is the size of the cut set. A minimum cut set is a cut set of a certain minimum
size. As an illustrative example, consider the undirected graph in Figure 1. In
this example, ({1, 2, 4, 5}, {3, 6, 7}) is a minimum cut (the bold line and the
minimum cut set corresponding with the minimum cut is {(2, 3); (5, 6)}which
the weight is 9.
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Figure 1: A minimum cut of an undirected graph G [39]

s-t cut set The s-t cut [4] is a cut with s and t in different partitions. In other
words, a cut s − t of an undirected graph G is simply a cut C = {S, S} with
s ∈ S and t ∈ S. So, a cut set of the cut is the edge set which end points
are in the separate subsets of the vertices. The removal (or “cut”) of the edges
disconnects the graph into two separate subgraphs. Let’s consider the example

(a) Weight of this cut: 11 (b) Weight of this cut: 4

Figure 2: Examples of cuts of a graph

in Figure 2 depicts the s-t cut that one has the weight 11 and the other 4.
Suppose that the s-t cut set of s = a and t = d. Then we can enumerate several
a-d cut sets such as {bc, bd} with the weight 11, {ce, bd} with the weight 4, or
{bd, de, ef} with the weight 25. In this example, because of the less number
of cut sets, the enumeration can be done manually. The minimum cut set is the
one with the minimum weight (e.g, it is 4 as in Figure 2(b)).

Minimum cut set in directed graph Similarly, we define minimum cut set
of a directed weighted graph. We denote D = (N,A) a directed graph. Let
n = |N |,m = |A|. A minimum cut set is a set of all the edges crossed through
two subsets S and T . However, one should pay attention to how to compute
minimum cut set value. Instead of summing all the weights of all the edges in
the minimum cut set, the only crossed edges between the two subsets coming
out S are taken into account.
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Minimum cut sets have also been arisen in information retrieval [8], com-
pilers for parallel languages [9], and in communication networks [20, 29] in
routing of ATM networks. The theory of network reliability and survivability
employed MCSs as the way to evaluate the stableness of complex systems
can be found in [7, 30, 41]. In the same way, algorithms have been applied
into computational biology and metabolic networks as well. The question to
enumerate all MCSs shall be addressed in the next sections.

2 Finding minimal cut sets

The first approach for finding a MCS of a graph is based on the minimum
s − t cut problem as it has been mentioned previously. As given by the well
known max flow [11, 12] theorem, a minimum s − t cut can be found by
computing the maximum flow between s and t. In 1961, Gomory and Hu
(GH) [14] introduced a typical tree structure that can be able to find minimum
s−t cuts for all

(
2
n

)
pairs of s and t in an undirected and weighted graph. They

showed that the number of distinct cuts in the graph is at most n − 1 (rather
than the naı̈ve

(
2
n

)
). Furthermore, there is an efficient tree structure that can be

maintained to compute this set of distinct cuts using only n−1 maximum flow
computations. A natural question to arise from GH algorithm is whether some
of the information computed in one maximum flow computation can be reused
in the next one or not. Hao and Orlin (HO) [15] answered this question in the
affirmative. The key new idea is to use a push-relabel maximum flow algorithm
to implement GH, and use the preflow and distance labeling from the last max-
flow computation as a starting point for the current one. HO consider the
problem of finding the minimum capacity cut in a directed network G with n
nodes. One can use a maximum flow problem to find a minimum cut separating
a designated source node s from a designated sink node t, and by varying the
sink node one can find a minimum cut in G as a sequence of at most 2n − 2
maximum flow problems. They then showed how to reduce the running time of
these 2n−2 maximum flow algorithms to the running time for solving a single
maximum flow problem. The resulting running time is O(mnlog(n2/m)) for
finding the minimum cut in either a directed or an undirected network. The
implementation of HO algorithm can be found in LEMON library1.

Nagamochi and Ibaraki [25] published the first deterministic minimum cut
algorithm not based on the flow algorithm. This algorithm has the slightly
better running time of O(|V ||E|+ |V |2log|V |), but it remains complicated to
implement. Stoer and Wagner (SW) [35] gave a simplified version of the Nag-
amochi and Ibaraki algorithm with the same running time. This simplification

1LEMON library can be found at http://lemon.cs.elte.hu/pub/tutorial/index.html

72 ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY



was subsequently discovered independently by Frank [13]. SW proposed the
following method for finding a minimum cut set of a graph G. The algorithm
is based on the following statements: let s and t be two vertices of graph
G = (V,E). Let G/s, t be the graph obtained by contracting s and t. Then,
a minimum cut of G can be obtained by taking the smaller of minimum s − t
cut and minimum cut of G/s, t. The implementation of SW algorithm can be
found in JGraphT library2.

There exists a lot of algorithms to compute all minimal cut sets (MCSs) in
graphs. In the 1970s, the theoretical algorithms [2, 3] had been proposed and
proved formally. But the exponential growth of CPU time to compute MCSs
makes difficult the implementation of these algorithms. Recently, several au-
thors have proposed efficient algorithms to enumerate all MCSs of a graph. By
using the dual maximum flow problem, Curet et al. [10] constructed a binary
relation associated with an optimal maximum flow such that all minimum cost
s-t are identified through the set of closures for this relation.

In summary, the algorithms to find all MCSs, which have just mentioned
above, can be applied for systems modeled as classical graphs. But in metabolic
networks, many biological processes have more than two participating ele-
ments and resulting graphs exhibit a high level of complexity [23]. Next
section shows the applications of MCSs in the context of metabolic networks.

3 Minimal Cut Sets in context of Metabolic Networks

During the last decade, several methods and algorithms have been developed
to analyze large metabolic networks. Among the available tools, we can men-
tion the Extreme Pathways analysis defined by Schilling et al. [31] and the
Elementary Flux Modes analysis defined by Schuster et al. [33]. Even they
are not exactly similar, both use linear algebra algorithms to find the solutions.
Unfortunately, most often when the metabolic network is a little bit large (more
than 20 reactions), the number of Extreme Pathways or EFMs tend to be so
high that their analysis is very hard to do by hand. So, the problem to study
structure of big networks still remains. One alternative to study the structure
of big networks could be the MCSs. Indeed, MCSs appears recently as an
additional work to the EFMs giving a dual view of EFMs in the context of
metabolic networks. Klamt et al. [22, 21] proposed an algorithm to compute all
set of reactions which can disconnect the studied network in order to prevent a
specific production of a metabolite. Basically, the concept is pretty similar than

2JGraphT library can be found at http://sourceforge.net/projects/jgrapht/
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the one explains previously in graph theory but Klamt et al. [23] have added the
same constraint than for EFMs computation, the steady state assumption. They
explain that this new method can provide a number of solutions smaller than
those of EFMs. In order to verify this hypothesis, we have computed EFMs
and MCSs of 4 different networks: 3 of them modeling energetic metabolism
of mitochondria into 3 tissues: muscle, liver, yeast [27], the last one modeling
the central metabolism of heterotrophic plant cells (PC). The 3 mitochondrial
metabolic networks exhibit small differences and their number of reactions,
env 403, is not really high. The PC network is bigger, it includes several
biological pathways (glycolysis, Pentose Phosphate pathway, Starch and Su-
crose synthesis and degradation), and then it consists of 70 metabolites and
78 reactions4. As softwares to compute MCSs derived from EFMs computing
softwares, the next paragraph presents them together.

CellNetAnalyzer CellNetAnalyzer (CNA)5 comes from the previous soft-
ware Metatool6 written by the Jena Bioinformatics group. It is a package for
MATLAB containing several modules to visualize networks and to analyze
their structures. CNA enables users to compute both EFMs and MCSs. Thus
we have used it to calculate EFMs and MCSs for 4 networks. That compu-
tation has often been time consuming, in some cases several hours or days
are necessary. For example, to obtain MCSs of PC with CNA more than 10
days have been needed with a linux server. Second in the case of PC network
memory requirements are larger than method can manage.

Efmtool and regEfmtool A couple of years ago, a new implementation of
EFMs computation has been done with improvements of the original algo-
rithm. This is efmtool7 [36] implemented in the Java programming language.
It supports multi-threading and seems to be robust to compute large networks.
But even this software is freely available, with the source code, this program
is not easy for use and lacks of a detailed documentation. Within recent
years, a new software, named regEfmtool8, written by C. Jungreuthmayer [18],
provides a new way to use efmtool program. The package contains several
scripts clearly documented. It also proposes to define some logical rules to
compute EFMs containing or not some reactions and so reducing the size of
the obtained solutions. The larger network that we have computed with this

3complete description files can be found at [27]
4described more detail in [6]
5http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html
6http://pinguin.biologie.uni-jena.de/bioinformatik/networks/
7http://www.csb.ethz.ch/tools/efmtool/
8http://www.biotec.boku.ac.at/regulatoryelementaryfluxmode.html
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tool contains more than 80 reactions and we have obtained several millions of
EFMs in only a couple of hours. Computing MCSs out of MATLAB and in C
language will be available very soon from the same team. In preliminary tests,
we have been able to obtain MCSs that have not ever been obtained before
with MATLAB programs due to overload memory.

Results Hopefully, all those tools yield, of course, the same results. The
table 1 shows the number of EFMs and MCSs obtained for the 4 networks. The
column 1 gives the name of the networks and the column 2 the total number of
reactions, the number of reversible reactions is given in the parentheses. The
column 3 presents the number of the internal metabolites, we consider only
internal ones because EFMs and MCSs are computed from the stoichiometric
matrix (defined by the list of reactions and internal metabolites). The last two
columns contain the final computing results.
Firstly, no obvious relationship can be observed between the number of reac-
tions (or internal metabolites) and the number of EFMs. As it has been shown
by Stelling et al. [34] more EFMs you have, more you can expect robust
this network, because the size of the EFMs set is a measure of the network
connectivity. Moreover, as we have previously mentioned, obtaining so huge
results is not very useful for biologists. Secondly, the number of MCSs is
unfortunately not at all lower than the number of EFMs, as it could expected
for the 3 mitochondrial networks. When the result begins to be really huge as
with the PC network, the number of MCSs begins to decrease. Finally, we can
observe that the average length of EFMs increases with the number of reactions
but the average length of MCSs remains stable. For example, for the muscle,
the average length of EFMs and MCSs are 17.7 and 10.2 resp., comparing to
the values obtained for the PC network, 37.7 and 11.1 resp. To conclude, a
part of the goal has been reached with MCSs computation which provides a
smaller set than EFMs only for large enough metabolic networks.

Tissues Nb. React Nb. Int. Meta Nb. EFMs Nb. MCSs
Muscle 37 (25) 31 3, 253 (17.7) 42, 534 (10.2)
Liver 44 (28) 36 2, 307 (16.7) 47, 203 (11.4)
Yeast 40 (29) 34 4, 627 (15.3) 90, 318 (11.6)
PC 78 (33) 55 114, 614 (37.7) 93, 009 (11.1)

Table 1: Global description of the 4 networks
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Conclusion

The aim of this study was to investigate the computation of EFMs and MCSs
on given metabolic networks. We have shown that the number of MCSs is
higher than the number of EFMs on mitochondrial networks, when the network
is not so big and the number of EFMs is not huge. But with bigger networks
like the network of heterotrophic plant cells, the number of MCSs is lower
than EFMs one and the length of MCSs does not increase with the number of
reactions. So, it could be easier to analyze MCSs than EFMs, for instance, to
classify them. A problem we are facing is the computation of MCSs algorithm,
in time and memory size requirements. New research tracks are explored to
introduce improvements coming from graph theory and parallelized techniques
also.
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Abstract

In clinical medicine, chronic diseases are often oligogenic and complex to
diagnose and treat. Transcriptomes, proteomes and metabolomes are currently
being catalogued for such diseases yet the systems biology frameworks being
generated by these datasets are primarily being used to study variation and
function of the human genome and relating them to health and disease states.
Recently enhanced efficiency of DNA sequencing allows powerful analytical
computational and mathematical tools aimed at understanding functional and
regulatory networks underlying the behavior of complex biological systems.
Iterative systems approaches for specific human diseases such inherited re-
nal cancer syndromes or renal ciliopathies have started making inroads to
improving diagnostic and prognostic parameters. Because of their relatively
contained yet oligogenic properties, in many ways the inherited renal cancer
syndromes and ciliopathies offer an exemplary system to describe how systems
approaches are transforming the way drugs are being developed based on com-
plex interactions between distinct but overlapping pathways. Consequently, a
perspective in which the interactions and dynamics are centrally integrated
may steer medical intervention towards interrelationships of components. The
optimal method for predictive, personalized, and preventive treatment of com-
plex chronic diseases may therefore lie in systems medicine. We illustrate our
arguments with a case report.

1 Case Report

A family comprising a father, mother, two sons and one daughter visits the
Department of Clinical Genetics at an Academic Hospital. The father, now age
65, was treated for renal cell carcinoma at the age of 45, and he has cysts in
both kidneys. His eldest son, who is now 40 years of age, has also been treated
for renal cell carcinoma at the age of 39. The daughter is 37 years and has
been diagnosed with renal cysts. The youngest son, who is 35 years of age,
wants to know if there is a hereditary cause of renal carcinoma and/or renal
cysts in his family and if he is at risk of developing renal carcinoma and/or
cysts. He also wants to know if he is eligible for screening and/or preventive
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therapy. Pathology reports indicate two types of tumors: a papillary and a clear
cell carcinoma in the father and a clear cell renal carcinoma in the eldest son.

2 Existing clinical guidelines

The Clinical Geneticist will currently consider two or more cancer cases in
first-degree relatives seriously, especially if the type and subtype of the cancer
fall within a known spectrum, or if at least one patient is under the age of 40.
For the case of this family, the current decision tree would consider the young
age of diagnosis of kidney cancer, the histological type of renal carcinoma and
the co-existence of renal cysts and suggest single gene mutation analysis of
the VHL and FLCN genes, which based on current knowledge would be the
most likely candidates. No mutation was found in either gene. The decision
tree at this point would recommend mutation analysis for the next most likely
candidate genes associated with familial renal cell carcinoma: MET, TSC1
and TSC2. A novel variant in MET was found in the father and the oldest
son. Due to these findings the following questions immediately occur: does
this MET mutation cause the renal carcinoma in the father and his eldest son?
Do cysts occur in individuals with this MET mutation? Are the kidney cysts
in the daughter a coincidence? Should the youngest son be tested for the
MET mutation? Is he eligible for screening or is a one-time only examination
sufficient?

This family is a means to illustrate the current approaches of genetic/hereditary
diseases and also to underscore the value systems medicine will have in the
relatively near future. A patient and/or his family are referred to a clinical
geneticist because hereditary disease is suspected. Based on medical his-
tory, family history and sometimes pathology data, specific individual genes
will be analyzed. When a disease-causing mutation is found, relatives are
counselled optionally and individuals with the disease-causing mutation will
undergo screening and/or preventive therapy. However, the clinic is reaching
a point now where increasing knowledge and analytical laboratory technolo-
gies will certainly change the approach to most if not all genetic/hereditary
diseases. Inexpensive and rapid molecular genetics coupled to linked data
pertaining etiology and pathophysiology will provide new ways to approach
or treat patients with genetic/hereditary diseases. Genetic diseases are usually
complex and dynamic processes. Accordingly, a genetic disease should be
analyzed as a complex network of components interacting with each other
in time and physiology leading to development of (clinical symptoms of) the
disease. Although these concepts are not revolutionary, the lack of tools and
training available to Doctors or support staff has made it virtually impossible
for clinical applications of systems medicine except in a few isolated events.
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Treatment would ideally be accomplished through this approach by interfering
in the network or interactions between components. Elucidating these net-
works or pathways can lead to more individualized treatment of the disease.

