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1 Université de Nantes, Centrale Nantes, CNRS, Laboratoire des Sciences du Numérique de Nantes (LS2N

UMR 6004), F-44000, Nantes, France, 2 LRI UMR8623, Université Paris-Sud, CNRS, Université Paris-
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Abstract

Protein signaling networks are static views of dynamic processes where proteins go through

many biochemical modifications such as ubiquitination and phosphorylation to propagate

signals that regulate cells and can act as feed-back systems. Understanding the precise

mechanisms underlying protein interactions can elucidate how signaling and cell cycle pro-

gression occur within cells in different diseases such as cancer. Large-scale protein signal-

ing networks contain an important number of experimentally verified protein relations but

lack the capability to predict the outcomes of the system, and therefore to be trained with

respect to experimental measurements. Boolean Networks (BNs) are a simple yet powerful

framework to study and model the dynamics of the protein signaling networks. While many

BN approaches exist to model biological systems, they focus mainly on system properties,

and few exist to integrate experimental data in them. In this work, we show an application of

a method conceived to integrate time series phosphoproteomic data into protein signaling

networks. We use a large-scale real case study from the HPN-DREAM Breast Cancer chal-

lenge. Our efficient and parameter-free method combines logic programming and model-

checking to infer a family of BNs from multiple perturbation time series data of four breast

cancer cell lines given a prior protein signaling network. Because each predicted BN family

is cell line specific, our method highlights commonalities and discrepancies between the

four cell lines. Our models have a Root Mean Square Error (RMSE) of 0.31 with respect to

the testing data, while the best performant method of this HPN-DREAM challenge had a

RMSE of 0.47. To further validate our results, BNs are compared with the canonical mTOR

pathway showing a comparable AUROC score (0.77) to the top performing HPN-DREAM

teams. In addition, our approach can also be used as a complementary method to identify

erroneous experiments. These results prove our methodology as an efficient dynamic

model discovery method in multiple perturbation time course experimental data of large-
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scale signaling networks. The software and data are publicly available at https://github.com/

misbahch6/caspo-ts.

Author summary

Traditional canonical signaling pathways help to understand overall signaling processes

inside the cell. Large scale phosphoproteomic data provide insight into alterations among

different proteins under different experimental settings. Our goal is to combine the tradi-

tional signaling networks with complex phosphoproteomic time-series data in order to

unravel cell specific signaling networks. In this study, we have applied the caspo time

series (caspo-ts) approach which is a combination of logic programming and model

checking, over the time series phosphoproteomic dataset of the HPN-DREAM challenge

to learn cell specific BNs. The learned BNs can be used to identify the cell specific topol-

ogy. Our analysis suggests that caspo-ts scales to real datasets, outputting networks that

are not random with a lower fitness error than the models used by the 178 methods which

participated in the HPN-DREAM challenge. On the biological side, we identified the cell

specific and common mechanisms (logical gates) of the cell lines.

Introduction

Protein signaling networks are static views of dynamic processes since they respond to stimuli

and perturbation. They constitute complex regulatory systems controlled by crosstalk and

feedback mechanism. Because these networks are often altered in diseases, discovering the pre-

cise mechanisms of signal transduction may provide a better fundamental understanding of

disease behavior. For instance, a main difficulty in cancer treatment is that different signaling

networks fact that cell populations specialize upon treatment and therefore patient responses

may be heterogeneous. Computational models of signaling control for different patient groups

could guide cancer research towards a better drug targeting system. In this work, we propose a

methodological framework to discriminate among the regulatory mechanisms of four breast

cancer cell lines by building predictive computational models.

Several formalisms have been used widely to model interaction networks. Models built

using differential equations require explicit specifications of kinetic parameters of the system

and work well for small-scale systems. While being a useful tool, mathematical modeling

becomes computationally intensive as networks become larger [1–3]. Stochastic modeling is

suitable for problems of a random nature but also fails to scale well with large scale systems

[1].

The Boolean Network (BN) formalism [4] is a powerful approach to model signaling and

regulatory networks [5]. Various BN learning frameworks exist focusing on varying levels of

details [1, 6]. As compared to the extensive literature on Boolean frameworks, BN modeling of

signaling networks is quite recent.

In this work, we have used the caspo time series (caspo-ts) [7, 8] method to learn BNs from

multiple perturbation phosphoproteomic time series data given a Prior Knowledge Network

(PKN). We have improved and adapted caspo-ts to deal with a midscale Prior Knowledge Net-

work (PKN) with 64 nodes and 178 edges in order to learn the BNs of four breast cancer cell

lines (BT20, BT549, MCF7, UACC812) from their time series phosphoproteomic datasets.

Importantly, the PKN did not contain any information about the temporal changes or
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dynamic properties of the proteins. This information was learned from a dataset describing

the dynamics of signaling processes for those breast cancer cell lines as part of the HPN-

DREAM challenge. In comparison to the current methods that learn signaling networks as

Boolean models using static measurements[9, 10], and one-time point measurements across

multiple perturbations [11–14], our method allows us to handle time series data. A further

advantage is the guarantee of discovering optimal BNs, where the distance between original

and over-approximated time series is minimal. This is achieved by using computational solvers

such as Answer Set Programming (ASP) [15].

Our results show that the ASP component of our method allows us to filter the explosion

of possible dynamical states inherent to this type of problem, and thanks to that filtering, the

model-checking step allows us to provide BNs exactly reproducing the binarized time series

data. These BNs are referred to as true positive (TP) BNs. Our results point to measurements

in the time series HPN-DREAM dataset that contradict the experimental setting and to per-

turbations that show contradictory dynamics. We observed that given the same PKN, the

solving time was different for each cell line dataset. For cell lines BT20, BT549, MCF7 our

method found TP BNs, while for the UACC812 cell line dataset it was impossible to find a

TP BN within a time-frame of 7 days. This computation time difference is due to the differ-

ent structure of the solution space among cell lines. This could point to the situation where

the dataset is not explainable by the prior knowledge network, which may give valuable

insights to experimentalists. For example, that the number of consistent experimental pertur-

bations is not sufficient, and that the knowledge of the PKN is incomplete given this dataset.

We also show that this method is capable of recovering time series measurements with a

Root Mean Square Error (RMSE) of 0.31, the minimum achieved so far as compared to other

participants of the HPN-DREAM challenge. Our method focuses on learning optimal BNs’

structures. It does not predict time-series traces of the proteins from the learned BNs. How-

ever it detects the minimum distance that is possible to obtain from the proteins of the

learned BNs in comparison to the time-series traces in the testing data. This is the main con-

ceptual difference of our method compared to those proposed by the HPN-DREAM chal-

lenge. This difference needs to be considered when comparing the RMSE score. Based on a

comparison with the canonical mTOR pathway, we show that the discovered context specific

BNs have an average AUROC score of 0.77. We found 38% of the cell line specific interac-

tions explaining the heterogeneity among these four cancer cell lines, which can be observed

in different cell line specific networks, shown in S1, S2, S3 and S4 Figs. All in all, our results

show that caspo-ts handles real (HPN-DREAM) datasets, where data points are incomplete

and subject to experimental error. Our method is applicable to any kind (gene or protein

expressions) of time series datasets measured upon different perturbations. We have proved

here that caspo-ts handles a PKN size of 64 nodes and 170 edges; this is relevant since

approaches modeling time usually only scale up to very small networks because of state

graph explosion.