One common problem in the Genetics Clinic that will likely be aided by
Systems Medicine is exemplified by our family. What is the exact conse-
quence of the nucleotide variant in MET? Changes in nucleotides that do not
result in a truncation of the transcript are often unclear as to whether they will
contribute to disease or not. Assumptions are made based on evolutionary
conservation, whether the variant has been previously associated with disease,
and occasionally functional data is available. Modelling data based on protein
structure are also often helpful in weighing the likelihood that a given variant
is pathogenic. Because genetic testing is still usually analyzed one gene at
a time, weighing variants is time consuming and can be even misleading, if
the variant being weighed is only a small piece of a larger picture. However,
we anticipate that many patients will have their genomes or exomes entirely
sequenced in the near future and the full mutational load per individual will
reflect one datapoint for that person which can be analyzed as a network or
profile. With the advent of systems medicine, we anticipate that complex
modelling will steer our understanding of individual mutational loads. Factors
will be identified that have either a synergystic or cummulative effect on the
development of a disease.

3 Transitioning to Systems Medicine

The clinical geneticist can fulfil a central role in the translation of systems
biology to the clinic and can apply this approach for certain groups of patients.
To return to our case study, the questions of the youngest son lead to important
considerations and questions:

1. Do the patients with renal carcinoma and/or renal cysts have a germline
mutation?

2. Are renal cysts part of the spectrum of this hereditary form of renal
carcinoma?

3. Is there a correlation between features of renal cysts (number, size) and
renal carcinoma?

4. Is there a correlation between histology and prognosis?
5. Which genes/pathways are involved in the development of a normal

kidney cell into a renal cyst?
6. Which genes are involved in the development of a normal kidney cell

into renal carcinoma?
7. Is there a common pathway in the transition of a normal kidney cell into

a renal cyst and renal carcinoma?
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8. Is there a genotype-phenotype correlation?
9. Do modifier genes or exogenous or endogenous factors influence symp-

toms, histology or prognosis?
10. Which genes are active during different stages of the disease (varying

from normal to renal cyst and/or renal carcinoma: normal vs renal cysts
vs renal carcinoma vs renal carcinoma and cysts?

11. Are there biomarkers available?
12. Can a specific screening program be advised based on histological data

and biomarkers?
13. Can we use the individual’s genetic passport to tailor therapy?

To answer these questions, the clinical geneticist would collect clinical data of
both affected and unaffected relatives. Factors such as gender and known risk
factors like smoking and blood pressure must be annotated for each individual
and linked with the pedigree of the family. Retrospective and prospective links
to histological data need to be available in the pedigree.

The Clinical Geneticist is trained to interpret mutational data, and evaluate
the likelihood a given clinical symptom results from genetic variants. The
father and the eldest son both had renal carcinoma (although different histo-
logical subtypes), and both also carry a MET mutation. Because the daughter
without renal carcinoma but with renal cysts did not have the MET mutation,
the MET mutation is more likely to be associated with renal carcinoma than
with renal cysts. The location of this MET mutation is important for its sig-
nificance: is this a highly conserved area in the genome, does this mutation
lead to a change in mRNA (ie codon, splicing, structure)? Functional studies
might be able to discriminate between proteins deriving from mRNA either
with wild-type MET or with the MET mutation; however, the read-out (eg.
tyrosine kinase activity or ligand binding) can be complex or uninformative.
The Clinical Geneticist will have to tackle these same problems in the future
as well, when the data available per patient will of an entirely different order
of magnitude.

With new techniques like next generation sequencing, mutation analysis
of a complete genome will almost certainly become commonplace. With this
technique, known and unknown genes are analyzed in a short time and for
a fraction of previous costs of mutation analysis. By analyzing the whole
genome additional mutations will be identified. It is the responsibility of the
Clinical Geneticist to analyze the role of these mutations on the development
of the disease. Do (rare) mutations elsewhere in the genome (in other genes,
introns and/or exons) influence the clinical constellation? Do they accelerate
or delay the process of developing renal carcinoma or protect against another
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disease like sickle cell anemia protects against malaria, conferring an evo-
lutionary advantage? If these additional mutations lead to a difference in
histology and/or prognosis and the presence of mutations in other or more
genes are required for renal carcinoma, reconstitution of an abnormal protein
or intervention in the abnormal protein interaction can delay of prevent the
development of renal carcinoma.

The next step after viewing the genomes (DNA), transcriptomes (mRNA)
and proteomes (protein) is to evaluate where gene products are expressed (lo-
calisomes) and in which metabolic network or enzyme it is involved (metabo-
lomes). When common genes and pathways are assumed to play a role in the
transition of a normal renal cell into renal cysts or renal carcinoma, evaluation
of expression of genes in these different stages is necessary. Subsequently, an
intervention of a specific network node or edge should lead to amelioration
of one or more aspects of renal disease. In other words: when the genes and
proteins are evaluated, expression of the proteins and their interactions must
be evaluated in different stages of the disease, in this case renal carcinoma
and renal cysts. By understanding these pathways, specific medications which
modulate these specific processes at different stages can be developed so symp-
toms can be delayed or prevented.

It is clear that evaluation of these different systems comes with a mass
of data. The challenge is to extract information that will optimally benefit
patients. Essential for this transition is stringent data annotation: for ex-
ample, a symptom, histological stage or mutation should be accurately and
unambiguously labelled throughout the whole world. Semantic Web tools are
currently being built to facilitate integration of relevant sources. Importantly
these Semantic Web tools will in turn create ontologies which can be used to
iterate relationships across individuals and query new hypotheses.

Beyond diagnostic uses, the personalized networks that will be generated
for individuals will also generate predictive data that can be tested prospec-
tively (Fig. 1). Furthermore, by combining clinical and histological data and
data of molecular pathways and networks with functional annotation it is pos-
sible to develop useful biomarkers and treatment. For example, it would enor-
mously benefit patients to have a renal specific antigen (RSA) like prostate spe-
cific antigen (PSA) to detect presymptomatic renal carcinoma. This biomarker
could be used for (1) presymptomatic diagnosis, (2) stratification of disease,
(3) assessment of the progression of the disease, (4) following patient’s re-
sponse to therapy and (5) identifying reoccurrences.

In the clinic of the future, let us speculate that whole genome screening
demonstrates a subset of additional mutations in the father and the eldest son
from our family. Given co-segregation of renal carcinoma and the MET mu-
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Figure 1: A theoretical view of a personalized network applied to a single patient.
The arrows represent the relationship between the four vertical blocks (i.e. personal-
ized network, causal factor, phenotype and treatment/screening). The dotted arrows
indicate unknown (causal) factors. Causal factors lead to a specific phenotype. Symp-
toms drive treatment and/or screening prevention program, which in turn influence the
phenotype. Collecting data on causal factors, phenotype and treatment/screening on
different times of the period from normal condition to disease and vice versa gives
a good picture of the interactions between the different parts of the network and can
lead to a personalized profile for a patient, displayed by the arrows in the figure.

tation, the MET mutation is associated with an increased risk of renal car-
cinoma. So what do the additional mutations mean? Functional tests could
help to discriminate the value of additional mutations in the development of
renal carcinoma and/or renal cysts, but these are often laborious and outside
the skill set of the Clinical Geneticist. If tests demonstrate that a specific
subset of additional mutations either with of without the MET mutation give
an increased risk of renal carcinoma, individuals without a MET mutation
but with this subset of additional mutations could be considered eligible for
preventative screening. Additional mutations linked to clinical outcome profile
can be plotted. The type of screening can be subsequently adjusted to the pro-
file. Individuals without the MET mutation, but with the additional mutations
associated with an increased risk of renal cancer are eligible for screening,
but perhaps less frequently if these additional mutations demonstrate a lower
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risk of renal cancer compared with the risk of renal cancer in presence of the
MET mutation. On the other hand, the daughter known with renal cysts has
neither the subset of additional mutations, nor the MET mutation. Although
the Clinical Geneticist will probably consider the daughter at be at low risk for
kidney cancer he/she might want to compare the daughter’s genomic profile to
other patients with cystic kidney disease, in order to determine what risk that
phenotype might carry.

Another expertise held by the Clinical Geneticist that will only become
more necessary as Systems Medicine evolves, is the ability to interpret and
communicate any incidental findings as a result of deep data acquisition. For
example, in our family, the youngest son has decided to undergo whole genome
sequencing to understand his risk of renal cell carcinoma. No mutation in
either the MET gene or in the associated subset of genes known in his family
was detected, and he is told by his Clinical Geneticist that he does not require
further screening. However, imagine if a known deleterious mutation is identi-
fied in the son which indicates that he will develop Huntington’s disease later in
life. Clear guidelines for the handling of incidental findings have already been
implemented in the Clinical Genetics Clinics and broad experience has been
obtained. The data acquisition required to build any framework attempting
Systems Medicine will need to rely on the expertise of several different spe-
cialists, with the Clinical Geneticist possibly taking a central or coordinating
role.

Increasing knowledge and laboratory technologies already have and will
still lead to immensely rich patient profiles, individualized for specific prog-
nosis and treatment. The challenge is to extract the information that will
optimally benefit patients. Annotation and ontology implementation will make
data integration possible, from type of mutation in the genome to deep pheno-
typing, across hospitals and between groups of individuals. Approaching a
genetic disease as a complex network of components and interactions between
these components shall hopefully lead to better treatment of prevention of
symptoms due to genetic/hereditary conditions.
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Abstract

At all levels, biological complex systems have remarkable characteris-
tics. In this paper, we describe some of these characteristics, such as the
multi-level and nested structures of these complex systems, the multi-
ple interactions between their constituents, their interaction functions
which are often non-separable, their interaction networks which often
are not graphs but hypergraphs, etc. We also emphasize the great diffi-
culty —if not the impossibility —of defining a measure of complexity
for these complex systems whose structure is itself dynamic.

1 Complex Systems

Complex systems [1, 23, 37, 39] are found in many business areas and
are investigated in various scientific disciplines that include theoretical
physics, systems theory, social sciences, mathematics, bioscience, and
bioinformatics.

1.1 System

A finite non-empty set S is called a dynamical system, or simply a
system, if it evolves in time, i.e., if its behaviour as well as its properties
vary in time; where behaviour denotes all the actions by which the
system can modify its relationship with its environment.

In general at each time step, a system has a state which is often
characterized by the values of the parameters describing the system.
The way that a system evolves from one state to another is usually
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specified by a transition function. This function, or alternatively its gen-
eralization, sometimes allows the system behaviour to be understood.
A system often has non-empty parts, called entities, which can interact
with one another.

1.2 Observability

We say that an entity or a property is observable if the entity itself or its
effects can be observed. The observability of a phenomenon does not
necessarily imply its precise measurability; observability is simply the
possibility that the phenomenon or its effects can be detected.

1.3 Essential entity

Let S be a system and T be an entity of S; T is said to be essential
if its behaviour and its properties have a straightforwardly observable
influence on the behaviour and properties respectively of S. An entity
T of a system S is said to be proper if T is strictly contained in S. A
proper essential entity of a complex system is sometimes also called a
sub-system or a component of S.

1.4 Unpredictability

A behaviour is unpredictable if it is impossible to foresee it with cer-
tainty. Complex systems often behave in ways that are not predictable,
and this unpredictability occurs even when the behaviours of the com-
ponents of these systems are well known.

1.5 Interaction

Hereafter, an interaction may involve two or more proper essential en-
tities or constituents of a system that are not necessarily located at the
same level. An example of interaction between two entities not located
at a same level is depicted in [24].

1.5.1 Binary interaction

A simple interaction or binary interaction denotes an interaction be-
tween two proper essential entities (constituents) of the system. An
example of binary interaction is given by the Newton’s law of universal
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gravitation [36, 47]. This law states that two bodies exert on each other
a force of attraction proportional to the product of their masses and
inversely proportional to the square of the distance separating them.

1.5.2 Multiple interaction

A multiple interaction is, by definition, an interaction between at least
three entities of a same system. For example, in a set of biochemi-
cal reactions, a reaction between one enzyme and one metabolite is a
binary interaction whilst a reaction involving one enzyme and at least
two metabolites is a multiple interaction. Another example of multiple
interactions is the tide, which results from the joint attraction of the
moon and the sun on the ocean [10, 42]. In this multiple sun-earth-
moon interaction, the moon’s influence is three times that of the sun
because the earth is much closer to the moon than to the sun (even
though the mass of the moon is much less than that of the sun). A
biological example of multiple interactions is the interplay between
around ten different proteins and other cellular constituents during cell
division in Escherichia coli [21] and Bacillus subtilis [11]. In the latter,
for example, the formation or stability of the complex between the FtsZ
and DivC proteins is believed to require the interaction of this complex
with the DivIB protein [11].

1.6 Interaction function

In exploring some complex system problems, we often need to consider
an interaction function defined on the interaction set of the system in
question. This function associates some value, not necessarily scalar,
with each interaction. For example, an interaction function could be
defined in terms of the stoichiometric coefficients of a biochemical re-
action set describing a metabolism. Two other examples of interaction
functions come from Newton’s law of gravitation, and from Coulomb’s
law of electrical forces, which is used to calculate the magnitude of
electrical force between two charged bodies [47]. For Newton’s law, the
interaction function is the set of all the functions of attraction between
two bodies whilst, for Coulomb’s law, the interaction function is the
set of all the magnitudes of the electrical forces between two charged
bodies.
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An interaction function is fundamental to the construction of the full
network describing the nature and effects of the interactions between
the system’s constituents. Obtaining an interaction function for bio-
logical processes, would allow better insights into the behaviours and
properties of biological systems. For this reason, it is important to
emphasize that an interaction network and its interaction function must
be constructed with the appropriate accuracy.

1.7 Complex system

Definition 1.1 A system S is said to be complex if one of the following
statements is true:

(i) S has at least one essential entity that has an unpredictable be-
haviour.

(ii) Among the essential entities constituting S at least one is not fully
observable.

(iii) At least one effective interaction between essential entities of S is
either not observable or not precisely known.

Note that in statement (i) the expression essential entity does not
necessarily mean a proper essential entity. In characterizing complex
systems, it is often said that: “The whole is more than the union of
the parts”. This will be considered in the next section devoted to the
concept of emergence.

Remark 1.1 Assertions (ii) and (iii) deal with complex systems con-
taining, respectively, an entity and an interaction either or both of which
are non-observable. Such situations are perfectly plausible as can be
seen in the two following examples:

a) By measuring the changes of the impedance during cell divi-
sion [16], all the phases of mitosis were monitored in real time
in a single cell. In particular, it was found that the use of elec-
trodes of the same size as the cell increased the sensitivity of the
measurements and allowed changes of properties to be observed
that cannot be observed using optical methods.
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b) Dark matter, which cannot be observed directly with telescopes,
is hypothesized to account for a large part (more than 80 %) of the
matter of the universe (which is a complex system of course) [46].
On July 2012, the ATLAS experiment announced that it had ob-
served a new particle: a boson consistent with the Higgs bo-
son [40]. This result is an advance in the understanding of the
basic forces holding the universe together. In particular, this new
boson provides support for the existence of the proposed Higgs
field, which explains how some particles come to have mass and
others don’t. Indeed without mass, matter that is known until now
could not exist. Does the discovery of the Higgs boson lighten the
world of dark matter, as the physicist Sean Carroll thinks [41]?

Remark 1.2 What is not a complex system? Can, for example, a su-
personic aircraft which consists of many interacting (mechanical, ther-
modynamic, electrical, automatic, electronic, software, etc) constituents
be regarded as a complex system? According to Definition 1.1, it can-
not. Indeed, none of the three statements of this definition hold: The
behaviour of each component of the aircraft is readily predictable; each
of its components is readily observable; and all the interactions between
its components are well known and precisely measured. Furthermore,
the behaviour of an aircraft cannot be the behaviour of a submarine nor
of a sophisticated device other than an aircraft. When the behaviour
of an aircraft is not what is expected this is due, except in very rare
situations, to a technical failure or a pilot error.

1.8 Examples of complex systems

Examples of complex systems include single cells and multi-cellular
organisms, the nervous system, the genome, an ant colony and an insect
swarm, as well as human societies, social structures, market economies,
ecosystems, and technology infrastructures like those in telecommuni-
cations, energy production and biotechnology. Hereafter, we describe
a few examples of complex systems. The first example, taken from
Physics, shows that complex systems are not necessarily complicated,
whilst the last two, taken from Cell Biology, show that complex systems
can be extremely complicated.

1) The Heisenberg uncertainty principle states that the more pre-
cisely the position in time of a particle (electron, neutron, proton) is
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known the less certain is the calculation of its momentum (resp. energy),
and conversely, cf. [18, 8]. This principle places a fundamental limit
on the accuracy with which two physical properties, the position and
momentum (or energy) of a particle, can be simultaneously known; i.e.
the more precisely one property is measured, the less precisely the other
can be determined. Thus, a particle cannot be precisely located; this is
why it is not represented by a point but by a cloud of points. It follows
that a particle has an unpredictable behaviour and is a complex system.

2) A prokaryotic or eukaryotic cell is obviously a complex system.
All three statements of the above definition are true. Indeed, in Cell Bi-
ology, one of the main challenges is to understand how the functions of
several molecular components combine to produce complex behaviours
at the level of the cell [2]. In particular, the reason for certain patterns
of organisation of entities is unclear despite the fact that this pattern
is essential. For example, it remains unclear why mitochondria can
sometime form dynamic networks [4]. The number of mitochondria in
a cell depends on the organism and the tissue type; many cells have
several thousand mitochondria, whereas others contain only a single
mitochondrion. Mitochondria generate most of the cell’s energy; they
are also involved in other processes such as signalling, cell growth,
apoptosis, and cellular differentiation. Thus, like the nucleus, a whole
mitochondrion is an essential entity of a cell. The same is true for the
Golgi apparatus.

3) Another example of biological complex system is that of hy-
perstructures [29] which constitute a level of organisation intermediate
between macromolecules and cells. Many functions in both prokaryotes
and eukaryotes are performed by large structures, alias hyperstructures,
in which molecules, macromolecules and ions are physically associated.
In the case of E. coli, B. subtilis, Caulobacter crescentus and other
model bacteria, examples of such hyperstructures include:

• the array of chemotaxis-specific receptors (Tar, Tsr, Trg, Tap, and
Aer);

• dynamic, coupled transcription-translation and transcription-trans-
lation-insertion (transertion) hyperstructures comprising active
RNA polymerases and ribosomes along with the nascent mRNAs
and nascent proteins and indeed the highly expressed genes them-
selves;
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• the cytoskeletal filaments MreB, CreS and FtsZ;

• filaments of elongation factor EF-Tu;

• metabolons of glycolytic enzymes;

• foci of the enzymes E1 of the phosphoenolpyruvate:sugar phospho-
transferase system;

• clusters of secretion enzymes such as SecA;

• nucleofilaments of recombination enzymes such as RecA;

• the cell division machinery (comprising a lipid domain and pro-
teins such FtsZ, FtsA, FtsI, FtsK and AmiC);

• the DNA replication factory (comprising enzymes such as PolC,
DnaB, DnaG and DnaE as well as enzymes responsible for the
synthesis of precursors such as ribonucleoside diphosphate reduc-
tase);

• cellulosomes and polycellulosomes.

Ambiquitous enzymes can occupy two different positions in the cell
and some hyperstructures depend on such enzymes and are functioning-
dependent structures that assemble only when functioning and that dis-
assemble when no longer functioning. Other hyperstructures are equi-
librium or quasi-equilibrium structures that remain even in the absence
of a flow of energy or nutrients.

Communication between hyperstructures would then take the form
of changes in: DNA supercoiling, ion condensation on charged fila-
ments, signalling molecules, water structures, and distribution of mem-
brane domains. At this intermediate level of organization, hyperstruc-
tures would control the phenotype and, in particular, the bifurcations
that occur, as during the cell cycle, so that events take place in the right
place, at the right time and in the right order.

1.9 Nested complex systems

As the above definition suggests, complex systems may be nested, i.e.
the components of a complex system may themselves be complex sys-
tems. For example, a colony of bacteria is a complex system made up
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of bacteria, all of which are complex systems in their own right. In the
same way, a eukaryotic cell comprises the nucleus, mitochondria, the
Golgi apparatus, a set of chromosomes, a nucleolus, chromatin, etc., all
of which are complex systems.

1.10 Hierarchical representation of a complex system

Hereafter, a directed graph G = (V, A) consists of a set V of nodes and
a set A of arcs whose elements are ordered pairs of distinct nodes; i.e.
every arc a of A represents a couple (u, v) of nodes and is directed from
u to v; u is the tail of arc a = (u, v) and v is its head. The tail and head
of any arc a will be respectively denoted t(a) and h(a). The in-degree
of a node is the number of incoming arcs of that node, its out-degree
is the number of its outgoing arcs, and its degree is the sum of its in-
degree and out-degree. In a directed graph, a chain C is a sequence of
arcs {a1, a2, . . . , ak} such that h(ai−1) = t(ai) or h(ai−1) = h(ai) or
t(ai−1) = t(ai) or t(ai−1) = h(ai) for i = 2, . . . , k. Vertex a1 is the
initial end of C and ak is its terminal end.

A graph G = (V, A) is said to be connected if for every pair of distinct
nodes u and v there exists a chain which links u and v. A path P is a
sequence of arcs {a1, a2, . . . , ak} such that h(ai−1) = t(ai) for i =
2, . . . , k; a1 and ak are respectively the initial and terminal ends of P.
A cycle is a chain such that its initial end and its terminal end are the
same node. A circuit is a path {a1, a2, . . . , ak} such that h(ak) = t(a1).
A graph is acyclic if it contains no cycle. A directed graph is said to
be acircuitic if it contains no circuit, and a tree is a connected acyclic
directed graph. Detailed fundamentals of graph theory can be found
in [5].

The nested nature of complex systems allows them to be represented
in a hierarchical form. Let S1 and S2 be two distinct subsystems of a
system S such that S2 ⊂ S1, then S2 is said to be a son of S1 if there
is no sub-system S3 distinct from S1 and S2 such that S2 ⊂ S3 ⊂ S1.
When a complex system S has more than one essential entity, it can be
represented by a tree G, otherwise by a directed acircuitic graph G, in
the following way:

• S is represented by a node s having a zero in-degree and with a
level in G equal to zero;
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• to each sub-system T of S is associated a node t; where its level
in G is denoted by l;

• if T1 and T2 are two entities represented in G respectively by
nodes t1 and t2 such that T2 is the son of T1 then (t1, t2) is an
arc of G, directed from t1 to t2; moreover, if l1 and l2 denote
respectively the levels of t1 and t2 then l2 > l1.

Let us observe that in modelling biological cells, there are several ways
to take into account cell behaviour as diverse as shape change, motility,
mitosis, apoptosis, etc. These include Virtual Cell [25], E-Cell [35],
ChemCell [32] as well as the cell-centered approach of Merks and Gla-
zier [27], and the cellular Potts model [17].

1.10.1 Measuring system complexity

Complex systems might be put into different classes of complexity if
the criteria to use were clear. It seems evident that the complexity of
biological organisations differs from that of inanimate systems such as
the world climate, the underwater currents, and the complex movements
of the vortices which animate the ocean surface [28]. But the exact
nature of the difference is less evident [30]. How many sorts of complex
systems exist? Are there levels of complexity? How are they related
to one another? Unfortunately, as mentioned in [39] and [44] neither
Shannon’s entropy, nor Chaitin-Kolmogorov’s algorithmic complexity,
nor Bennett’s logical depth, are adequate for measuring system com-
plexity. Furthermore, approximate entropy (ApEn) is a technique used
to quantify the amount of regularity and the unpredictability of fluctua-
tions over time-series data. ApEn was designed by S.M. Pincus [31]
to work for small data samples, unlike accurate entropy calculation
which requires vast amounts of data. But regrettably, ApEn is not really
appropriate for measuring biological system complexity.

A different approach is to take into account the nesting of the sys-
tem. Let us call the nesting depth of a system S the maximum number
of levels in its graphical hierarchical representation G, and the extreme
subsystem a subsystem represented in G by a vertex at the lowest level.
That said, now the question is the following. Can we take the nesting
depth of a complex system as a measure of its complexity? Again, the
answer is unfortunately no. Indeed, how can we compare two complex
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systems having the same nesting depth when we cannot make compari-
son between the complexities of their extreme subsystems? In general,
two distinct complex systems do not necessarily have the same extreme
subsystems since there are no building blocks which are complex sys-
tems, and from which we can build any complex system. As pointed
out in [37], the quantum physical level is deemed to be irrelevant. A
particle (electron, neutron, proton) is in itself a complex system, but
effectively it is not an essential entity for any living microorganism
(virus, bacterium, fungus); as a single neuron is not an essential entity
for a brain. Therefore, the measure of complexity still remains an open
question. Moreover, because of the absence of building blocks which
are complex systems and from which we can build any complex system,
a recursive definition of a complex system cannot exist.

2 Emergence

The concept of emergence dates back far into the past. As an indication,
Claudius Galen (129-201 A.D.) has clearly distinguished between emer-
gent properties and non-emergent properties of wholes [13]. Indeed, the
idea that ”The whole is other than the sum of the parts”, better known
as ”the whole is greater than the sum of its parts”, has been around
for a long time, at least implicitly. In his book ”A system of logic” J.
S. Mill wrote in 1840 that ”To whatever degree we might imagine our
knowledge of the properties of the several ingredients of a living body to
be extended and perfected, it is certain that no mere summing up of the
separate actions of those elements will ever amount to the action of the
living body itself”. The same idea is also present in Psychology where,
in Gestalt theory [20], it is proposed that the human eye sees objects
in their entirety before perceiving their individual parts, suggesting the
whole is greater than the sum of its parts and allowing for the breakup
of elements from the whole situation into what it really is. A variety of
definitions, descriptions and examples of the emergence phenomenon
have been given by biologists, computer scientists, logicians, mathe-
maticians, philosophers, physicists, psychologists, etc. [7, 19] and [23].
In what follows, to make it simple, we do not distinguish between
weak and strong emergence [9] and we confine ourselves to a succinct
definition of the concept of emergence, where the term “characteristic”
means a behaviour or else a property.
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Definition 2.1 Emergence denotes the appearance of a characteris-
tic of a complex system that it is not possible to predict from just a
knowledge of the respective characteristics of the essential entities that
constitute that system.

An unpredictable characteristic is said to be emergent. The con-
cept of emergence is a straightforward consequence of the complex
system definition given above; This is even what characterizes and dis-
tinguishes complex systems from other dynamic systems. Indeed, when
a complex system S possesses an essential entity which is not observ-
able or whose behaviour is unpredictable, or alternatively there is an
interaction not precisely known, involving some essential entities of S,
then any characteristic (behaviour or property) of S is emergent.

2.1 Examples

The following examples prove that all the life processes cannot be
roughly reduced to only biochemical reactions and electrical signals
occurring in the neurons and the cell body. In particular, consciousness,
thought, qualia and other mental phenomena cannot be fully explained
by contemporary physics and chemistry.

2.1.1 Living organisms

Living organisms are complex; from a fertilized ovum an embryo de-
velops inside the uterus, and receives nutrition directly from the mother.
Then this multiple interaction uterus-embryo-nutrients leads to the emer-
gence and to the development of magnificent beings. Such a process is,
for many of us, enchanting.

2.1.2 Giant Sequoia

The giant sequoia is an evergreen conifer, see Fig. 1. The biggest
sequoia has a circumference near the ground of 31.1 m, and is 83.3
m high. The age of this, the biggest tree in the world, often called “the
largest living thing on earth”, is estimated at 2000 to 2500 years. Its
egg-shaped cones have roughly a size 4.5 cm x 3.5 cm and can contain
some hundreds of light seeds of about 3.5 mm long. It is wonderful to
think that a giant sequoia is the result of multiple interactions between
a single seed the size of an oatmeal flake and natural substrates such as
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humus, nutrients, cold water, fresh air etc. The sequoia is just one of
many spectacular examples of emergence in the living world.

Figure 1: This picture which shows a giant sequoia comes from
the following site: http://upload.wikimedia.org/wikipedia/commons/e/e3
/Sequoia and a car.jpg. It suggests to the observer that this wonder is
one emergence in the living world, resulting from a multiple interaction
between a very small seed and several natural substrates. A better
picture of a giant sequoia may be found at the website hereafter:
http://www.monumentaltrees.com/fr/arbres/sequoiageant/californie/

2.1.3 The generation of life from inanimate matter

The captivating riddle of the spontaneous increase in complexity from
inanimate matter to the first forms of cellular life has been the focus
of much thinking and research for decades, both philosophically and
experimentally [26].
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2.1.4 The emergence of consciousness
Here, the fundamental problem is to understand the relationship be-
tween the conscious mind and the physical body. This problem has
also been the focus of much thinking and philosophical enquiry [14].

2.2 Reverse emergence
Can we consider as an emergence the flight behaviour of an aircraft,
which can climb, cruise and descend when accelerating, maintaining a
constant velocity and decelerating, respectively? This question seems
legitimate because none of the aircraft’s ’organs’ like reactors, wings,
rudder, landing gear, etc, is capable on its own of such flight behaviour.
However, the answer is ’no’ because each of the many organs of the
aircraft was designed and built specifically for the purpose of making
the aircraft capable of flight. The behaviour of an aircraft is not an
emergence: it is what is called reverse emergence. Indeed, for a given
dynamic system, reverse emergence refers to the problem of finding
all the components, as well as their interactions and rules, required
to generate the desired behaviour. Of course, reverse emergence is
widely used in engineering [3]; It is also used in Business, Finance and
Marketing. Insurance companies, banks and supermarkets make use of
reverse emergence to encourage customers to adopt simple behaviours
that maximize their profits (which is the desired outcome), frequently
making use of Data Mining techniques to achieve this [6].

2.3 Non-Separability
In the following definition f denotes a mapping, defined on a n-dimensio-
nal normed space [33] like for example Rn the space of vectors whose n
components are real numbers, which to every ordered n-tuple (x1, . . . ,
xn) associates the value f(x1, . . . , xn), not necessarily scalar. And the
operator o is an internal composition law, like +, ∗, / etc.

Definition 2.2
The function f(x1, . . . , xn) is said to be separable if there are n func-
tions f(x1), . . . , f(xn) such that f(x1, . . . , xn) = f(x1)o . . . of(xn) for
every (x1, . . . , xn); otherwise, f(x1, . . . , xn) is said to be non-separable
[38].

Remark 2.1
1) A function f(x1, . . . , xn) is additively separable if

f(x1, . . . , xn) = f(x1) + . . . + f(xn) for every (x1, . . . , xn).
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An example of an additively non-separable function is given by what
follows:

f(x1, x2) = 3x2
1 + 2x1x2 + 5x2

2.

2) The following assertion can be easily proven:
For n ≥ 2, a function f(x1, . . . , xn) is separable if and only if there ex-
ists two functions h(xn) and g(x1, . . . , xn−1) such that g(x1, . . . , xn−1)
is separable and f(x1, . . . , xn) = g(x1, . . . , xn−1) o h(xn).

With this assertion, a polynomial [9] recursive algorithm is obtained
for verifying whether a given function f(x1, . . . , xn) is separable. This
algorithm, named Separability(f, n), has two arguments which are
respectively a function f and a parameter n representing the variable
number of f , and returns true or false depending on whether the func-
tion f is separable or not.

Separability(f, n)
if n ≤ 1 then true
else begin

if there exist two functions g(x1, . . . , xn−1) and h(xn)
such that f(x1, . . . , xn) = g(x1, . . . , xn−1) o h(xn)

then Separability(g, n− 1)
else false

end.

3) The non-separability property may characterize some undecidable
problems [12, 45], such as the following optimisation problem (P):

Maximize {f(x1, . . . , xn) subject to (x1, . . . , xn) in Rn and
gi(x1, . . . , xn) ≤ bi i = 1, . . . ,m}.

a) If the function f is non-separable and at least one of the two condi-
tions (i) and (ii) is satisfied:

(i) f is neither convex nor concave [34];

(ii) the region {(x1, ..., xn) in Rn and gi(x1, ..., xn) ≤ bi i = 1, ...,m}
is non convex;

then (P) is undecidable, that is, there is no algorithm for solving (P).
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Additional elements of optimization theory are found in [34].

b) If the functions f and gi i = 1, . . . ,m are linear and for j = 1, . . . , n
xj is constrained to be an integer, then (P) is NP-complete [15].

c) If the functions f and gi i = 1, . . . ,m are linear, then (P) is polyno-
mial [22, 15].