Related work

Regarding the training of BNs with respect to multiple perturbation datasets, CellNOpT

(CNO)[16] assembles BNs from a Prior Knowledge Network (PKN) and phosphoproteomic

datasets. Their tool has been implemented using stochastic search algorithms (more precisely,

a genetic algorithm), to suggest multiple BNs explaining the data [17]. However, stochastic

search methods cannot generate a complete set of solutions, hence they cannot guarantee a

global optimal solution. In [11, 12], the authors overcome this problem by proposing caspo,

an approach based on ASP to infer BNs explaining the underlying protein signaling network.
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This approach can generate all possible optimal Boolean models as compared to the CellNOpt

approach. The authors in [14], presented a framework based on integer linear programming

(ILP) to learn the subset of interactions best fitted to the experimental data. Recently, another

approach based on ILP has been proposed to reconstruct BNs from experimental data. Their

learning approach do not require the information about the activation/repression properties

of the network’s edges [13].

The methods mentioned above are very useful but restrain themselves to learn from only

two time points, assuming the system has reached an early steady-state when the measure-

ments are performed. This assumption prevents us from capturing interesting characteristics

like loops [3]. To overcome this issue, the caspo time series (caspo-ts) method was proposed in

[8]. This method learns BNs from multiple perturbation phosphoproteomic time series data

given a PKN. The proposed method is based on ASP and a model-checking step is needed to

detect true positive BNs. They tested their approach on synthetic data for a small PKN (�17

nodes and�50 edges) [8]. More recently, an approach based on genetic algorithms was pro-

posed to learn context specific networks given a PKN and experimental information about

stable states and their transitions but it does not scale well with large networks and finding a

global optimum is not guaranteed [18].

Caspo-ts modeling framework. We chose the caspo-ts method [7, 8] for the inference of

BNs. This method was tailored to handle protein phosphoproteomic time series data. The

input of the method consists of a PKN and normalized phosphoproteomic time series data

under different perturbations to generate a family of BNs whose structure is compatible with

the PKN and that can also reproduce the patterns observed in the experimental data. In the fol-

lowing, we will develop the main notions of this framework.

Prior knowledge network. It is one input of caspo-ts and it is modeled as a labeled (or col-

ored) directed graph (V, E, σ) with V = {v1, v2, . . ., vn} the set of nodes, E� V × V the set of

directed edges and σ� E × {+1, −1} the signs of edges. The set of nodes is denoted by V =

S[I[R[U where S are stimuli, I are inhibitors, R are readouts, and U are unobserved nodes.

Stimuli, inhibitors, readouts, and unobserved nodes are encoded by different colors in the

graphs presented in this case study. Stimuli are shown in green, inhibitors in red, readouts in

blue, and unobserved nodes in white (Fig 1). Moreover, the subsets S, I, R, U are all pairwise

disjoint except for I and R, because a protein can be inhibited as well as measured. Stimuli are

used to bound the system and also serve as interaction points of the system, these nodes can

be experimentally stimulated, e.g. cellular receptors. Inhibitors are those nodes which remain

inactive or blocked over all time points of the experiment by small molecule inhibitors. Stimuli

and inhibitor nodes take Boolean values {0, 1} representing the fact that the node was stimu-

lated (1) or inhibited (0). Readouts are experimentally measured given a combination of

stimuli and inhibitors. They usually take continuous values in [0;1] after normalization. Unob-

served nodes are neither measured nor experimentally manipulated. In this study, we use the

term perturbation to refer to the combination of stimuli and inhibitors, similarly to other stud-

ies such as [19–21].

Phosphoproteomic time series data. It is the second input of caspo-ts and it consists of

temporal changes in phosphorylated proteins under a perturbation (Fig 1). Without loss of

generality, we assume that the time series data are related to the observation of m� n nodes

for the nodes {v1, . . ., vm} (so the nodes {vm+1, . . ., vn} are not observed). The observations

consist of normalized continuous values: a time series of k data points is denoted by

TP ¼ ðt1P; . . . ; tkPÞ, where P� S [ I is a perturbation and tj 2 [0; 1]m for 1� j� k. This data

will be discretized in order to link it with further BNs’ discovery (ASP solving and model

checking steps).

Dynamic cell line specific Boolean networks from multiplex time-course data
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Fig 1. Caspo-ts workflow. Caspo-ts receives as input data a prior knowledge network (PKN) and a discretized phosphoproteomic dataset. In this example the

phosphoproteomic data consists of two perturbations involving akt (inhibitor) and hgf (stimulus): 1) akt = 0, hgf = 1 and 2) akt = 1, hgf = 0. A black colored perturbation

means the inhibitor or stimulus was perturbed (1) while white represents the opposite (0). Readouts are specified in blue and describe the time series under given

perturbations. Using this input data, caspo-ts, performs two steps: ASP solving and model checking. In the ASP solving step: (i) a set of BNs, compatible with the PKN, is

generated, (ii) afterwards an over-approximation constraint is imposed upon each candidate BN to filter out invalid BNs, that do not result in an over-approximation of

the reachability between the Boolean states given by the phosphoproteomic dataset, and finally (iii) BNs are optimized using an objective function minimizing the

distance to the experimental measures. The ASP step also introduces repairs in some data points of the time series that added penalties to the objective function. These

corrected traces will be given to the model checker. In the model checking step, the exact reachability of all the (binarized and corrected) time series traces in the family

of BNs is verified.

https://doi.org/10.1371/journal.pcbi.1006538.g001
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Boolean Network. It is the output of caspo-ts. A Boolean Network (BN) [22, 23] is defined

as a pair B = (N, F), where

• N = {v1, . . ., vn} is a finite set of nodes (or variables/proteins/genes)

• F = {f1, . . ., fn} is a set of Boolean functions (regulatory functions) fi : Bk ! B, with

B ¼ f0; 1g, describing the evolution of variable vi.

A vector (or state) x = (x1, . . ., xn) captures the values of all nodes N at a time step, where xi
represents the value of the node vi, and is either 1 or 0. There are up to 2n possible distinct

states for each time step. Next, we define the transition x! x0 between two states of a BN. If

there is no update for node vi then x0i = xi. If there is an update for node vi then the state of a

node vi at the next time step is determined by x0i ¼ fiðx1; . . . ; xnÞ. Note that usually only a sub-

set of the nodes influence the evolution of node vi. These nodes are called the regulatory nodes
of vi. The state of each node can be updated in a synchronous (parallel) or asynchronous fash-

ion. In the synchronous update schedule, the states of all nodes are updated, while in asynchro-

nous update schedule, the state of one node is updated at a time. The work presented in this

article is independent of the update schedule routine, hence any number of nodes can be

updated at a time.