Proposition 2.1
If an emergent characteristic of a complex system can be modelled by a
function, this function is necessarily non-separable.

Indeed, let C be an emergent characteristic (behaviour or property) of a
complex system S such that C is modelled by a function f(x1, . . . , xn),
where for j = 1, . . . , n, the variables xj characterize respectively the
subsystems Sj constituting S. Since C is emergent, f(x1, . . . , xn) can-
not be obtained from n functions f1(x1), . . . , fn(xn), representing re-
spectively n characteristics C1, . . . , Cn of the subsystems S1, . . . , Sn,
such that f(x1, . . . , xn) = f1(x1) o . . . o fn(xn). Thus, f(x1, . . . , xn) is
non-separable.

This proof was given for showing that the emergence problem in
complex systems cannot be solved by Von Neumann computing. Be-
sides, in paragraph 1.6 of the previous section, it is mentioned that for
better exploring some complex system problems, an interaction func-
tion is required. This function is defined on the set of all entities in
interaction in the system in question. The following proposition deals
with the non-separability of the interaction functions, where a directed
hypergraph [5] is a generalization of a directed graph in which an arc
can have several heads and/or several tails.

Definition 2.3
Let V a finite set. A hypergraph is a pair H = (V, E) where E is the
set of hyperedges ej, j = 1, . . . ,m, such that ej is a non-empty subset
of V .
A directed hypergraph is a pair H = (V, A) where A is the set of
hyperarcs aj, j = 1, . . . ,m such that aj = (tj, hj), where tj, hj are
two non-empty disjoint subsets of V , called respectively the tail and the
head of aj .
A hypergraph H = (V, E) is said complete if its hyperedge set E is the
power set P (V ) of the vertices; that is, E = P (V ) = {U ⊆ V ; U 6= ∅}.
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A directed hypergraph H = (V, A) is complete if its hyperarc set
A = {(U, V \U); for all U ⊆ V , U 6= ∅ and V \U 6= ∅}.

Definition 2.4
An interaction network of a complex system S is a triple N = (V, I, f),
where:

• (V, I) is a hypergraph or a graph, depending on whether S has a
multiple interaction; (V, I) can be directed or not;

• f is an interaction function defined on I, which to each interaction
i in I associates some value not necessarily scalar.

Proposition 2.2
The interaction network of a complex system having at least one multi-
ple interaction is a hypergraph and its interaction function is generally
non-separable.

Indeed, let S be a complex system having a multiple interaction
called I , and let f be the interaction function of S. The interaction i
involves at least three entities of S. In the interaction network N of S,
then i is necessarily represented by a hyperedge or a hyperarc, and FN
has a hypergraph structure. From this fact, it results that f(i) has at
least three arguments, each argument representing one entity among the
entities involved by i. Now, suppose that f(i) is separable, then every
two entities a and b, among the entities involved by i, are interacting.

It follows that N is a hypergraph which has a very particular struc-
ture: every hyperedge or hyperarc of N is a clique [5]. Generally, the
interaction network has not this special property, as it can be seen, for
example, with the metabolic networks.
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Abstract

The recent development of parameter-unlimited functional super-resolution
microscopy TISTM (Toponome Imaging System) provides direct access to pro-
tein networks at high 2D and 3D resolution in a single tissue section or inside
cells. TISTM is a device that can overcome both the spectral and the resolving
power of conventional light microscopy without having to change hardware.
It is the first ready-to-use technology for dimension- and parameter-unlimited
histological diagnostics and systematic decoding of the toponome at functional
super-resolution (toponome: defined as the spatial protein network code in
morphologically intact cells and tissues). TISTM is a highly flexible machine
that can adapt to the needs of the researcher: a 4-in-one microscope includ-
ing (1) routine transmitted light functions, (2) conventional epifluorescence
functionalities, (3) paramater-unlimited protein network visualization in real
time, and (4) functional super-resolution of subcellular structures and protein
clusters in tissue sections and in cultured cells (approx. 40 nm resolution). It
is a novel platform providing the robustness needed for the human toponome
project, combining industry partners and research institutions. The technology
has shown to solve key problems in cell-, tissue-, and clinical toponomics by
directly decoding cellular (disease) mechanisms in situ/in vivo, in particular at
the target sites of cancer in human tissue. Several next-generation toponome
biomarkers and toponome drugs are on the way to clinic. The human toponome
project has at its goal to unravel the complete toponome in all cell types and
tissues in health and disease. The technology is scalable as large cooperative
parallel screening devices extracting the most relevant disease targets from
protein network hierarchies in situ: a novel efficient way to find selective drugs,
by escaping the low content trap in current drug target and diagnostic marker
discovery strategies, which, as yet, have disregarded the spatial topology of the
protein network code.
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1 Introduction

Cellular functionalities comprise at least four organizational levels: genome,
transcriptome, proteome and toponome. The toponome is the spatial network
code of proteins and other biomolecules (e.g. carbohydrates and nucleic acids)
in morphologically intact cells and tissues [1, 13, 25]. The term toponome
is derived from the ancient greek nouns “ ” (topos = place, position)
and “ ” (nomos = law) [25]. It is substantiated by experimental insight
from direct visualisation of toponome structures [1-9, 16, 17]. It indicates
that a cell, which organizes this network of biomolecules, follows topological
rules enabling coordinated interactions of its molecular components [3]: In
a cell, or in the extracellular matrix, every single molecular component of
such an interaction must be at the right time point at the right concentration
and at the right subcellular location so that a specific molecular network can
be formed. This interaction can take place either on the basis of strong or
week physical associations of biomolecules, as well as indirectly, by means of
diffusible molecules binding to other biomolecules, such as proteins, at distinct
locations. Hence, biomolecular networks are characterized by a non-random
spatial context of their molecular elements. Consequently, any biomolecular
network exerting a concrete cellular functionality obeys rules of topologically
defined assemblies of biomolecules —a spatial code (toponome) enabling a
directed action, such as a specific information flow across a pathway. The
toponome contains the code of conduct exerting these functionalities. Topo-
nomics [25] is a discipline in systems biology, cell biology and histology,
concerning the study of the toponome of organisms [14]. The human to-
ponome project comprizes the complete decoding of the human toponome of
20,000 different proteins on a large scale of cell types, tissues and diseases
[18] (www.huto.toposnoms.com).

2 TIS imaging can break the spectral limit and the resolving power
of epifluorescence microscopy

Since the first description of the technology in 1990 [24] we look back to
many technological and conceptual developments and biological insight, some
of which are featured in Fig. 1. First, the only way to assess the combina-
torial molecular structure of large molecular systems in situ (in a structurally
intact cell or tissue) is to co-map dozens, hundreds or thousands of different
proteins/biolomecules in one and the same morphologically intact fixed cell or
tissue section.
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Figure 1: Featured Toponome maps: (a) Cover image from [1]: over 7,000 Protein
clusters in a single human liver cell; (b) Corresponding Research Highlight referring
to [1] (text of this highlight is found in Abbot A. Nature, 443, 609, 2006); (c) Cover
image from [2] showing a cell surface protein cluster network of a single human
peripheral blood T lymphocyte.

The only basic principle that can be potentially used for this task, is fluores-
cence microscopy. However, to capture the high dimensional combinatorial
molecular organization of the toponome in one and the same subcellular struc-
ture, many more proteins must be co-mapped simultaneously in a cell or a
tissue than wavelengths are available within the spectrum of the visible light
(between approx 300 and 700 nm). How to overcome this limit? The answer
came from the toponome theory of dimension-unlimited molecular imaging
[24], reviewed in [14]. This theory is based on large probe libraries (20; 50;
100; 1,000 a.s.o.), in which every probe, binding specifically to a given moiety
or biomolecule in situ is conjugated to one and the same dye, e.g. fluoresceine-
iso-thio-cyanate (FITC). More than one dye per cycle is also feasible. The
principle then implies, that a caged robot runs automated and preprogrammed
repetitive cycles of (i) probe-dye incubation on stage of an epifluorescence
microscope; (ii) imaging the resulting signal; and (iii) inactivation of this
signal by means of soft fluorescence bleaching (or inactivation using an appro-
priate agent) (patents reviewed in cite14). Fig. 2 illustrates this principle from
cyclical data acquisition to 3D toponome mapping. This theory, based on the
so called “Venice” and the “sunlight” hypotheses of dimension- and parameter-
unlimited molecular imaging has been experimentally verified after having
developed several generations of corresponding robots (multi-epitope-ligand-
cartography, MELC, and toponome imaging systems, TIS) together referred to
as imaging cyclers [1], reviewed in [12, 14].
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Figure 2: Cyclical assessment of many protein signals in one sample and spatial
TIS digital imaging of multi-protein clusters on the cell surface. An example of
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the cyclical TIS procedure on peripheral blood mononuclear lymphocytes (PBML)
is shown to obtain a 2-dimensional (a - d) and a 3-dimensioal toponome map of cell
surface multi-protein clusters (e) including an example of their functional annotation
(g-j). (a) Altogether 9 TIS cycles, with 2 dye-conjugated probes/antibodies per cycle
(FITC, PE as dyes), were run to label 18 different cell surface proteins in one fixed
cell sample. The labelled proteins are specified on the right of (b, vertical list). (A, A´,
A´´): The same probe library was used to run three repetitive TIS cycles on the identi-
cal cell sample (A through A´´), while the sequence of cycles remained unchanged (so
called repetitive forward runs). Specificity of protein tagging at any location and lack
of sterical hindrance of antibody binding during the TIS procedure is verified by (i)
aligning each signal horizontally (A though A´´) and (ii) quantifying correlated signal
intensities of the resulting pixel data set by means of mathematical methods: Note -
by comparing A, A´, and A´´ (repetitive forward TIS runs) - that signal locations are
identical from A through A´´ (horizontal panel of images), while the signal intensities
decline due to progressive saturation of the corresponding antibody binding epitopes.
Such sets of routine TIS validation procedures, involving repetitive forward, inverted
and permuted TIS runs provide further evidence for quantitative precision of TIS. It
is part of the so called logic high-end calibration procedure of TIS. (b) Illustration of
the process of toponome mapping by depicting two cells (b, vertical lines 1 and 2;
cells magnified and aligned in b´). Overlay and alignment is used to set thresholds for
each fluorescence signal (d, expert based or automated) in order to identify regions
of multi-protein clustering (CMPs) and the corresponding CMP-motif in (c), color
decoding list in (d). (e) 3-D toponome map of a single CD4-PBML obtained by
optical sectioning during TIS imaging: 32 TIS cycles were run at each out of 20
different optical planes across the cell (probe/antibody library in (f). (g) CMP 1 -
3 are extracted from several thousand CMPs per this cell in total to illustrate which
proteins (g, top line) are differentially associated as single protein clusters (CMPs) on
the cell surface (e, asterisks 1 to 3 correspond to CMP 1 to 3 in g). (h-j) Illustration of
the supramolecular assemblies (CMPs) revealed by TIS in (e, asterisks 1 - 3) by using
a spatial model of the single co-mapped transmembrane proteins (h-j: corresponding
to asterisks 1 to 3 in e, respectively). The corresponding cell surface structure in h to
j of the single proteins was reconstructed after [7]. Note that non threshold-based TIS
is illustrated in Fig. 4 (with kind permission from Springer Verlag, [14])

Second, the biological validation of this principle was given in many studies
having shown that this technology can solve key problems in biology and
medicine (reviewed in [9] and [14]).

For example it was shown in an early application [26] that endothelial cells
invade the endomysial tube in humans during muscle regeneration, where they
transdifferentiate to generate myogenic stem cells regenerating the ruptured
muscle segment inside the endomysial tube formed by basal lamina structures.
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This detection of transdifferentiation of adult endothelial cells to form muscle
stem cells inside human tissue was confirmed by several experimental studies
and has been further developed as novel cell therapy model to treat neuro-
muscular diseases. These latter and the consecutive achievements have been
recently reviewed [14]; Similarly, it has discovered a new target protein in
amyotrophic lateral sclerosis by hierarchical protein network analysis, a find-
ing that has been confirmed by a mouse KO model. Moreover, it has uncovered
a lead target protein in tumour cells that controls cell polarization/metastasis
[1, 7], and (iv) it has found a new target protein that controls chronic neuro-
pathic pain, a finding that has been confirmed by an independent KO mouse
model [1]. Current research surprisingly showed that toponome fingerprinting
of peripheral human blood lymphocytes can detect progressive neurological
disease 5 years prior to its clinical onset (Schubert W, personal communication,
to be published) and that a monogenetic disease can be successfully treated
by conversion of the genotype specific toponome code into normal by using
a small non toxic drug (M. Ruonala et al., personal communication, to be
published). Together these technological, biological and clinical validations
show that MELC/TIS is a mature technology able to decode subcellular disease
mechanisms, find novel drug targets and also novel efficient drugs, directly
at the target sites of disease inside human tissue (biopsies and/or surgical
material).

3 Basic structural and functional units of the toponome

As any system the toponome is composed of subunits (functional entities) on
different scales - CMPs, CMP motifs and CMP superfamilies (Fig. 3) [3, 14].
Both the protein hierarchy and the lead proteins detectable within these struc-
tures are key to predictivity and therapeutic efficiency, as revealed by topo-
nomic studies: Lead proteins, detected by protein co-mapping on the surface
of tumour cells, can be first order key target molecules, because they control
both the subcellular topology and the function of large cell surface protein net-
works, as revealed by the toponomics derived detection of the Aminopeptidase
Polarisation Control Network (APOCON): if the detected cell surface asso-
ciated lead protein (CD13) is blocked or inhibited by a small molecule, the
corresponding protein network, which is arranged along the cell surface mem-
brane completely disassembles, leading to loss of function of the tumor cell
to enter the explore state from the spherical state, and thus is inhibited to
metastasize [1, 7]. This observation has indicated that the detection of lead
proteins in situ (rather than by ex vivo large scale expression profiling) can
be an essential first step in the drive to develop efficient therapies, by using
the hypothesis free toponome decoding approach. Principally, toponomics has
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the ability to detect relevant lead proteins on a large scale of human proteins
in any type of tissue, by using a variety of threshold based and non-threshold
based methods to capture the high dimensional combinatorial molecular code
of protein systems, and in millions of subcellular data points simultaneously
(reviewed in [14]). For example, it was possible to detect more than 2,000
different protein clusters in a single tissue section of prostate cancer [6] and
more than 5,000 different protein clusters in colon cancer in situ [8]. This
has shown that cancer mechanisms are often restricted to subcellular protein
rearrangement rather than up or down regulation of their abundance [9, 13, 14].
This is not detectable by ex vivo expression profiling.