ASP solving. Given a PKN and a phosphoproteomic dataset, a family of candidate BNs,

compatible with this PKN, is exhaustively enumerated including the main nodes (the sets S,I,R)

of the experimental data. We refer the reader to [12] for a detailed description of BN’s

compatibility with a PKN. Afterwards an over-approximation constraint (see Materials and

methods) is imposed upon each candidate BN to filter out invalid BNs [8], that do not result in

an over-approximation of the reachability between the Boolean states given by the phosphopro-

teomic dataset. Finally, an optimization step is performed to select those BNs having a minimal

distance between the actual time series TP and the over-approximated time series YP. We have

adopted the Root Mean Square Error (RMSE) as the objective function:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m � k � jPj

Xm

i¼1

Xk

j¼1

X

P2P

ððtjPÞi � ðy
j
PÞiÞ

2

v
u
u
t ð1Þ

where m is the number of observed nodes, k is the number of time points, and P is the set of

perturbations. In addition, the optimization step highlights the data points in the time series

which added penalties to the RMSE. Such data points are automatically corrected before the

model checking step.

All the analyses described in this step are performed using ASP, namely the clingo 4.5.4

solver [15]. This solver guarantees finding optimal solutions, and all BNs outputted by the ASP

solver step will be identically optimal. For the HPN-DREAM case study, the full enumeration

of optimal BNs creates billions of BNs, and since the next (model checking) step can take days

of computation depending on the verified BN we choose to limit this enumeration to a fixed

number of BNs.

Model checking and true positive BNs. From the ASP solving step, a set of optimal BNs

that over-approximate the phosphoproteomic time series data is produced. This set of BNs is

verified with an exact model checking to detect true positive (TP) BNs. TP BNs are guaranteed

to reproduce all the (binarized) trajectories under all perturbations by verifying exact reach-

ability in the BN state graph. For this, we have used computational tree logic (CTL) imple-

mented in the NuSMV 2.6.0 [24], which is a symbolic model checker.

Caspo-ts workflow. The caspo-ts workflow is shown in Fig 1. It consists of two main

steps, ASP solving and model checking, as described previously.

Dynamic cell line specific Boolean networks from multiplex time-course data
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Results

Prior knowledge network

The structure of the protein signaling network was generated by mapping the experimentally

measured phosphorylated proteins (HPN-DREAM dataset) to their equivalents from litera-

ture-curated databases and connecting them together within one network (see Materials and

methods). The reference network (Fig 2) was built using the ReactomeFIViz app (also called

the ReactomeFIPlugIn or Reactome FI Cytoscape app) [25], which accesses the interactions

existing in the Reactome and other databases [25, 26]. The PKN shown in Fig 2 consists of 64

nodes (7 stimuli, 3 inhibitors, and 23 readouts) and 178 edges.

Data processing

The learning and testing datasets used in this study were extracted from the HPN-DREAM

challenge and correspond to time series protein measurements upon different perturbations of

four breast cancer cell lines—UACC812, BT20, BT549, and MCF7 [20, 21] (see Materials and

methods). Since readout signals are measured on variable ranges depending on the protein, a

normalization step was necessary. The learning dataset had a few noisy, inconsistent and

incomplete time series data points. The caspo-ts system identified these inconsistencies exist-

ing in the time series data. The recurrent experimental inconsistency observed was an oscilla-

tion in the protein signal upon experimental inhibition of the same protein.

To resolve the above mentioned issues, we performed the following data processing steps

on the learning dataset:

1. Set the protein values between a common scale, i.e., 0 and 1, using a maximum-value-based

normalization scheme (see Materials and methods).

2. For time point 0 the expression of some readout proteins under some perturbations was

not available. Thus, control experimental readings have been used as the time point 0 for

such proteins.

3. In some cases readout measurements were duplicated for the same time point, to solve this

noise issue we have chosen one time point arbitrarily.

4. We have removed inconsistent perturbations where the protein AKT was inhibited and was

having a dynamic behavior as a readout protein.

5. We have considered only perturbations with complete time series data, since guessing the

missing time points automatically with caspo-ts for this case study will be computationally

expensive.

The experimental errors pointed in steps 2-5 were raised as warning or exceptions by

caspo-ts. Steps 1 to 5 were applied on the learning dataset. Only step 1 was applied on the test-

ing dataset.

Cell line specific Boolean Networks

In this section, we show the generated BNs for each cell line. For this, we used caspo-ts to

learn the BNs from the PKN (Fig 2) and the phosphoproteomic data of four breast cancer

cell lines—BT20, BT549, MCF7, and UACC812. We inferred a family of cell line specific BNs

for each cancer cell line and they are shown in the Supplementary Figures (S1, S2, S3 and

S4 Figs).

Dynamic cell line specific Boolean networks from multiplex time-course data
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Fig 2. Breast cancer signaling pathway. This figure shows the reconstructed signaling network from a combination of databases. An arrow shows the positive

regulatory relationship between two proteins, while a T shaped arrow indicates inhibition. Green nodes are stimuli, blue nodes are readouts, white nodes are

unmeasured or unobserved, and blue nodes with a red border represent inhibitors and readouts at the same time. Please note that in the node labels, we have added

the phosphorylation sites to the protein names in order to connect them to the experimental measurements.

https://doi.org/10.1371/journal.pcbi.1006538.g002
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As explained in the caspo-ts modeling framework section, the caspo-ts method produces

BNs fulfilling two criteria, (i) satisfaction of the over-approximation criteria (see Materials

and methods) and (ii) optimality with respect to the RMSE objective function. ASP-optimal

solutions were fast to collect, their computation time ranged from 36 seconds to 3 minutes

depending on the cell line (S1 Table). Afterwards, these ASP-optimal BNs were given to

the model-checker for further verification. This second step is more complex and we put a

restriction for the computation time of 7 days for each cell line. The number of verified BNs

varies from one cell line to another, depending on a number of factors such as the number of

perturbations, the order of answer sets in the solutions space, and the perturbation order.

The total number of verified ASP-optimal BNs within the 7 days time-frame were 231, 52,

188 and 150 for the BT549, MCF7, BT20 and UACC812 cell lines respectively. We obtained

191, 21, and 72 true positive BNs for BT549, MCF7, and BT20 cell lines respectively with an

optimal fit to the data. For the UACC812 cell line, we were unable to obtain true positive

BNs within the 7 day time limit for verification. Hence, we kept the first 20 BNs from the

150 ASP-optimal BNs for the UACC812 cell line. The caspo-ts method uses the ASP solver

(clingo), which is able to exhaustively enumerate all solutions. The clingo solver by default

uses an enumeration scheme, in which, once a solution is found, it backtracks to the first

point from where the next solution can be found. This typically leads to the situation where

successive solutions only change in a small part. As a result, caspo-ts may enter a solution

space where BNs are clustered together. We have observed that given the size of the PKN and

the small number of perturbations in the experimental data, the solution space of the caspo-
ts can be rather very large containing billions of BNs making it difficult to enumerate true

positive BNs (because of the model checking overhead) in a reasonable time if it gets stuck in

a cluster of false positive BNs.