Figure 3: Schematic illustration of the topological and functional hierarchies of
proteins within the toponome. (a) In a biological system, such as a cell or tissue,
an arbitrary number of distinct proteins (symbols in the top line) can form different
combinatorial molecular phenotypes (CMP 1, CMP 2,...) at one or several subcellular
data points. They can have features in common, thereby forming a functional group
termed CMP motif, with: L, lead protein(s) (common to all CMPs of a CMP motif); A,
absent protein(s) (absent in all CMPs of a CMP motif); W, wild card proteins (proteins
that are variably associated with the (L) and the (A) proteins of a motif [1, 5]). (b)
Functional hierarchy of CMPs grouped into CMP motifs, CMP motif families, CMP
superfamilies a.s.o., having at least one lead protein in common. (with kind permission
from Springer Verlag, [14])
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The fundamental aspect of the technology related to the decoding capability of
protein networks and detection of their selectivity and specificity inside intact
tissues is its power of combinatorial molecular discrimination (PCMD) per
subcellular data point. For example, if a TIS measuring procedure comprizes
the co-mapping of 100 distinct protein and carbohydrate moieties, the resulting
PCMD is 2100, under the prerequisite that every fluorescence signal of any
given moiety out of these 100 distinct moieties is registered as being present
or absent relative to a threshold (automatically determined, or determined by
experts: 1 bit per protein [1]), reviewed in [14]. Given the signals are registered
without any threshold by using an approach termed similarity mapping (SIM)
[9], the resulting PCMD is 256100 per data point [9] (Fig. 4). This TIS-SIM
approach is entirely performed in real time, allowing the histologist to use it
like an electronic microscope in parallel with normal bright field microscopy
in routine histological diagnostics, to detect pixels which express the identical
protein profiles by being highlighted, while the manually controlled cursor
is moving across the tissue [9]. Fig. 4 gives an example showing the high
PCMD of 256100 per data point discriminating between the three layers of the
basal lamina of the skin, having a diameter of altogether 120 nm, as known
from transmission electron microscopy. This dimension is rather stable for
all basal laminae across all human tissues, as well as for the ultrastructurally
distinguishable three basal lamina (BL) layers: lamina lucida, lamina densa,
and lamina fibroreticularis. As shown in Fig. 4, TIS-SIM can resolve all
these three layers by co-mapping 100 distinct proteins at these sites. This
indicates that TIS overcomes both the spectral limit and the resolving power
of traditional fluorescence microscopy. In the present example, the resolving
power of approx. 40nm is sufficient to discriminate the three layers of the BL.

Together, the information content of TIS data sets is orders of magnitudes
greater than that of ex vivo large scale molecular profiling or low content few
parameter fluorescence imaging [9, 14]. This is underscored also by many
3D toponome imaging data, for example by the toponome of peripheral blood
lymphocytes (Fig. 2 e; Fig. 1,(c), cover story).

4 TIS detection of skin lamina densa as a giant supermolecule

TIS-SIM data show that the lamina densa is a giant supermolecule which is
unique for this BL layer and inherently different from the suprabasal epidermis
and the infrabasal dermis. This is indicated, because only the pixels which
belong to the lamina densa structures are highlighted in the same color, dis-
playing the identical protein profile alongside the whole lateral extension of
this band like structure (Fig. 4, d, green profile). Hence, the pixel protein
profiles highlighting the lamina densa is specific and selective for exactly this
site.
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Figure 4: Dermoepithelial junction in human tissue: Visualization of the basal
lamina densa as a giant stoichometrically controlled supermolecule. Compare low
resolution traditional triple fluorescence microscopy (b) with 100-parameter TIS im-
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age (c) and with corresponding transmission electron micrograph (TEM) (a) indicating
that only the functional super-resolution of TIS microscopy (c) can capture the basal
lamina densa (LD) as a giant supermolecule at a resolution close to that of TEM: TIS
can distinguish the lamina densa (DD) from the lamina lucida (LL) as well as from the
basal ceratinocyte (BC) layer, and the lamina fibroreticularis (LF). The protein profile
of the corresponding 100 component supermolecule expressed in the LD is seen in
(d, cluster 2, green), which is different from that expressed in the BC layer (d, cluster
1). Bar: 50 nm (a). Note that images in (b, and c) are simultaneously taken from a 5
micron thick diagnostic frozen human skin tissue section (biopsy material).

Moreover, the highlighted pixels (Fig. 4, green profile) extend across many
hundred microns, and the protein profile as well as the relative abundance of
the co-mapped proteins is not altered across this site. This indicates that (i)
there must be a highly controlled stoichiometry of the co-mapped proteins and
of associated carbohydrate structures and (ii) the detected structure is a giant
supermolecule expressed as a specific trait of the lamina densa. This has many
important implications for the understanding of the system of biomolecules
in human tissues in vivo/in situ in general: (i) The TIS technology is able
to detect supermolecules inside cells and tissues at high functional and struc-
tural resolution; (ii) this technological advance enables researchers to uncover
practically all existing modes and rules of the topological and functional or-
ganization of protein networks on a large scale of all human proteins across
human tissues and diseases in sequential arrays of TIS hypercycles (to be
published elsewhere); (iii) the TIS approach can be interlocked with genome
sequencing. Hence, genome analysis can be combined with the analysis of
the genome´s downstream “operational level“, which is the toponome, while
the toponome has its own spatial coding rules. This serves to understand the
interrelationship between genome and toponome structures and functionalities
in the same tissues directly.

5 International TIS clusters as virtual factories decoding the to-
ponome

For this purpose TIS clusters will be established as virtual factories both inside
any given facilities, but also as virtual factories, by linking several TIS robots
located in distant sites (details to be published elsewhere). This will allow a
rapid progress of decoding disease mechanisms and fundamental biological
processes by combining specialized institutions worldwide. It follows the
concept of both fostering and integrating different biological and other grown
scientific cultures, such as mathematics, to rapidly gain biological insight.
It is believed that the resulting power of functional insight and progressive
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understanding will most likely lead to the discovery of the specific mechanisms
driving chronic diseases inside the corresponding tissues.

6 Treatment of chronic diseases. Is there a logic of failure?

The steadily increasing inefficiency in treating chronic diseases —in spite
of elegant and logic molecular biological studies and helpful applied math-
ematics —has recently evoked urgent warnings (World Alzheimers Report
2011, [20], commented in [19]). The overall question asked by seriously
worried scientists and editors is “Where are we going wrong” [22], and similar
concerns have been formulated by others [10, 11, 15], whilst the disillusioned
pharmaceutical industry closes discovery facilities and dismisses thousands of
employees. Surprisingly, corresponding early warnings in a report entitled
“The fruits of genomics” (Lehman brothers and Mc Kinsey 2001) [21] were
totally disavowed by the scientific community, whilst the very cause of the
problem is obviously not yet known, and many concerns about the ongo-
ing trend of high drug attrition rates in cancer [22] and failures in treating
Alzheimers disease [23] remain without clear cut solutions. Obviously, the
many elegant logic molecular cell biological and model studies with their
convincing scientific rationales failed when the corresponding concepts were
translated into Alzheimer´s therapies [23], and similar experiences exist in
the field of cancer research [11, 22]. This indicates that the logic of current
scientific practice, with well established cell biological and animal models,
does not match the logic of chronic disease itself. Why?

A thought experiment (Gedankenexperiment): Given the giant supermole-
cule detected as specific and selective trait of the lamina densa in the skin
(hence present in a morphologically intact tissue) (Fig. 4): If this shown set of
100 distinct biomolecules and the specific stoichiometry of these molecules
inside this structure would not be known, but only ex vivo large scale ex-
pression profiles of the skin (from tissue homogenates) would be known, is
it then possible to predict from this ex vivo profile the exact composition and
stoichiometry of this lamina densa specific supermolecule, while predicting
at the same time that other structures around (lamina fibroreticularis, lamina
lucida, basal keratinocytes etc: Fig. 4) do not express it? The answer, of course,
will most likely be negative. But let us further assume that this mentioned
supermolecule would be a specific trait of a given cancer in situ, and further
that this feature would be the very structure to be selectively targeted by a
drug, it is clear that the corresponding selective drug will never be found by a
rational approach on the basis of ex vivo profiling or ex vivo models. This is
simply due to the fact, that the information content of the specific composition
and topology of supermolecules in tissues is orders of magnitudes greater than
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that of ex vivo expression data, and therefore cannot be predicted by ex vivo
expression profiles, or current cell biological or any other models.

7 Toponomics: decoding and treating diseases within the con-
text of histology

An interesting question: why did systems biology leave the tradition line, or,
even never regarded the tradition line from the beginning: a line defined by the
principle of histology founded by its pioneer Marcello Malpighi (1628 -1694),
which has driven medicine into the successful anatomy based discipline? Why
was histology as the very structural basis and historically successful field of
diagnostics and research in human medicine left, or, even never regarded,
in modern molecular systems biology as being important for understanding
diseases? One of the obvious answers appears to be the widely accepted, but
not uncontroverted view [10] that enormously large ex vivo data sets, such
as genomics data or ex vivo expression profiling data sets, might bring about
enough and even more functional insight than any structure bound information
inside tissues. Not surprisingly, the resulting data sets, having no relationship
to subcellular functional topologies, became so large that secondary technolo-
gies and algorithms had to be developed which “look on these data and explain
them”, and so forth: this system became self referential, establishing a new ex
vivo data driven medical research, thereby accelerating the divergence between
traditional microscopic anatomy and the new ex vivo disciplines. But: isn´t a
cell or a tissue a large molecular pattern formation apparatus with clear cut
topological rules of order to encode function? Don´t we need to understand
these topology based modes and rules in all detail to find the Achilles´ heels
of chronic diseases? And: can these fundamental principles be understood at
all by reducing the cell to a large collection of biomolecules? Toponomics,
having been developed independently from the routes of ex vivo large scale
technologies, can contribute to revert this divergence, by reading out molecular
systems as functional entities of morphologically intact tissue, thereby inte-
grating the subcellular topology of protein network codes with large scale ex-
pression profiling. Toponomics technology was entirely histology based from
the beginning of its invention [24] and, since then, looks back on a 22-years-
old tradition of corresponding molecular histology. It builds on a strength that
lies in the ability to detect disease specific supramolecular features and events
without a priory mechanistic or molecular knowledge. It is largely hypothesis
free. For this a high subcellular resolution generated by extreme dimension-
unlimited PCMDs is mandatory (Fig. 4). The present status within the human
toponome project allows researchers to systematically run large TIS clusters
as worldwide virtual factories to decode the complete toponome of human
proteins, and interlock these clusters with genome sequencing.
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1 Abstract
Metabolism is the set of enzyme-catalyzed biochemical reactions that occur
in all cells of all living organisms. These reactions, often numbering in the
order of thousands, operate together as a network to progressively transform
chemicals from the surrounding environment into the energy and chemical
species needed by the cells. While knowledge on metabolic reactions has
been slowly accumulated for a few model organisms over the past century,
the advent of genome sequencing and annotation now enables to transfer part
of this knowledge to new organisms and quickly draft their own metabolic
networks.

In this course, we will present current resources and tools for automatic
and expert annotation of genomic object involved in metabolism and for re-
construction of the metabolic network of a newly sequenced organism, with a
bias toward microbial species. The focus will be put on the comprehensiveness
of the reconstruction, in the aim of identifying as exhaustively as possible
the metabolic capabilities of the studied organism with a focus on resources
and tools available in Microme. Microme, a 15-partner project funded by
the Framework 7 programme of the European Commission, is a new bioin-
formatics infrastructure for the curation and integration of bacterial reactions
and pathways, for genome annotation and for the reconstruction of metabolic
networks.

2 Introduction, overall reconstruction process
Many applications motivate the reconstruction of global metabolic networks.
From a descriptive point of view, they provide an overview of all metabolic
reactions that can proceed in the cell. For instance, one can then study the
structure of the metabolic network, locate each reaction within the whole net-
work, or determine which enzymes are associated with a given metabolic
pathway. Studying networks across several organisms introduce new evolu-
tionary issues: how do metabolic pathways evolve? Various types of exper-
imental data also benefit from being integrated on a reconstructed metabolic
network [20]. Useful insights often only emerge from experimental data when
they are interpreted in the context of the whole metabolism. At a larger scale,
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studying the global metabolic network can help in relating metabolic functions
found in the genome with observed cell phenotypes, such as the ability for
the cell to grow on given chemical environments, or its tendency to excrete
particular by-products. Comprehensiveness of the reconstruction is a crucial
requirement in this type of application, as global phenotypes result from the
operation of the whole set of reactions. The size and complexity of metabolic
networks, however, often hinder direct deductions of their system-level proper-
ties, e.g. their dynamic behaviors or their global phenotypes. Such deductions
are therefore mostly performed using mathematical or computational models
of metabolism [9, 14]. An accurate knowledge of metabolic networks is here
again key in building faithful models.

In this brief article, we will cover the most useful and fundamental parts
of metabolic network reconstruction. Many more details can be found in other
comprehensive reviews, which focus for instance on practical aspects [45],
conversion to metabolic models [11], or reconstruction of biological networks
of broader types [13].

Figure 1: Iterative reconstruction of metabolic networks and models. Data extracted
from the annotation database is used to build a static metabolic network, which is then
converted to a metabolic model. Analysis of the model in regards of experimental
results allows refining the metabolic network, completing genome annotation and
formulating hypotheses that could be tested at the workbench.
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Network reconstruction generally proceeds in three steps which gradually build
and refine the metabolic network. First, information about metabolic reac-
tions is extracted from the genome annotation. Depending on the amount
of biochemical knowledge available for the organism, this step can account
for a large fraction of the reconstructed network, especially for barely studied
organisms. Then, the draft network is completed with organism-specific reac-
tions and metabolic pathways which could not be extracted from the genome
annotations. A significant amount of metabolic information is indeed present
in the literature and needs to be incorporated in the network. Finally, the
completeness of the network is evaluated and missing reactions inferred. These
three steps are described in the following sections.

From this metabolic network, scientists can design a mathematical model
that can be iteratively refined by comparing its predictions to experimental
data, thereby increasing biological knowledge on the organism.

Several platforms allow confronting experimental results against in silico
experiments. For instance, CycSim [25] supports the design of knockout ex-
periments: simulation of growth phenotypes of single or multiple gene deletion
mutants on specified media and comparison of these predictions with experi-
mental phenotypes.

Figure 2: CycSim, a web application dedicated to in silico experiments with genome-
scale metabolic models coupled to the exploration of knowledge from BioCyc and
KEGG. http://www.genoscope.cns.fr/cycsim
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3 From genome annotation to metabolic reactions
The first step of metabolic network reconstruction is mostly gene- centric.
Leveraging on the ability to predict functions for a large fraction of genes,
one can derive metabolic reactions from genes with enzymatic functions.

Thanks to dramatic improvements in genome sequencing technology, the
number of available genome sequences is quickly increasing (see http://ge
nomeonline.org for a review of past and ongoing sequencing projects).
Since genome and protein databases GenBank, CMR, IMG, MicroScope,
SEED, or UniProt for instance (see Table 1) collect genome information for
a wide fraction of sequenced organisms, genome annotation is readily avail-
able for many organisms. If not, the raw genome sequence needs to be pro-
cessed and annotated [29] using integrated annotation platforms such as Mi-
croscope [46], IMG [27] or RAST [3].

Focus on Microscope
The MicroScope platform, which provides support for the (re-)annotation of
microbial genomes and their comparative analysis (http://www.genoscope
.cns.fr/agc/microscope), currently hosts about 120 different projects
covering roughly 1660 bacterial and archaeal genomes, 866 of which available
in public databases.

Following a fully automated annotation and analysis process, data is made
available through advanced graphical Web interfaces for manual refinement
and for the exploration of comparative genomics analysis results. To these
ends, various tools are made available to the platform user, such as dynamic
procedures allowing one to analyse genomic islands, synteny conservation,
“pan” and “core” genomes within microbial species, gene and metabolic phy-
loprofiles, etc [46]. The expert annotations gathered in MicroScope (an aver-
age of 50,000 a year, created by more than 1000 curators having a personal
account on the platform) continue to improve the quality of bacterial genome
annotations.

Following the main research activities at the Genoscope (i.e, in-depth re-
examination of the metabolic functions of a bacterial organism and discovery
of novel enzymatic activities), and in the context of an European collaborative
project named Microme, recent evolutions of the MicroScope platform have
focused on the prediction and curation of prokaryote metabolic pathways. New
strategies for functional annotation of prokaryote genomes have been devel-
oped, especially a genomic and metabolic context-based inference method that
can propose candidate genes for sequence-orphan enzymatic activities [40].
Results of these strategies are now made available through new MicroScope
web interfaces. Procedures and graphical interfaces dedicated to the curation
of enzymatic activities, of Gene- Protein-Reaction associations and of pre-
dicted metabolic pathways have also been developed. Expert annotations of

128 ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY



this metabolic data are directly imported into the Microme repository to form
a core of high-confidence data used in the projection strategy (i.e, to predict
new GPRs associations and metabolic pathways in microbial genomes).

These new tools and interfaces has been applied to the functional re-annotation
of the genome of Bacillus subtilis 168, a model organism of the Firmicutes,
with special focus on the curation of gene-reaction associations derived from
experimental evidences and metabolic pathway projections. This work in-
cludes the curation of automatically predicted gene reaction associations by
PathoLogic algorithm based on MetaCyc reaction and pathway repository,
the creation of new compounds and reactions absents in MetaCyc repository
in reference databases like RHEA and CHEBI and the validation of these
new reactions associated to the corresponding CDSs, and the creation of new
metabolic pathways and pathway variants absent in public MetaCyc repository
into an internal pathway repository named MicroRefCyc that will be automat-
ically projected into other complete genomes.

Figure 3: Overview of the Microscope platform: .

https://www.genoscope.cns.fr/agc/microscope.

The easiest method to translate gene functional annotations into metabolic
reactions relies on Enzyme Commission (EC) numbers which classifies most
enzyme activities [4]. Virtually all genome annotation databases associate
EC numbers with gene functions and all metabolic databases relate existing
EC numbers with the reactions they store (see Table 1). In this process, EC
numbers act as direct links between genes and reactions.
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Name Link Comment
MicroScope http://www.genoscope.cns.fr Microbial genome

/agc/mage annotation database
IMG http://img.jgi.doe.gov Microbial genome

annotation database
CMR http://cmr.jcvi.org Microbial genome

annotation database
SEED http://seed-viewer.theseed.org Genome

annotation database
UniProt http://www.uniprot.org Comprehensive database

of curated and predicted
protein functions

BRENDA http://www.brenda- Database of curated
enzymes.info enzyme information

TransportDB http://www.membrane Database of predicted
transport.org membrane transport

proteins
Enzyme http://expazy.org/enzyme Database of

enzymatic activities

Table 1: Resources and software tools for microbial metabolic network reconstruc-
tion: Genome annotation/enzyme databases

Yet, EC numbers present several drawbacks which require using further meth-
ods. First, a small set of recently identified enzymatic activities are lacking EC
numbers, a consequence of the slow curation process of the EC classification.
Second, full EC numbers are not always assigned to gene functions, bringing
uncertainty about which activities are really predicted. And third, the speci-
ficity of enzyme activities is not explicitly defined for a few EC numbers. For
these reasons, additional tools have been developed. They either directly trans-
late textual annotations into metabolic reactions [21] or perform metabolic
annotations de novo from genome sequence [43, 32, 2]. These latter tools
do not benefit, however, from all improvements made to “classical” annotation
platforms, a limitation which may restrict their efficiency in the future.

The BioCyc collection of metabolic databases rely on a such a software,
Pathway Tools (see Table 2 and ref. [8, 21]), to build metabolic networks.
Pathway Tools actually contains a module called PathoLogic which combines
EC numbers with textual annotations and knowledge of metabolic pathways to
infer metabolic reactions from genome annotation.

In order to solve those problems, reactions are now resolved not necessarily
through their EC numbers but using of reactions database such as Rhea [1].
Rhea is a manually annotated database of chemical reactions; each reaction
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Name Link Comment
ChEBI http://www.ebi.ac.uk Database of chemicals of

/chebi biological interest
Rhea http://www.ebi.ac.uk Manually annotated database of

/rhea chemical reactions
BioCyc http://www.biocyc.org Collection of organism-specific

metabolic databases
MetaCyc http://www.metacyc.org Multiorganism, curated metabolic

pathway database based on
BioCyc

MicroCyc http://www.genoscope. Collection of organism-specific
cns.fr/agc/microcyc metabolic databases based on

BioCyc, for all organisms in-
cluded in MicroScope. (more
than 500 organisms available)

Reactome http://www.reactome.org Curated database of metabolic
pathways.

Microme http://www.microme.eu A specific instance of Reactome
dedicated to microbial world and
a web portal to tools and res-
ources of all Microme partners.

KEGG http://www.genome.jp Comprehensive database of
/kegg compounds, reactions, metabolic

pathways, and genes/proteins
UniPathway http://www.grenoble Database of curated metabolic

.prabi.fr/obiwarehouse pathways, linked to UniProt
/unipathway proteins

UM-BBD http://umbbd.msi Database of microbial
.umn.edu biodegradation pathways

Table 2: Resources and software tools for microbial metabolic network reconstruc-
tion: Metabolic databases

is defined by its chemical equation: list of compounds and their associated
stoichiometry (and eventually its compartment origin in/out for transport re-
actions) In Rhea, each compound is mapped to a compound of ChEBI [28],
a database of chemicals of biological interest, ensuring that the reaction is
balanced, unique and mapped to the real catalytic activity. Furthermore, each
gene or protein functional annotation must be directly linked to their cor-
responding reaction(s). Several initiatives now focus on directly specifying
metabolic reactions during the genome annotation step. The SEED system
already associates genes to their metabolic roles [10], and UniProt is formaliz-
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Name Link Comment
BIGG http://bigg.ucsd.edu Biochemical Genetic and

Genomic knowledgebase of large
scale metabolic reconstructions

The Model http://www.theseed.org A resource for the generation,
/models

SEED optimization, curation, and
analysis of genome-scale
metabolic models.

BioModels http://www.ebi.ac.uk A repository of peer-reviewed,
/biomodels-main published, computational models

CycSim http://www.genoscope. An online tool for exploring and
cns.fr/cycsim experimenting with genome-scale

metabolic models.

Table 3: Resources and software tools for microbial metabolic network reconstruc-
tion: Models databases

Figure 4: For instance, the reaction with EC#3.1.3.23 is not fully defined in
MetaCyc: the main substract/product is labeled as Sugar-phosphate. Integrating this
reaction needs to resolve which sugar-phosphate is the enzyme substrate.

ing the description of metabolic functions with the UniPathway resource [30]
(see Table 2).

Thanks to such initiatives, the process of translating gene functions into
metabolic reactions is likely to become much easier in the future. A new
module in Microscope platform has been developed in order to directly link
the MetaCyc reaction to gene without using the EC number as a key. This
feature allows flagging the relationship between gene and reactions with the
following evidence tags:

• “validated” : reaction has been manually linked to this gene by users,
• “annotated” : reaction has been linked to homologous gene and trans-

ferred here from a close genome,
• “predicted” : reaction has been linked to this gene by the pathway-tools

algorithm.
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Name Link Comment
Pathway Tools http://bioinformatics.ai.sri. Automated reconstruction
/Pathway com/ptools/ of metabolic pathways
Hole Filler from genome annotation

and MetaCyc pathway
database. Pathway Hole
Filler: identification of
candidate genes for orphan
metabolic activities

OptFlux http://www.optflux.org An open-source software
platform for in silico
metabolic engineering

YanaSquare http://yana.bioapps Software helping in
.biozentrum. metabolic model
uni-wuerzburg.de reconstruction, linked

to KEGG data
GEMSiR http://sb.nhri.org.tw/ A software platform for

GEMSiR genome-scale Metabolic
models Simulation,
Reconstruction and
Visualization.

Cobra tool http://opencobra. Quantitative prediction of
box sourceforge.net cellular metabolism with

constraint-based models
SurreyFBA http://sysbio3.fhms.surrey. A command line tool and

ac.uk/SurreyFBA.zip graphics user interface for
constraint-based modeling
of genome-scale metabolic
reaction networks

Table 4: Resources and software tools for microbial metabolic network reconstruc-
tion: Software tools for metabolic network reconstruction

A critical point in metabolic model reconstruction is the ability to distinguish
isozymes from enzymatic complexes because the impact of a gene deletion will
not have the same consequences. If the deleted gene belongs to a complex, the
enzymatic activity will be lost, whereas in the case of isozymes, the enzymatic
activity will remain present in the cell due to the existence of a “redundant”
enzyme. Protein complexes could be built manually from literature or inferred
by homology. One strategy is to use a pivot organism: for each protein com-
plex experimentally demonstrated in the pivot organism, a similar complex is
inferred in the studied organism if, for each subunit of the pivot complex, a
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Figure 5: This field allows user to link one or more metabolic reactions from
MetaCyc (BioCyc) to the current edited gene. A - Reactions presented at the top of the
field have been manually curated by an annotator. B - A multiple selection list gives
quick access to all predicted (unselected) or curated (selected) reactions linked to this
gene. C - A search box allows one to quickly access MetaCyc reactions corresponding
to either EC numbers from previous EC number field or a given keyword.

Figure 6: Protein complexes and isozymes representation in EcoCyc. At the right
end, the genes (purple boxes) are translated into polypeptide (first orange circle).
These polypeptides are able to make protein complexes that can aggregate to form
the final catalyst.

candidate polypeptide can be detected by homology (e.g. Blast alignments
with /bidirectional/ best hits) [47]. Finally, transport reactions are key re-
actions to be integrated to the metabolic network. They allow defining the
interface between the cell and the environment. TransportDB provides tools to
annotate a genome by finding the transporters.

4 Adding organism-specific metabolic pathways
Using an organism-specific metabolic pathways resource is a key point in
delivering a well annotated network. Some databases enable to annotate the
existence of each pathway: this is the first step to define an organism-specific
metabolic pathways resource. Microscope platform provides the Pathway
Curation tool which presents a list of predicted MicroCyc pathways in a given
organism, coming from Pathway-tools software results, for which status can
be curated by the annotator. Each pathway could have the following evidence
status:

• predicted: Predicted by the BioCyc pathologic algorithm (default one),
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• validated: Curated as a functional pathway (all the reactions of the path-
way are supposed to exist in the organism),

• variant needed: The predicted pathway is not completely correct for the
organism (i.e. some reactions may not be present in the organism but
no better pathway definition exists in MetaCyc). Thus, a new pathway
variant definition is needed,

• unknown: Not enough evidence to declare the pathway as functional
(i.e. validated status),

• non-functionnal: The pathway has been lost in the organism and is no
more functional (i.e. due to gene loss or pseudogenisation events),

• deleted: Curated as a false positive prediction.

Figure 7: Main overview for Pathway Curation tool in Microscope.

Nevertheless, not all information on an organism’s metabolic network can be
found in its genome annotation. Previous experimental studies of its metabo-
lism may well have identified metabolic pathways for which the corresponding
genes remain unknown (e.g. an alanine biosynthesis pathway in E. coli, see
http://biocyc.org/ECOLI/NEW-IMAGE?object=PWY0-41) or whose
functions were not correctly propagated into their annotations. Also, not all
metabolic pathways are represented in global metabolic databases, which are
being built by reviewing the past literature, a still ongoing process.
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Figure 8: In EcoCyc, the allantoin degradation IV (anaerobic) presents a reaction
(EC# 2.1.3.5) that do not have any associated enzyme protein.

For these reasons, the draft metabolic networks generated from genome anno-
tation need to be curated and completed with the maximum amount of addi-
tional organism-specific biochemical information. Such information is mainly
found in the literature, but also in some specialized biochemical databases.
For instance, BRENDA extracts information on enzymes directly from the
literature [23] and UM-BBD stores useful information on numerous microbial
biocatalytic activities and biodegradation pathways [12] (see Table 2).

When including new reactions into the draft network, one must remain
consistent with the reaction metabolite identifiers. Given the size of the meta-
bolic networks, this technical issue is critical as designating a given metabolite
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with distinct identifiers would prevent from finding connections between reac-
tions that share the metabolite, and therefore would hinder the identification
of pathways. Similarly, mathematical models of metabolism crucially depend
on a consistent naming of metabolites. This issue is better solved by system-
atically referring to a unique database of metabolites, be it KEGG, MetaCyc,
ChEBI or PubChem (see Table 2). These databases usually cross-reference
their entries.

Figure 9: Interactive overview of Escherichia coli K12 metabolic net-
work. Screenshots from EcoCyc [19] .

(http://ecocyc.org/overviewsWeb/celOv.shtml)

As regards software tools enabling curation of genome-scale metabolic net-
works, very few of them are currently available. Again, Pathway Tools pro-
vides an interface to curate, extend and visualize a locally reconstructed metabolic
network [12] (see Figure 1). YanaSquare imports metabolic networks auto-
matically generated in KEGG and allows curating it using a spread-sheet-like
interface [38]. OptFlux [35] allows importing metabolic models in System
Biology Markup Langage format [19]. General metabolic databases such as
KEGG or SEED provide tools to visualize their reconstructed network, but do
not allow curation.

Initiatives are being taken to develop further network curation tools (see for
instance the EU-funded project Microme, http://www.microme.eu) and
more convenient solutions will be hopefully available in a near future.

5 Identifying and filling gaps in metabolic networks

Once a global metabolic network is obtained, its completeness can be assessed
by examining it globally or at the pathway level. Incomplete metabolic path-
ways, reactions disconnected from the rest of the network, or metabolites that

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 137



are only produced and never consumed (so-called dead-end metabolites) are
actually as many clues that the reconstructed network include gaps that need to
be filled for the network to represent a consistent functioning set of metabolic
pathways.
A few methods have been designed to identify and fill such metabolic gaps.
Pathway Tools makes use of predefined metabolic pathways: each pathway
that is almost complete in the metabolic network is considered to be entirely
present. The few missing reactions are therefore added to the network, thereby
filling the gaps in the pathway [21]. Other more elaborate methods make use of
graph- based or constraint-based mathematical representation of the network
(see ref. [11] for a more thorough review). The GapFill method for instance
attempts to fill metabolic gaps by adding minimal sets of reactions from a
reference database that remove dead-end metabolites [36].

Figure 10: Screenshot of the CanOE Web interface. This metabolon is composed
of 6 reactions (red and yellow) covering the complete pathway for the anaerobic
degradation of allantoin, in which one reaction is orphans in E. coli (yellow):
oxamate carbamoyltransferase (OXTCase). The missing activity in E. coli K-12
(the OXTCase) has yet to be associated to any genes in any organism and is thus a
global orphan activity, despite its presence having been biochemically demonstrated
in Streptococcus allantoicus, and even reported in E. coli. The CanOE metabolon
bearing this reaction contained 5 gap genes (ECK0506-507 and ECK0511 to 0513
gray, blue and green) that could serve as candidate genes. The link between a reaction
and a gene could be experimentally demonstrasted (green) or proposed by CanOE in
purple.

Reactions that are inferred by pathway projection process constitute orphan
activities, for which no related gene is known [26]. Additional methods have
therefore been introduced to identify genes for orphan activities. While bioin-
formatic tools may help in identifying suitable candidate genes (e.g. Path-
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way Hole Filler [17], implemented in Pathway Tools), promising experimen-
tal setups are being developed to systematically screen gene enzymatic func-
tions [11, 7]. CanOE (Candidate genes for Orphan Enzymes) is a four-step
bioinformatics strategy that proposes ranked candidate genes for sequence-
orphan enzymatic activities (or orphan enzymes for short) [40]. The first
step locates “genomic metabolons”, i.e. groups of co-localized genes coding
proteins catalyzing reactions linked by shared metabolites, in one genome
at a time. These metabolons can be particularly helpful for aiding bioan-
alysts visualize relevant metabolic data. In the second step, they are used
to generate candidate associations between un-annotated genes and gene-less
reactions. The third step integrates these gene- reaction associations over
several genomes using gene families, and summarizes the strength of family-
reaction associations by several scores. In the final step, these scores are used
to rank members of gene families which are proposed for metabolic reactions.
These associations are of particular interest when the metabolic reaction is a
sequence-orphan enzymatic activity. The CanOE strategy has been integrated
in the MicroScope platform and is available at this URL:
http://www.genoscope.cns.fr/agc/microscope/metabolism/canoe.php.

6 Toward mathematic models of genome-scale metabolism

The end result of the network reconstruction process should be a comprehen-
sive, consistent, and organized listing of metabolic reactions. It should provide
an accurate overview of the organism’s metabolism, especially when linked to
convenient visualization software.
Reasoning on the metabolic network, however, requires going a step further
as its size and complexity prevent from performing simple predictions from it.
Several mathematical modeling frameworks have therefore been proposed to
formalize metabolic networks, perform systems-level predictions and integrate
various types of experimental data. Reviewing these frameworks would be out
of the scope of this short article, and has already been extensively covered
elsewhere [20, 41].