An aggregated network was built (Fig 3) by combining the BN families (with 191, 21, 72,

and 20 BNs for BT549, MCF7, BT20, and UACC812 cell lines respectively) obtained for the

four cell lines by keeping the hyper-edges (Boolean functions) having a frequency higher than

0.3 within each BN family. The frequency is calculated by counting the number of common

Boolean functions and dividing it by the total number of Boolean functions within the BN

family of each cell line. This aggregated network contains 34 nodes and 74 Boolean functions

involving 36 AND gates. As compared to the PKN (Fig 2), the inferred networks are highly

specific to each cell line. In Fig 3, all cell lines share only 4% of Boolean functions which are

shown in thick black colored edges. This shows that the inferred BNs of these four breast can-

cer cell lines are very diverse and different from each other.

To measure cell lines similarity, we calculated the similarity score by applying the Graph

Similarity Measure (see Materials and methods) on the family of BNs (with 191, 21, 72, and

20 BNs for BT549, MCF7, BT20, and UACC812 cell lines, respectively). This algorithm

receives two parameters as input: (1) one gold standard BN and (2) a family of BNs. It out-

puts a score in [0; 1], measuring the average of the similarity scores between each BN in the

family and the gold standard BN. In our case, the gold standard BN is the aggregation of one

family of BNs. The similarity scores between all pairs of breast cancer cell lines are shown in

Table 1. Fig 3 agrees with the results presented in Table 1 as we can see the clear discrepan-

cies among the four cell lines. It can be seen that 23% of the Boolean functions are shared

among BT549 and MCF7, and also between BT20 and UACC812. BT20 shares the least num-

ber of Boolean functions (15%) with BT549. This table revealed pronounced differences

among different cell lines of breast cancer. We also analyzed the diversity of Boolean func-

tions among the family of BNs within the same cell line. The similarity among Boolean func-

tions from BT20 (0.73) and MCF7 (0.63) is higher than the ones from BT549 (0.43) and

UACC812 (0.46) cell lines.
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Fig 3. Boolean Network of breast cancer cell lines. The aggregated graph for all cell lines. Blue, red, green and orange edges are used for each cell line BT20, BT549,

MCF7 and UACC812, respectively. The nodes are connected by logic gates (AND or OR) to their direct predecessors. Edges are used to show influences (! for positive

and a for negative). An AND gate is depicted by a small black circle where the incoming edges correspond to the inputs of the gate. An OR gate is depicted by multiple

incoming edges to the node. A different color scheme is used to represent different types of nodes. The green color is for stimuli, the red for inhibitors, the blue for

readouts, and the white for unobserved nodes. Black edges denote common hyper-edges across cell lines; the thickness of the black hyper-edge denotes the number of cell

lines sharing this hyper-edge.

https://doi.org/10.1371/journal.pcbi.1006538.g003
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Heterogeneity among cell lines

There are a total of 69 distinct Boolean functions shown in Fig 4 along with their respective

frequencies. It is interesting to note that the B549 and UACC812 cell lines have more distinct

models among their family of BNs with a variable frequency range. This shows that these cell

lines have different mechanisms agreeing with the results obtained through graph similarity

measure given in Table 1.

Fig 5 shows the common Boolean functions along with their frequency in all BNs. Interest-

ingly, only 4% of the Boolean functions are shared in all cell lines and 88% of these shared

functions have the same frequency. In this figure, there is only one Boolean function which is

frequent in 3 cell lines and has a lower frequency in BT20.

Literature knowledge about Boolean functions discovered by caspo-ts
The union of the BNs learned for each cell line is displayed in the Supplementary Figures (S1,

S2, S3 and S4 Figs). The caspo-ts method revealed that cell line specific reactions are clustered

around the AKT, MAPK3, and PIK3R1 proteins. PI3K is an important factor for cancer devel-

opment in HER2 amplified cancers (UACC812) as compared to non-HER2 amplified (BT20,

BT549 and MCF7) cancer cell lines. We can see from the Supplementary Figures (S1, S2, S3

and S4 Figs) that PIK3R1 exists in all cell lines but is rather more connected in the UACC812

cell line with 10 incoming edges while in others with only 1 incoming edge. The PIK3R1 node

in UACC812 (S4 Fig) has a centrality measure of 0.37 while in the other three cell lines the cen-

trality measure is less than 0.11. The centrality measure is used to quantify the most important

node within a network i.e., the number of times a node has been used as a bridge (along the

shortest path) to connect to other nodes in the network [27].

It has been established that P1K3R1 (the regulatory unit of PI3K) plays an important role

in suppressing tumors [28, 29]. Recently, it has been found that PIK3R1 is mutated in 3% of

breast cancer cell lines[30]. Nonetheless, it is worth studying the impact of the PIK3R1 regula-

tory unit in breast cancer.

Evaluation

The performance of the caspo-ts method is evaluated using three criteria: 1) RMSE calculation

using a typical learning and testing data approach, 2) random data comparison, 3) AUROC

(Area Under the Operating Curve) score.

The BNs are learned using the learning dataset (see Materials and methods) only. The pre-

diction accuracy is evaluated by comparing the RMSE of trajectories in the testing dataset with

those recovered by the learned networks (see Eq 1). There are two types of RMSE—discrete

and model. The discrete RMSE is imposed by the discretization of the method. Since we use a

discrete learning approach, our recovered traces will be in {0,1} and this introduces an error

with respect to continuous measurements in [0;1]. The model RMSE refers to the learned BN

Table 1. Similarity scores among breast cancer cell lines.

Cell Lines Size of BNs’ family Similarity Score

BT20 BT549 MCF7 UACC812

BT20 72 0.73 0.15 0.17 0.23

BT549 191 �� 0.43 0.23 0.20

MCF7 21 �� �� 0.63 0.21

UACC812 20 �� �� �� 0.46

https://doi.org/10.1371/journal.pcbi.1006538.t001
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Fig 4. Heterogeneous Boolean functions. The Boolean functions are represented on the y-axis and the frequency of

each Boolean function is shown on the x-axis. A Boolean function, or hyper-edge, is of the form node expr, where

node is the receiver of the Boolean clause expr in the BN. In the Boolean clause, the not operator is represented by a “!”

symbol and the AND operator by a “+” symbol. The disjunction of clauses is represented by multiple reactions upon

the same receiver node.

https://doi.org/10.1371/journal.pcbi.1006538.g004
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error with respect to the normalized time series data; that is, the model RMSE is at least as

large as the discrete RMSE. When the difference between these two is zero then the inferred

BNs are able to recover the discrete trajectories without any error. If the model RMSE is

greater than the discrete RMSE then the inferred BNs have some errors in the recoverability

of the discrete time series data. To check how our method performs in case of random time

series, we have calculated the RMSE score for random data and compared it with learning and

testing data. Next, the validity of these networks is verified by comparing them with the canon-

ical MTOR signaling pathway using two parameters, i.e., true positive rate (TPR) and false pos-

itive rate (FPR).