Deriving a metabolic model from a reconstructed network usually necessi-
tates collecting additional data on reactions and metabolites and further check-
ing their consistency. For instance, constraint-based models, which are widely
used for genome-scale modeling, critically rely on stoichiometric coefficients
and reaction reversibilities. Since subsequent model predictions directly de-
pend on these data as well as on the correctness of the metabolic network,
specific care should be taken when creating models from metabolic networks.
Here again, the model reconstruction issue has been largely covered in a few
reviews [11, 13].
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Figure 11: Standard protocol to design network and model from genome annotation.

7 Practical application: Functional re-annotation of Bacillus sub-
tilis 168 genome

The complete strategy presented in the previous sections for the reconstruc-
tion of global metabolic networks from annotated genome sequences has been
applied in the context of Microme project to the functional re-annotation of
the genome of Bacillus subtilis 168 [6]. B. subtilis is considered a model
organism for Gram-positive bacteria, forming part of the Firmicutes, a ma-
jor phylum of the bacterial domain of life. Its genome was one of the first
bacterial genomes that were completely sequenced in 1997 by an interna-
tional consortium comprised by some 30 groups that sequenced and annotated
different chromosomal segments covering the whole B. subtilis genome (4.2
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megabases and 4100 protein coding genes in this original annotation) [22].
This initial annotation has been continuously updated in-depth, and in 2009,
the genome was completely re-sequenced and re-annotated at the GenoScope,
increasing the number of protein coding genes to 4244 CDSs, 48 percent of
them with identified functions [5]. In parallel, at present 3 different genome-
scale metabolic models of B. subtilis 168 has been published by different
groups, based on the two most common pipelines for model reconstruction, the
Biochemical Genetic and Genomic (BIGG) knowledbase [33] and the model
SEED pipeline based on subsystem annotations stored in SEED database [18].

The different genome annotation projects does not considered explicitly
gene annotation at the reaction level, meaning the specific associations of
genes coding for enzymes to the biochemical reactions catalyzed by these
enzymes, a basic step in the reconstruction of genome-scale metabolic net-
works and a starting point for the mathematical modeling of metabolic sys-
tems. This has been the primary goal of the last re-annotation of B. sub-
tilis genome carried out in the context of the European FP7 project Microme
(http://www.microme.eu/). Starting from the 2009 annotation, annotations
from publications appeared after the 2009 sequence release as well as annota-
tion of novel genomic objects like small untranslated RNAs, riboswitches and
small CDSs has been integrated into MicroScope platform, putting specific
emphasis on metabolic discoveries supported by experimental evidence. For
this purpose, the metabolic network was generated by combining the auto-
matic and manually curated annotations of B. subtilis stored in MicroScope
by using Pathway Tools V16.0, the BioCyc pathway reconstruction software
[24], and automatic pathway projections and gene-reaction associations were
subsequently manually curated in the MicroScope environment by using the
different tools and curation interfaces described in the previous sections. This
curation step is essential in order to avoid over-predictions of the algorithm
(multiple reactions associated to a particular CDSs) consequence of general
or unclear annotations or unspecific EC number associations. In addition,
automatic projections frequently render incomplete metabolic pathways with
holes at different levels that can be consequence of false positive projections
of the algorithm or can reflect missing enzymatic activities in current genome
annotation (orphan enzymatic activities).

Manual curation at this level implies the search of candidate genes for these
missing enzymatic activities together with the evaluation of the functionality
of the corresponding pathways by using the pathway curation interface of
MicroScope platform.

Finally, manual curation also allows the integration of novel metabolic
knowledge in terms of enzymatic reactions and metabolic pathways that is
currently absent in MetaCyc pathway and reaction repository. For this purpose,
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new chemical compounds and reactions were created de-novo in the reference
repositories CHEBI [28] and RHEA [1] respectively, these new reactions
were validated associated to the corresponding CDSs by using the new Gene
Editor interface of MicroScope, and new metabolic pathways were created
with Pathway Tools and stored into an internal pathway database named Mi-
croRefCyc. These new metabolic pathways will be subsequently projected not
only on B. subtilis 168, but also over the whole set of genomes available in
MicroScope together with metabolic pathways of the MetaCyc repository [8],
allowing to extend the metabolic knowledge stored in the platform.

As result of this last-reannotation, the genome of B. subtilis contains 4458
genomic objects (4422 in the re-annotation of 2009), with 1083 CDSs that
have been associated to 1097 chemical reactions representing a total number
of 1751 gene-reaction associations.

These associations includes 45 chemical reactions that are absents in MetaCyc
repository and that has been created de-novo in RHEA database, representing
new metabolic knowledge product of the curation process.

In terms of metabolic pathways, 164 of the 283 MetaCyc pathways that
were incomplete after initial projections were manually curated in order to
fill pathway holes and define a functional status according to the pathway
curation interface of MicroScope. As result of this curation process, 24 path-
way holes were resolved (a candidate gene could be found by using different
tools available at MicroScope platform), resulting in 22 initially incomplete
pathways with validated status in MicroScope (functional pathways according
with experimental evidence). However, in 14 of these validated pathways there
is still remaining pathway holes for which no candidate gene can be found
(12 pathway holes), representing orphan enzymatic activities that has been
experimentally detected in B. subtilis but for which no candidate genes has
been yet identified.

Finally, as result of manual curation process, 27 new metabolic pathways
and pathway variants has been characterized and represented in the MicroRe-
fCyc pathway repository. Among these new pathways, we can find a novel bi-
otin biosynthesis pathway variant that allows to connect fatty acid metabolism
with biotin biosynthesis through the oxidative cleavage of long-chain acyl-
ACP and fatty acids to biotin precursors pimeloyl-ACP and pimelate respec-
tively [16, 42], as well as other pathways related with polyketide biosynthe-
sis [31], methionine salvage [39] or purine degradation [34]. These new
metabolic pathways and pathway variants represent novel metabolic knowl-
edge that can be propagated to other bacterial genomes through the Micro-
Scope pipeline for automated metabolic network reconstruction.
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This new metabolic network of B. subtilis 168 will be used as starting point
for the reconstruction of an updated genome-scale stoichiometric model of B.
subtilis metabolism that will allow understanding how these new pathways
and reactions are integrated in the whole metabolic system of the cell. In this
sense, a comparison of the gene content of the MicroScope metabolic network
of B. subtilis 168 with the last published version of the metabolic model of
B. subtilis 168 iBSU1103V2 [44] reveals that, although we are missing a
substantial part of the model associated to transmembrane transport reactions,
we are able to increase the coverage of the metabolic model by adding a
significant number of CDSs associated to chemical reactions that are currently
absent in iBSU1103V2 model (358 CDSs associated to chemical reactions in
MicroScope, 100 of them linked to metabolic pathways).
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Glossary
• Metabolism: the metabolic network at work; often synonymous with

metabolic network.
• Enzyme: protein with catalytic activity. Synthesized in the cell by other

proteins and protein- RNA complexes.
• Enzymatic reaction: biochemical reaction catalysed by an enzyme.
• Metabolic network: The metabolic network or metabolism (which is

more the metabolic network at work) is the set of all the reactions taking
place in a cell.
• Metabolite: molecule synthesized, degraded or/and transformed in the

cellular metabolism.

1 Introduction
1.1 What is a metabolic network ?

Cells house a great number of chemical reactions, which split the nutriment
we eat in smaller molecules and produce energy (ATP molecules for instance)
from the oxygen we breathe in.

Figure 1: Cell metabolism, or the cell as an open system.
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From these molecules other reactions take place to synthesize the basic mole-
cules of the cell, such as amino-acids, nucleotides and nucleosides, lipids, etc.
These molecules have a molecular weight (MW) between about twenty (18
for water) and about a thousand (NADH, lipids, etc.; see table 1). With these
elementary molecules, the cell can synthesize several macromolecules (protein
and nucleic acid biosynthesis for instance). As a matter of fact, organisms are
built almost entirely from water and about thirty small precursor molecules
(amino acids, aromatic bases of nucleic acids, sugars, palmitate, glycerol and
choline).

All these synthesis and degradations constitute the cell metabolism or the
metabolic network or the metabolism. In addition these reactions are regulated
and the regulation network is presumably as or more complex than the cell
metabolism itself.

In this chapter, for the sake of simplicity, we will limit ourselves to the part
of metabolism which concerns the synthesis (anabolism) and the degradation
(catabolism) of the small basic molecules of the cell (amino acids, aromatic
bases of nucleic acids, sugars, palmitate, glycerol and choline etc.).
These molecules will be called metabolites in the following. We will not deal
with the regulation of the metabolic network

Figure 2: The metabolic network.
Even with all these restrictions, there remains a complex system (Fig. 2) with
about 750 reaction and about 500 metabolites, slightly variable according to
the cell type.
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Computer scientists tend to derive a graph representation of the metabolic
maps (Fig. 3). One has however to be aware that most of the metabolic re-
actions are bi-molecular, i.e. involve two substrates and two products, which
complicate the graph representation because the two products of a reaction are
usually not the two substrates of the following reaction.

Figure 3: The structure of the metabolic network (from Kyoto Encyclopedia
of Genes and Genomes). In this map, each dot represents an intermediate; each
line represents an enzyme that acts on an intermediate
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1.2 Why do cells use enzymes ?

Most of the cell reactions are either impossible in the living conditions or very
slow. Thus they need to be catalyzed. The enzymes are these catalyzers.
Enzymes are proteins, i.e. linear chain of amino acids which fold, adopting
a special conformation able to favour a particular reaction.

The molecular weight of an enzyme is usually between 10000 and 1 mil-
lion; it means the the MW of an enzyme is at least two order of magnitude
higher than those of substrates and products (however, an enzyme can also
act on other enzymes or more generally on macromolecules; we wil not deal
with these cases here); the interactions of the substrates at the surface or in
pockets of the enzyme put them in special conformations (analog to transition
complex) and in this way favour the reaction.

It must be pointed out that the specificity of an enzyme is twofold. First
there is a specificity of reaction : the enzyme E1 transforms the substrate
S in P1 and another enzyme E2 transforms the substrate S in another prod-
uct P2 etc. For instance pyruvate dehydrogenase (1.2.1.51) transforms pyru-
vate in acetyl-CoA, while lactate dehydrogenase (1.1.1.27) gives lactate from
the same metabolite pyruvate. The second specificity is the one regarding
substrates binding; for instance pyruvate dehydrogenase will bind only pyru-
vate; when metabolism needs to perform the same reaction on another sub-
strate, α-ketoglutarate for instance, another enzyme has to be designed the α-
ketoglutarate-dehydrogenase, specific of α-ketoglutarate (and not of pyruvate)
and able to perform exactly the same chemical reaction.

Figure 4: Entanglement of metabolic reactions

Let us nevertheless emphasise that specificities are not usually completely
strict. Other metabolites, more or less chemically related to the “official”
substrate are able to bind the same binding site on a given enzyme. This
specificity notion (scale) is closely related to the problem of enzymes (genes)
annotation : what is (are) the “official” substrate(s) of an enzyme? In other
words which name will be given to a given enzyme.
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Figure 5: The pyruvate cross-roads (from KEGG)
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Usually the substrate with the better affinity for an enzyme is the ”official”
one, but it is not always the case due to historical reasons. Furthermore, some
enzyme can have a wide specificity accommodating several related substrates
(for instance hexokinase with hexoses, which are the family of sugars with six
carbon atoms).

Figure 6: Enzyme folding

The last remark concerns the dimensions. On Fig. 7 are drawn, at the same
scale, an average enzyme (diameter 5nm) and an average metabolite (0.5 nm).
It is better understood how an enzyme can play its catalysing role in bending
the substrate in an adequate, reacting, conformation. Table 1 gives also some
dimension of biological objects.

Figure 7: Average enzyme and average metabolite at the same scale.
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Type Size (nm) MW Observations
Water (H2O) 0.26 18
Alanine (Amino acid) 0.5 89
Glucose 0.7 180
ATH 1.6 507 MW of acid form
NADH 741 dipotassium salt
Phospholipid 3.5 750
Myoglobin 3.6 16900 small protein
Hemoglobin 6.8 65000 medium protein
Cytochrom b 42592 part of complex of

respiratory chain
in mitochondria

Complex III 7×7×11 240000
Ribosome (E. coli) 18 2.8 106

Membrane 7-9 thickness
Lysosome 250-500
Peroxysome 500
Mitochodrion 1.5µ
E. coli 2µ 2 pg
Nucleus 4µ - 6µ
Chloroplast 8µ 60 pg spinach leaves
Hepatic cell 20µ 8µg

Table 1: Sizes of molecules and cells.

2 Enzyme kinetics
2.1 Essential concepts

In metabolism modelling it is essential to know the rates with which enzymes
catalyse the reactions. Biochemists often intermingle the reaction Ri catalyzed
by the enzyme Ei with the rate Vi; it will be sometimes necessary in modelling
to precise the variable actually under study. From analogy with the chemical
catalysis, V. Henri (Henri, 1902 and 1903) proposed that the substrate bind
firstly to the enzyme and then reacts to give the product; this scheme will be
extended later by Briggs and Haldane in a fundamental paper of one and a half
page long (Briggs and Haldane, 1925).

Modelling of this scheme in condition for which P0 = 0 (the usual condi-
tions of measurement which are different of the in vivo conditions) is written
in the following dynamical system:
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d[ES]
dt

= k1[E][S]− (k−1 + k2)[ES]

v =
d[P ]
dt

= k2[ES]

(1)

(2)

with the conservation equations:{
[E] + [ES] = [E]total

[S] + [ES] = [S]total = [S]0

(3)
(4)

List of variables (4): [E], [ES], [S] and [P] with 2 conservation relationships
→ 2 independent variables [ES] and [P] for instance.
List of parameters (3): k1, k−1 and k2.
Initial conditions: [E]0 = [E]total, [ES]0 = 0, [S]0 = [S]total, [P] = 0

Figure 8: Time course of the different species of metabolites and enzymes in
the simple enzymatic reaction: E + S ↔ ES → E + P , where Etotal =
100, Stotal = 100, k1 = 1, k−1 = k2 = 100

At the beginning (Fig. 8), S binds E to form the complex [ES] which disso-
ciates partially to form P. If the abscissa is time in seconds, one can see that
the phenomenon is too fast to be easily observed. An experimental solution
to this problem is to decrease the quantity of enzyme; because an enzyme is a
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catalyst, its quantity can be in minute amount. One get the behaviour described
in Fig. 9).

Figure 9: Time course of the different species of metabolites and enzymes in
the simple enzymatic reaction: E + S ↔ ES → E + P with low enzyme
concentration, where Etotal = 0.1, Stotal = 100, k1 = 1, k−1 = k2 = 100

The time course of P production is much longer and can be observed during
several seconds. Furthermore the P production is quasi linear, i.e. is performed
at a constant rate Fig. 9. This is due to the fact that the variation of [ES] is
weak (between 0.033 and 0.026) and cannot be seen on the graph. In these
conditions one can write d[ES]/dt = 0 which allows to derive the Henri-
Michaelis-Menten equation proposed below in paragraph 1.

It should be pointed out also that in these conditions, the first reaction
(E + S ↔ ES) is displaced from its thermodynamic equilibrium which gives
[ES]eq = [E]eq = 0.05 (Keq = [E] × [S]/[ES] = k−1/k1 = 100). This is
due to the high value of k2 which is of the same order than k−1.

In conclusion one can see that modelling with differential equations is easy.
One can model metabolic networks with hundreds of kinetic equations and
follow the time course of the metabolites concentrations towards a possible
steady-state. However such a modelling assume that the cellular medium is
homogeneous and that one can speak of concentrations, i.e. that the number
of metabolites and enzyme molecules per volume unit is high enough. This is
not always the case.
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2.2 Henri-Michaelis equation

In the conditions of Fig. 9, i.e. d[ES]/dt = 0, one can solve the system of
equations (1) to (4) shown in section 2.1, which becomes a system of algebraic
equations to obtain:

V =
d[P ]
dt

=
VM [S]0

Km + [S]0
(5)

with:
Km =

k−1 + k2

k1
and VM = k2[E]0

This rate equation due to V. Henri (Henri, 1902 and 1903) on the one hand
and to Briggs and Haldane (Briggs and Haldane , 1925) on the other hand is
usually known as the Michaelis-Menten equation.

The approximations which are underlying equation (5) are [E]0 � [S]0
and necessitate to be in a time range for which d[ES]/dt is close to zero (quasi
steady-state hypothesis). But Cornisch-Bowden & Hofmeyr (2005) properly
show that this equation does not generally apply in vivo, because, in this case
the product concentration is not zero (the product of a reaction is the substrate
of the following reaction(s)). Furthermore, in general, a reaction deals with
two substrates and two products:

A+B ↔ P +Q

One is thus conducted to write a differential system of the form:
d[EA]
dt

= kA[E][A]− (k−A + kAB)[ES]

d[EAB]
dt

= kB[EA][B]− (k−AB + k2)[EAB]

etc.

One can, according to the same sort of approximations as above, i.e. quasi
steady-state of the enzymatic species E, EA, EB, EAB etc. , propose a rather
general and suitable phenomenological equation (Chassagnole et al. 2001,
Cornisch-Bowden & Hofmeyr, 2005):

v =
VAB

[A][B]
KAKB

− VBA
[P ][Q]
KP Kq[

1 + [A]
KA

+ [P ]
KP

] [
1 + [B]

KB
+ [Q]

KQ

] (6)

or

v =

[
1− [P ][Q]

Keq [A][B]

] [
VAB

KAKB

]
[
1 + [A]

KA
+ [P ]

KP

] [
1 + [B]

KB
+ [Q]

KQ

] (7)
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KA,KB,KP and KQ, are the so called Michaelis constants for the metabo-
lites A, B, P and Q, analog to the parameter Km for the substrate S in equa-
tion (5). VAB corresponds to the maximal rate of the reaction in the direction
from A and B towards P and Q (P corresponds to A and Q to B in the reac-
tion) and VBA corresponds to the maximal rate in the reverse reaction. These
parameters are linked through the Haldane relationship:

Keq =
[P ]eq[Q]eq
[A]eq[B]eq

=
VABKPKQ

VBAKAKB

which is introduced in eq (7).
In equation (7) the first term in brackets in the numerator expresses the

distance of the concentrations [A], [B], [P] et [Q] to the equilibrium. The
second term in brackets in the numerator expresses the efficacity of the enzyme
due to its concentration and to the rate constants of products production (analog
to the term k2[E]0 in the Michaelis-Menten equation).

3 Metabolic networks
3.1 Why is a metaoblic network more than the sum of its reactions?

Figure 10: What is a metaoblic network?
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The figure 10 gives the answer. It is also illustrated by the laboratory practice.
When an enzyme is studied, one use substrate and product concentrations
(product concentration equal to zero) which are not the one encountered in
vivo. Typically in the case of Fig. 10, the first reaction will be studied at zero
concentration of the product X1, while the second reaction will be studied with
variable non-zero concentrations of X1. On the contrary in the cell, both reac-
tions are linked by X1 concentration, which, in the cell, is always the same (if
the intracellular medium is supposed homogeneous; see the discussion later).
In a metabolic network the metabolites concentrations are determined by the
network structure and the rate equations. This point is shown in the right part
of Fig. 10. In a metabolic network, the intermediate metabolites are the links
between the reactions. From the mathematical point of view one can derive
relationships between the rates by elimination of the intermediate metabolites
concentrations, so that the rate of possible rates is a one-dimensional space in
the case of example of Fig. 10 (see Fig. 11).

Figure 11: Phase space

3.2 Is cellular medium homogeneous?

The answer is most of the time probably not. Any view of a cell image obtained
with an electronic or a photonic microscope indicates clearly an heterogeneous
arrangement. Furthermore there are several examples of compartimentation
and of channelling (Agius and Sherratt, 1997).

However, most of the modelling of metabolism assume (without saying it
explicitly most of the time) that the cell medium is homogeneous. The reason
is that the same study in an heterogeneous medium is much more difficult; a
first study in an homogeneous medium can afford a first description of the main
behaviour of the metabolic network. Differential equations are well adapted to
concentrations supposed to be the same in all directions.
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3.3 Cellular metabolisme as an open system

There are two ways to approach a metabolic network as shown in Fig. 12
below:

Figure 12: Two ways of considering a metabolic network

Either as a close system, which tends towards an equilibrium with usually
several concentrations equal to zero due to (quasi) irreversible reactions. This
situation does not correspond to the cellular situation for which the external
metabolites are continuously imported and products exported. Even if one
considere only part of metabolism one use to assume that the concentration of
the metabolites outside the considered part of the network (S0 and P in Fig. 12)
are constants or produced at constant rate. In these conditions the metabolite
concentrations inside the network reach a steady-state with non zero constant
values.

3.4 The steady-state

For the calculation of the flux in a metabolic network, one use to consider that
the intermediate metabolites have a constant value, i.e. that the production
and the consumption of a given metabolite balances. This hypothesis is fairly
well experimentally verified. On periods of time lasting several minutes and
sometimes more, one can assume that most of the metabolite concentrations
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are constant. One has however to be aware that this hypothesis does not
hold when the physiological conditions are changed : rest to work transition
for a muscle cell for instance. Some pathways are oscillatory : glycolosis,
production of insulin by the β-cells in pancreas.

In the following we will accept the hypothesis of steady-state, knowing
that it is not always satisfied.

162 ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY



Analysis of metabolic networks using elementary flux
modes

Sabine Peres1

1 LRI, Univervité Paris-Sud & UMR CNRS 8623, F-91405 Orsay, France

1 Formalisation of metabolic networks

The increasing quantity of data allows us to study of complex metabolic net-
works. The traditional modelling techniques of such metabolic networks are
based on dynamical systems of ordinary differential equations allowing the
analysis and the prediction of metabolic flux distributions under diverse phy-
siological and genetic conditions. Dynamic mathematical modelling of large-
scale networks meets difficulties because the necessary mechanistic details and
kinetic parameters are not all available. However, independently of their dyna-
mics, large metabolic networks exhibit a complex topological structure which
can be studied in itself and produces already useful predictions. To understand
the phenotypic capabilities of organisms, it is useful to characterize cellular
metabolism through the analysis of pathway operations. Metabolic pathway
analysis concentrates on the stoichiometric rather than kinetic properties of
metabolic networks.

One important characteristics of a network is its boundaries. Related to this
issue is the notion of internal and external species. Internal species are those
which are explicitly considered in the network model and external species are
thought to be sinks or sources which lie outside the system. All metabolic
network with m internal metabolites and r reactions can be represented by a
stoichiometric matrix N of m rows and r columns such that :

Nij =


a number of molecules i products by the reaction j
−a number of molecules i consumes by the reaction j
0 otherwise

For example, let’s consider a simple metabolic network (represented in Fi-
gure 1) and its stoichiometric matrix N which contains the following reac-
tions :

R1 : P1→ X
R2 : X↔ Y
R3 : X→ Z
R4 : Y + Z→ P2 + P3

R5 : Y↔ P4

R1 R2 R3 R4 R5

N =

 1 −1 −1 0 0
0 1 0 −1 −1
0 0 1 −1 0

 X
Y
Z
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FIG. 1 – Metabolic network example. The metabolites X , Y and Z are the internal
metabolites and P1, P2, P3 and P4 are external metabolites which are the sources
or the sinks of the network. The metabolic network is represented by an hypergraph
where the metabolites are represented by nodes and the reactions are represented by
the edges. The reversible reactions are represented by a double arrow.

Such networks summarize the capabilities of a system and show how a set
of source compounds can be converted into a set of target compounds. The
main methods for identifying pathways in metabolic networks is the concept of
elementary flux modes [16]. This constraint-based approach allows predicting
fluxes 1 for various organisms. The main constraints that have been considered
are the steady states (every metabolite that is produced has to be consumed)
and thermodynamic constraints (irreversible reactions can only be taken in the
appropriate direction).

2 Elementary flux modes

Elementary flux modes approach has been developed by Schuster et al. [14,
15], then by many others [9, 5]. Elementary flux modes (EM) can be defined
as the smallest sub-network enabling the metabolic system to operate at steady
state with all irreversible reactions proceeding in the appropriate direction [14,
15].

Let a metabolic network composed of r reactions ei and m metabolites
represented by a stoichiometric matrix N . A vector e = (e1, ..., er)t is an EM
if it fulfills the following conditions :

1. Steady state : Ne = 0.
2. Feasibility : For all index i of an irreversible reaction, ei ≥ 0.
3. Minimality : For all EM e′ of N , supp(e′) ⊆ supp(e)⇒ ∃α ∈ IR such

that e′ = αe with supp(v) = {j ∈ IN : vj 6= 0}
1A flux is defined as the production or consumption of mass per volume per unit time.
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a) b)

c) d)

FIG. 2 – EMs of the metabolic network example

For example, the metabolic network represented in Figure 1 contains four EMs
which are represented in Figure 2.

Such pathway definition provides a rigorous basis to systematically charac-
terize cellular phenotypes, robustness and fragility that facilitate understanding
of cell physiology. EM analysis is a useful metabolic pathway analysis tool to
identify the structure of a metabolic network that links the cellular phenotype
to the corresponding genotype. Applications of network-based pathway ana-
lyses have been presented for predicting functional properties of metabolic
networks, measuring different aspects of robustness and flexibility, and even
assessing gene regulatory features [18, 5]. In the context of cellular metabo-
lism, robustness is defined as the ability of cells to achieve the optimal perfor-
mance even under perturbations imposed by a gene knockout. The robustness
of cellular metabolism is mainly due to the redundancy of pathway options
that the wild type can choose to achieve similar performance. In our metabolic
network example, there is no alternative pathway to produce P4 if one enzyme
of the EM 1 is inhibited. It is worth noting that there are three different ways
to produce P2 and P3 and all the EMs contains the reaction R3. So R3 is
an essential reaction for the production of P2 and P3. On the other hand, if
the reaction R2 is inhibited, it is still possible to find a pathway which P2

and P3 with the EM 4. In contrast to the structural robustness, the concept of
minimal cut set has been introduced to determine the minimal set of reactions
whose deletion completely blocks a target [8, 3]. In our metabolic network
example, there are 5 minimal cut sets which prevent the productin of P2 and
P3 : {R3}, {R4}, {R1;R5}, {R1;R2} and {R2;R5}. With these concepts it
is also possible to compare the pathways taken in different tissues in different
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physiological conditions. It highlights the mutations that can be tolerated or not
(essential genes). In biotechnologies it indicates pathways with high product
yield. This approach has been applied to the mitochondrial energy metabolism
in different tissues or organisms [12, 10], revealing non classical pathways
allowing obviating some particular mutations [17].

3 Discussion

EMs can only be enumerated in small to medium-scale metabolic networks
because the number of EMs increase exponentially with the network size [9].
The huge number of elementary flux modes associated with large biochemi-
cal networks prevents from drawing simple conclusions from their analysis.
Estimation of the number of EMs has also been examined [9] in order to
predict the complexity of the computational task to find all such metabolic
pathways. Acuna et al. [1, 2] gave a systematic overview of the complexity
of the optimisation problems related to EMs and showed that the counting of
EMs is #P-complete. Studies have been carried out on the analysis of sub-
networks. AcoM [10, 11] was a first attempt to deal with this problem. It is a
biclustering method based on the Agglomeration of Common Motifs (ACoM).
It was applied to the central carbon metabolism in Bacillus subtilis and to
the yeast mitochondrial energy metabolism. It helped to give biological mea-
ning to the different elementary flux modes and to the relatedness between
reactions. Kaleta and co-workers [7] showed that the analysis of small sub-
networks can be misleading. To overcome this problem, they introduced the
concept of elementary flux patterns that takes into account the steady-state
fluxes through a metabolic network at the genome scale when analyzing pa-
thways in a sub-network. As an alternative, recently there have been attempts
to find specific metabolic pathways from stoichiometric information by opti-
mization modeling. They are able to cope with the scale and furthermore to
identify pathways with specific requirements. Also, De Figueiredo et al. [4]
proposed a procedure to determine theK−shortest EMs in large-scale metabo-
lic networks by an optimization model that allows exploring a specific subset
of EMs of interest. More recently, the K−shortest generating flux modes, a
subset of EMs, have also been investigated by a similar model [13]. Being a
computationally demanding task, several approaches to parallelize or distribute
the computations of elementary modes have been proposed through paralle-
lization techniques [6] or algorithmic reformulations [20, 19]. Nevertheless,
although several improvements have been introduced for computing EMs in
large networks, tools are still needed to allow their large-scale analysis and
interpretation.
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Technique et Science Informatiques, 26 :199–218, 2007.

[11] S. Peres, F. Vallée, M. Beurton-Aimar, and J.P. Mazat. Acom : a
classification method for elementary flux modes based on motif finding.
Biosystems, 103(3) :410–419, 2011.

[12] S. Pérès, M. Beurton-Aimar, and J-P. Mazat. Pathway classification of
TCA cycle. IEE Proc. Syst. Biol., 153(5) :369–371, 2006.

ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY 167



[13] A. Rezola, L. F. de Figueiredo, M. Brock, J. Pey, A. Podhorski, C. Witt-
mann, S. Schuster, A. Bockmayr, and F. J. Planes. Exploring metabolic
pathways in genome-scale networks via generating flux modes. Bioinfor-
matics, 27(4) :534–540, 2011.

[14] S. Schuster, T. Dandekar, and D.A. Fell. Detection of elementary modes
in biochemical networks : A promising tool for pathway analysis and
metabolic engineering. Trends Biotechnol., 17 :53–60, 1999.

[15] S. Schuster, D.A. Fell, and T. Dandekar. A general definition of metabolic
pathways useful for systematic organization and analysis of complex
metabolic networks. Nat. Biotechnol., 18 :326–332, 2000.

[16] S. Schuster and C. Hilgetag. On elementary flux modes in bioche-
mical reaction systems at steady state. Journal of Biological Systems,
2(2) :165–182, 1994.

[17] C. Schwimmer, L. Lefebvre-Legendre, M. Rak, A. Devin, P. Slonimski,
J.P. di Rago, and M. Rigoulet. Increasing mitochondrial substrate-
level phosphorylation can rescue respiratory growth of an atp synthase-
deficient yeast. J. Biol. Chem., 280(35) :30751–30759, 2005.

[18] J. Stelling, S. Klamt, K. Bettenbrock, S. Schuster, and E.D. Gilles.
Metabolic network structure determines key aspect of functionnality and
regulation. Nature, 420 :190–193, 2002.

[19] Marco Terzer and Jörg Stelling. Large-scale computation of elementary
flux modes with bit pattern trees. Bioinformatics, 24(19) :2229–2235,
2008.

[20] A. Von Kamp and S. Schuster. Metatool 5.0 : Fast and flexible elementary
modes analysis. Bioinformatics, 22 :1930–1931, 2006.

168 ADVANCES IN SYSTEMS AND SYNTHETIC BIOLOGY



Introduction to Stochastic Simulation Algorithm
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1 Inria Méditerranée, projet MODEMIC Inria/INRA, INRA UMR MISTEA
F-34060 Montpellier, France

Abstract

Many discrete and random systems (like chemical dynamics, population dy-
namics or biochemical networks dynamics) are described in terms of Ordinary
Differential Equations (ODE). The ODE formalism describes implicitly the
deterministic limit of such systems: the final result is the average of all possible
realizations.

In many theoretical and computational problems, we do not wish to ig-
nore the intrinsic fluctuations of a particular solution and its discrete nature.
Indeed, in many cases, the variability of one trajectory is needed for realism’s
sake. This question has lead to several algorithms that describe and compute
particular and realistic trajectories.

The topic of this lecture will be focused on one of them: the Gillespie
algorithm also called the Stochastic Simulation Algorithm (SSA). We will
also present the tau-leaping technique and the diffusion approximation of such
models.

We will present a simple version of the mathematical background behind
the SSA and provide some indications about the convergence of such models
toward stochastic differential equations and ordinary differential equation.

We will also introduce individual-based models that can be seen as exten-
sions of the Gillespie algorithm.
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