Validation using root mean square error criteria. The goal was not only to infer optimal

BNs but also to verify that these BNs are able to recover trajectories that do not exist in the learn-

ing data. For this purpose, we use experimental testing data to check the specificity of the trajec-

tories of the proposed networks. This testing data is provided by the HPN-DREAM challenge

organizers (see Materials and methods). Table 2 shows the corresponding RMSE in case of

learning and testing data. It can be seen that the inferred BNs are able to produce the trajectories

without any error in the learning dataset for all cell lines. It is encouraging to see that the

inferred BNs are able to recover the discrete testing trajectories without any error in MCF7, and

with a minimal error of 0.0009, 0.0106, and 0.0094 in BT20, BT549, and UACC812, respectively.

We also compared the RMSE score with the top two best performers of the HPN-DREAM

challenge. We got the top position with an RMSE score of 0.31 as compared to their RMSE

Fig 5. Common Boolean functions across all four cell lines. The Boolean functions are represented on the x-axis and

the frequency of each Boolean function is shown on the y-axis.

https://doi.org/10.1371/journal.pcbi.1006538.g005

Table 2. Root mean square error. This table summarizes the RMSE results for each cell line. We have calculated the discrete RMSE (error related to the discretization of

the data) and the model RMSE (caspo-ts error). The Delta column shows the difference between model and discrete RMSE.

Cell Line Learning Testing

Discrete Model Delta Discrete Model Delta

BT20 0.3464 0.3464 0 0.3293 0.3302 0.0009

BT549 0.3498 0.3498 0 0.3007 0.3113 0.0106

MCF7 0.3207 0.3207 0 0.2772 0.2772 0

UACC812 0.3464 0.3464 0 0.3084 0.3178 0.0094

https://doi.org/10.1371/journal.pcbi.1006538.t002
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scores of 0.47 and 0.50. Notice that in comparison to other HPN-DREAM challenge methods

based on Bayesian inference, Regression, and Granger Causality among others, caspo-ts does

not make new predictions but it checks the recoverability of the testing trajectories with the

inferred BNs.

Validation using random data samples. The objective of this analysis is to show that

the BNs obtained with caspo-ts using the HPN-DREAM datasets for the four cell lines have a

worse RMSE score with respect to random trajectories, and therefore are very specific to the

HPN-DREAM datasets. For this purpose, we generated 100 random data samples per cell line.

In each sample, we generated a random value in [0; 1] for each readout protein in each time

point without changing the perturbations. Then, we calculated the RMSE of these samples

with respect to the inferred BNs of each cell line, and finally compared it with the learning and

testing RMSE of these BNs. Fig 6 plots the RMSE ratio (see Eq (2)) of the inferred BNs with

respect to the learning, testing and random data.

RMSE ratio ¼
Discrete RMSE
Model RMSE

ð2Þ

In Fig 6, the RMSE ratio for random datasets is displayed by red boxplots for each cell line,

and the RMSE ratio for testing and learning datasets is shown as clear outliers in green and

Fig 6. Performance assessment with learning, testing and random datasets. The x-axis shows the cell line and the y-axis shows the RMSE ratio

(see Eq (2)) of the inferred BNs from the HPN-DREAM data for each cell line with respect to the three datasets. The three datasets are encoded by

different color codes. The RMSE ratio with respect to the HPN-DREAM learning and testing datasets is shown in blue and green colors,

respectively. The random dataset RMSE ratio distribution is shown as red boxplots.

https://doi.org/10.1371/journal.pcbi.1006538.g006
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blue colors respectively. It is worth noting that the caspo-ts method has failed to recover ran-

dom data time series, hence proving the specificity of the learned networks with respect to the

HPN-DREAM challenge dataset.

Additionally, we computed the RMSE of the testing data by using a leave one out approach.

For this we generated slightly modified samples, by selecting random values of 5% of the learn-

ing data points. The same experimental perturbations and readout proteins were kept. Our

results show that the BNs learned from the 5% randomized data have an RMSE of 0.3113 with

respect to the testing data, demonstrating caspo-ts robustness. For such 5% modified datasets,

true positive BNs are difficult to obtain with the model checker; most candidates were false

positive models. This highlights the complexity of this BN learning problem when few experi-

mental perturbations are given because the space of candidate ASP-optimal BNs to verify is

large and it is heavily populated with false positive Boolean models. Please refer to the supple-

mentary information for details S2 Text.

Validation using MTOR canonical pathway. To perform the validation of the structure

of the BNs, we calculated a set of standard nodes from our PKN which are downstream nodes

of MTOR and belong to the canonical MTOR pathway. We then evaluated how many of these

standard nodes are also downstream nodes of MTOR in the learned BNs. In the following, the

set of downstream nodes of MTOR in the learned BNs is referred to as inferred set. The inferred
set is specific to each cell line. True positive rate (TPR) and false positive rate (FPR) are defined

by Eqs (3) and (4) respectively:

TPR ¼
TP

TP þ FN
ð3Þ

FPR ¼
FP

FPþ TN
ð4Þ

Here, TP is the number of nodes in the intersection between standard and inferred sets, FP

is the number of nodes in the inferred set but not in the standard set, FN is the number of

nodes in the standard set but not in the inferred set and TN is the number of nodes which are

not in the standard set nor the inferred set. Note that TP and FP should not be confused with

true and false positives from the over-approximation here.

Fig 7 shows the Receiver Operating Characteristic (ROC) curve of each cell line. For BNs of

each cell line, TPR and FPR was calculated using Eqs (3) and (4). BT549 cell line models are

the most accurate ones followed by MCF7 and BT20. We can observe the clear distinction

between true positive and false positive BNs. The BNs inferred by caspo-ts have an average

AUROC score of 0.77 which is comparable to the AUROC score of 0.78 of the top performing

method of HPN-DREAM challenge. A number of assumptions made during the modeling

phase may have influenced our ranking. First, since our method can pinpoint the noisy,

incomplete and erroneous experiment, it allows us to use only the reliable experimental set-

tings. Second, our method constrains its solutions space to the proteins existing in the PKN,

anything outside the prior knowledge cannot be found. From Fig 7, we can see that the caspo-
ts method shows promising results for the inferred true positive BNs.

Discussion

In this paper, we built cell line specific signaling networks for the DREAM time series dataset

of 4 breast cancer cell lines (BT20, BT549, MCF7, and UACC812) using caspo-ts. This method

combines Answer Set Programming and Model Checking techniques to infer true positive

BNs verifying the experimental data. Caspo-ts allowed us to handle a midscale PKN (64 nodes
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and 178 edges) and a real dataset subject to experimental error. Caspo-ts enabled us to learn

key dynamic mechanisms within the BNs explaining the time series data. Our results suggest

that the behavior of cell line specific signaling networks is highly variable even under the same

perturbations, agreeing with the heterogeneity of breast cancer and specifically with previous

analysis on this data [21]. The inferred Boolean models of each cell line were analyzed to iden-

tify commonalities as well as discrepancies. Moreover, these inferred models can be executed

computationally to identify potential drug targets or to see the effect of unseen perturbations.

The predictive power of these models can be increased with improvements in protein interac-

tion databases and comprehensive experimental data.

We have discovered 38% of the cell line dependent behaviors as compared to the 33% of the

HPN-DREAM challenge winner [31]. We have implemented an algorithm to analyze the vari-

ability among cell lines and observed pairwise similarities among these cell lines. The similarity

index varies from 15% (BT20 & BT549) to 23% (MCF7 & BT549, BT20 & MCF7). We have

analyzed the similarity among the family of BNs of the same cell line as well, which varies from

43% to 73%. We have evaluated the accuracy of our method with RMSE and AUROC scores.

The average RMSE of the inferred BNs was 0.31 placing caspo-ts in first place in comparison

with the top scores reported in the HPN-DREAM challenge. Various choices made during this

study may have an impact on the final score. The caspo-ts method allowed us to remove noisy

and faulty experiments, leaving us with the reliable experimental settings only. Here, we made

the choice to use only the reliable experiments of the learning dataset instead of using all exper-

imental settings. Also, we did not observe all 45 proteins as we could not find connections in

our PKN for all the studied proteins, leaving us with approximately 23 proteins for each cell

line.

Nonetheless, the obtained results are quite promising, making caspo-ts a good candidate

computational method for learning models given time series datasets and a prior knowledge

network. In addition, caspo-ts can be used to pinpoint the errors in the experimental data. In

particular, we discovered four experiments where the protein AKT was inhibited and had a

dynamic behavior as a readout protein. Our work therefore provides a novel approach to show

erroneous experiments which is crucial and complementary to current approaches. Finally,

the HPN-DREAM dataset contained some noisy readings of experiments. Noisy experimental

Fig 7. ROC curve across all cell lines. The x-axis shows the false positive rate and the y-axis denotes the true positive

rate. These rates are calculated using Eqs (3) and (4). The average AUROC score is 0.77.

https://doi.org/10.1371/journal.pcbi.1006538.g007
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data reduces the efficiency of computational methods by increasing the variability among con-

structed Boolean models. To overcome this, we suggest to build automated methods to filter

out the noisy experiments. This approach provides a step forward in building context depen-

dent networks in the case of phosphoproteomic data.

Perspective

As a future direction, we are planning to investigate several aspects of the caspo-ts method,

such as (i) the order of the solution space of over-approximated Boolean models; (ii) the

computational time for checking reachability; (iii) designing an efficient experimental design

strategy and applying it prior to selecting the most informative experiments. Because caspo-ts
uses an ASP solver to enumerate BNs, in the resulting sequence of solutions similar BNs are

typically clustered together. This can be problematic for large scale problems where we cannot

explore the whole solution space in reasonable time. We are currently working on sampling to

randomly select BNs from the solution space. Further, we are also studying another technique,

which allows for shuffling the order in which solutions are enumerated [32]. We are planning

to implement this by dynamically modifying the heuristic of the ASP solver at execution time.

Finally, to reduce the false positive rate, we are planning to use multi-shot ASP solving [33]

allowing us to customize the search and modify the underlying ASP program at runtime. In

our case, we can call the model checker during solving to learn and add constraints to prune

wrong BNs early on.

Materials and methods

Data acquisition

The DREAM portal provides unrestricted access to complex, pre-tested data to encourage the

development of computational methods. In this study, we are focused on the HPN-DREAM

challenge, which was motivated by the fact that the same perturbation may lead to different

signaling behaviors in different backgrounds, making it necessary to build a model which

can perform unseen predictions (absent from the learning data). The main goal of the HPN-

DREAM challenge is to learn signaling networks efficiently and effectively to predict the

dynamics of breast cancer [19].

Learning data. Reverse Phase Protein Array (RPPA) quantitative proteomics technology

was used for generating the dataset of this challenge. The measurements focus on short term

changes on up to 45 proteins and their phosphorylation over 0 to 4 hours. The HPN-DREAM

dataset includes temporal changes in phosphorylated proteins at seven different time points

(t1 = 0min, t2 = 5min, t3 = 15min, t4 = 30min, t5 = 60min, t6 = 120min, t7 = 240 min). The

learning data consists of four cancer cell lines (BT20, BT549, MCF7 and UACC812) under dif-

ferent perturbations (�8 stimuli and�3 inhibitors). The number of perturbations varies from

24 to 32 depending on the cell line. In each cancer cell line approximately 45 phosphorylated

proteins are measured against different sets of perturbations over multiple time scales. After

removing perturbations with inconsistent behaviors or incomplete time series, we had 15, 13,

13 and 18 perturbations for MCF7, BT20, BT549 and UACC812 cell lines respectively measur-

ing 23 readouts.

Testing data. Test data is available for assessing the performance of networks learned

from the learning data. The HPN-DREAM portal provides testing data for four cancer cell

lines (BT20, BT549, MCF7 and UACC812) under different perturbations (8 stimuli and 1

inhibitor). They contain gold standard datasets of time series predictions of up to 45 proteins

having the same time scale as learning data [19–21]. The number of perturbations varies
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from 7 to 8 depending on the cell line. This data is used to test the quality of the BNs given by

caspo-ts.
Normalization. The protein measurements were ranging over variable ranges. Maximum

value based normalization was used to set the measurements between a common scale, i.e., 0

and 1 in order to assign activation or inactivation values to variables or species of the BN. Eq

(5) describes the formula used for the normalization. Given time series TP, we obtain time

series T0P:

ðt0Pj Þi ¼
ðtPj Þi

maxfðtQl Þi j Q 2 P; 1 � l � kg
ð5Þ

where i 2 {1, . . ., m} are the observations, j 2 {1, . . ., k} are time-points, and P 2 P are the per-

turbations. Here ðtPj Þi represents the value of protein i under perturbation P at time-point j
and the denominator denotes the highest value of protein i under all perturbations and time-

points.

Prior knowledge network derivation

PKNs are available in different databases such as Reactome, PID, and KEGG among others

[26, 34–45]. We can construct a PKN through a tool such as ReactomeFIViz [25] which is

available as a Cytoscape [46] plugin. A PKN alone cannot be used to build reliable dynamical

models or to explain underlying biological behaviors [16, 47], especially in the case of multiple

perturbations data because of the need of specificity. In order to overcome this issue, methods

have been proposed which take into account both literature based knowledge and experimen-

tal data to build logic models [3, 7, 11, 12, 16].

Learning Boolean Networks with caspo-ts
In the caspo-ts modeling framework section, we have given the formal definitions of the inputs

and the output (BN) of the caspo-ts. Here, we formally describe the over-approximation crite-

ria. Finally. we give pseudo encodings of the input of the ASP part of the caspo-ts.
Over-approximation criteria. The goal is to generate BNs that can reproduce the experi-

mental data as well as possible. For this objective, the states have to be reachable from another.

We use x!� y to say that state y can be reached from state x with an arbitrary number of

steps. Since this reachability is a computationally hard problem (PSPACE-complete) [48], we

use an over-approximation for checking reachability resulting in false positive (FP) BNs [7, 8].

The meta-states have been introduced to check over-approximated reachability.

A meta-state u = (u1, u2, . . ., un) is a vector of dimension n over non-empty subsets of B,

notedM ¼ ff0g; f1g; f0; 1gg; the set of meta-states isMn
. Meta-states characterize a set

of Boolean states: a state x 2 Bn belongs to a meta-state u, written x 2 u, iff each Boolean

component xi belongs to the set ui. Given a state x, we use �x for the corresponding meta-state

({x1}, . . ., {xn}). We define the transition relation u⇉ v between the meta-states u and v as fol-

lows: u 6¼ v and v = (u1, . . ., ui [ {fi(x) j x 2 u}, . . ., un) for some 1� i� n.

In [8], it has been shown that if y is reachable from x (x!� y) then there exists a meta-state

u such that y 2 u and �x ⇉� u. This definition is further refined to describe the necessary condi-

tion for reachability called support consistency. A state x is support consistent with state y
denoted by x⇝� y, if and only if there exists a meta-state u with �x ⇉� u such that y 2 u and for

all 1� i� n either

• yi 6¼ xi, or

• yi = xi and ui 6¼ {0, 1}, or
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• yi = xi, ui = {0, 1}, and there exists z 2 u such that fi(z) = yi.

If state y is reachable from state x (x!� y) then x⇝� y. Since we are using the over-approxi-

mation criteria, it is possible that some BNs may fail to reproduce the exact trajectories of the

time series data. These BNs are called false positive (FP). To filter out the false positive BNs,

exact model checking is applied.

Input encodings. Here, we provide the pseudo logic program to describe the input data

given in the caspo-ts modeling framework Section. The logic program in written in the ASP

language. ASP is a powerful declarative logic programming language for knowledge represen-

tation and reasoning [49]. The basic idea is to encode the problem using a non-monotonic

logic program and then feed it into the ASP solver, which computes the solution of the prob-

lem in the form of models (also known as answer sets). Note that we provide encodings only

for the input data here, please refer to supplementary information for details (S1 Text).

Facts, rules and constraints are the building blocks of ASP programs. Here we use facts to

describe the inputs. The PKN (V, E, σ) is described by the following facts:

nodeðvÞ: for v 2 V

edgeðu; v; sÞ: for ðu; vÞ 2 E and ððu; vÞ; sÞ 2 s

For each perturbation P 2 P and phosphoproteomic time series TP, we have the following

facts:

clampedðP; v; 0Þ: for v 2 P \ I

clampedðP; v; 1Þ: for v 2 P \ S

obsðP; j; vi; sÞ: for s ¼ ðtPj Þi; 1 � j � k and 1 � i � m

Available software. The caspo-ts github repository contains the sources as well as

detailed user guide with two examples at the following address: https://github.com/

misbahch6/caspo-ts.

Graph similarity measure

This work introduces the study of a graph similarity measure in order to check the variability

among the families of BNs generated by caspo-ts. We compare the reactions existing in the

gold standard network (A) with the family of BNs (B) and is based on the Jaccard similarity

coefficient which measures the similarity of these models.

Jaccard similarity coefficient. The Jaccard index between A and Bi can be defined as

length of the intersection divided by the union:

JðA;BiÞ ¼
j A \ Bi j
j A [ Bi j

¼
j A \ Bi j

j A j þ j Bi j � j A \ Bi j
ð6Þ

We apply the Jaccard Similarity Coefficient on Bi (where Bi � B) by taking A as being the gold

standard.

Supporting information

S1 Fig. Union of BNs of BT20. Here, we show the union of BNs for the cell line BT20. This

network is generated by combining 72 true positive BNs. It contains 31 nodes and 41 boolean

functions with 12 AND gates. There are 2 stimuli, 2 inhibitors and 21 readouts.

(PDF)
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S2 Fig. Union of BNs of BT549. Here, we show the union of BNs for the cell line BT549. This

network is generated by combining 191 true positive BNs. It contains 28 nodes and 53 boolean

functions with 35 AND gates. There are 5 stimuli, 2 inhibitors and 17 readouts.

(PDF)

S3 Fig. Union of BNs of MCF7. Here, we show the union of BNs for the cell line MCF7. This

network is generated by combining 21 true positive BNs. It contains 24 nodes and 37 boolean

functions with 19 AND gates. There are 4 stimuli, 2 inhibitors and 15 readouts.

(PDF)

S4 Fig. Union of BNs of UACC812. Here, we show the union of BNs for the cell line UACC812.

This network is generated by combining 20 BNs. It contains 33 nodes and 54 boolean functions

with 29 AND gates. There are 6 stimuli, 2 inhibitors and 18 readouts.

(PDF)

S1 Table. Computation summary. Here, we show the number of verified solutions, true posi-

tive and false positive BNs, and their computation (ASP solving and Model Checking steps)

time for each cell line. It is worth noting that we generated 32 true positive BNs for UACC812

cell line by allowing the model checker to run without bounding it to the 7 day time limit. The

ASP solving was performed on a standard laptop machine. The model checking task was per-

formed on a cluster with 560 cores and 1.9 Tb of RAM.

(PDF)

S1 Text. ASP encodings.

(PDF)

S2 Text. Validation by introducing noise in the learning data.

(PDF)
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Funding acquisition: Jérémie Bourdon, Carito Guziolowski.

Investigation: Misbah Razzaq, Julio Saez-Rodriguez, Jérémie Bourdon, Carito Guziolowski.

Methodology: Misbah Razzaq.

Project administration: Carito Guziolowski.

Resources: Julio Saez-Rodriguez.

Software: Misbah Razzaq, Jérémie Bourdon, Carito Guziolowski.

Supervision: Jérémie Bourdon, Carito Guziolowski.

Validation: Misbah Razzaq, Jérémie Bourdon, Carito Guziolowski.

Visualization: Misbah Razzaq.

Writing – original draft: Misbah Razzaq, Carito Guziolowski.

Writing – review & editing: Misbah Razzaq, Loïc Paulevé, Anne Siegel, Julio Saez-Rodriguez,
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8. Ostrowski M, Paulevé L, Schaub T, Siegel A, Guziolowski C. Boolean network identification from pertur-

bation time series data combining dynamics abstraction and logic programming. Biosystems. 2016;

149:139–153. https://doi.org/10.1016/j.biosystems.2016.07.009

9. Almudevar A, McCall MN, McMurray H, Land H. Fitting Boolean networks from steady state perturba-

tion data. Statistical applications in genetics and molecular biology. 2011; 10(1):47. https://doi.org/10.

2202/1544-6115.1727

10. Zhu P, Aliabadi HM, UludağH, Han J. Identification of Potential Drug Targets in Cancer Signaling Path-

ways using Stochastic Logical Models. Scientific reports. 2016; 6.

11. Guziolowski C, Videla S, Eduati F, Thiele S, Cokelaer T, Siegel A, et al. Exhaustively characterizing fea-

sible logic models of a signaling network using answer set programming. Bioinformatics. 2013; 29

(18):2320–2326. https://doi.org/10.1093/bioinformatics/btt393

12. Videla S, Guziolowski C, Eduati F, Thiele S, Grabe N, Saez-Rodriguez J, et al. Revisiting the training of

logic models of protein signaling networks with ASP. In: Computational Methods in Systems Biology.

Springer; 2012. p. 342–361.

13. Sharan R, Karp RM. Reconstructing Boolean models of signaling. Journal of Computational Biology.

2013; 20(3):249–257. https://doi.org/10.1089/cmb.2012.0241

14. Mitsos A, Melas IN, Siminelakis P, Chairakaki AD, Saez-Rodriguez J, Alexopoulos LG. Identifying drug

effects via pathway alterations using an integer linear programming optimization formulation on phos-

phoproteomic data. PLoS computational biology. 2009; 5(12):e1000591. https://doi.org/10.1371/

journal.pcbi.1000591

15. Gebser M, Kaminski R, Kaufmann B, Schaub T. Clingo = ASP+ control: Preliminary report. arXiv pre-

print arXiv:14053694. 2014;.

16. Saez-Rodriguez J, Alexopoulos LG, Epperlein J, Samaga R, Lauffenburger DA, Klamt S, et al. Discrete

logic modelling as a means to link protein signalling networks with functional analysis of mammalian sig-

nal transduction. Molecular systems biology. 2009; 5(1).

17. Terfve C, Cokelaer T, Henriques D, MacNamara A, Goncalves E, Morris MK, et al. CellNOptR: a flexible

toolkit to train protein signaling networks to data using multiple logic formalisms. BMC systems biology.

2012; 6(1):133. https://doi.org/10.1186/1752-0509-6-133

18. Dorier J, Crespo I, Niknejad A, Liechti R, Ebeling M, Xenarios I. Boolean regulatory network reconstruc-

tion using literature based knowledge with a genetic algorithm optimization method. BMC bioinformat-

ics. 2016; 17(1):410. https://doi.org/10.1186/s12859-016-1287-z

19. Heiser L. HPN-DREAM breast cancer network inference challenge; 2016. Available from: https://www.

synapse.org/#!Synapse:syn1720047/wiki/55342.

20. Hill SM, Heiser LM, Cokelaer T, Unger M, Nesser NK, Carlin DE, et al. Inferring causal molecular net-

works: empirical assessment through a community-based effort. Nature methods. 2016; 13(4):310–

318. https://doi.org/10.1038/nmeth.3773

21. Hill SM, Nesser NK, Johnson-Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context specificity

in causal signaling networks revealed by phosphoprotein profiling. Cell systems. 2017; 4(1):73–83.

https://doi.org/10.1016/j.cels.2016.11.013

Dynamic cell line specific Boolean networks from multiplex time-course data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006538 October 29, 2018 21 / 23

https://doi.org/10.1016/j.drudis.2008.03.019
https://doi.org/10.1186/1478-811X-11-43
https://doi.org/10.1186/1478-811X-11-43
https://doi.org/10.1039/c2ib20193c
https://doi.org/10.1039/c2ib20193c
https://doi.org/10.1016/j.biosystems.2016.07.009
https://doi.org/10.2202/1544-6115.1727
https://doi.org/10.2202/1544-6115.1727
https://doi.org/10.1093/bioinformatics/btt393
https://doi.org/10.1089/cmb.2012.0241
https://doi.org/10.1371/journal.pcbi.1000591
https://doi.org/10.1371/journal.pcbi.1000591
https://doi.org/10.1186/1752-0509-6-133
https://doi.org/10.1186/s12859-016-1287-z
https://www.synapse.org/#!Synapse:syn1720047/wiki/55342
https://www.synapse.org/#!Synapse:syn1720047/wiki/55342
https://doi.org/10.1038/nmeth.3773
https://doi.org/10.1016/j.cels.2016.11.013
https://doi.org/10.1371/journal.pcbi.1006538


22. Kauffman SA. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of theo-

retical biology. 1969; 22(3):437–467. https://doi.org/10.1016/0022-5193(69)90015-0

23. Inoue K. Logic Programming for Boolean Networks. In: Proceedings of the Twenty-Second International

Joint Conference on Artificial Intelligence—Volume Volume Two. vol. 22 of IJCAI’11. AAAI Press; 2011.

p. 924–930.

24. Cimatti A, Clarke E, Giunchiglia E, Giunchiglia F, Pistore M, Roveri M, et al. Nusmv 2: An opensource

tool for symbolic model checking. In: International Conference on Computer Aided Verification.

Springer; 2002. p. 359–364.

25. Wu G, Dawson E, Duong A, Haw R, Stein L. ReactomeFIViz: a Cytoscape app for pathway and net-

work-based data analysis. F1000Research. 2014; 3. https://doi.org/10.12688/f1000research.4431.2

26. Wu G, Dawson E, Duong A, Haw R, Stein L. ReactomeFIViz: a Cytoscape app for pathway and net-

work-based data analysis. F1000Research. 2014; 3. https://doi.org/10.12688/f1000research.4431.2

27. Abboud A, Grandoni F, Williams VV. Subcubic equivalences between graph centrality problems, APSP

and diameter. In: Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algo-

rithms. SIAM; 2014. p. 1681–1697.

28. Shekar SC, Wu H, Fu Z, Yip SC, Cahill SM, Girvin ME, et al. Mechanism of constitutive phosphoinosi-

tide 3-kinase activation by oncogenic mutants of the p85 regulatory subunit. Journal of Biological Chem-

istry. 2005; 280(30):27850–27855. https://doi.org/10.1074/jbc.M506005200

29. Taniguchi CM, Winnay J, Kondo T, Bronson RT, Guimaraes AR, Alemán JO, et al. The phosphoinosi-

tide 3-kinase regulatory subunit p85α can exert tumor suppressor properties through negative regula-

tion of growth factor signaling. Cancer research. 2010; 70(13):5305–5315. https://doi.org/10.1158/

0008-5472.CAN-09-3399

30. Network CGA, et al. Comprehensive molecular portraits of human breast tumours. Nature 490, 61e70;

2012.

31. Carlin DE. Computational evaluation and derivation of biological networks in cancer and stem cells.

University of California, Santa Cruz; 2014.

32. Romero J, Schaub T, Wanko P. Computing Diverse Optimal Stable Models. In: ICLP (Technical Commu-

nications). vol. 52 of OASICS. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik; 2016. p. 3:1–3:14.

33. Kaminski R, Schaub T, Wanko P. A tutorial on hybrid answer set solving with clingo. In: Reasoning Web

International Summer School. Springer; 2017. p. 167–203.

34. Duan G, Walther D. The roles of post-translational modifications in the context of protein interaction net-

works. PLoS Comput Biol. 2015; 11(2):e1004049. https://doi.org/10.1371/journal.pcbi.1004049

35. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research. 2000;

28(1):27–30. https://doi.org/10.1093/nar/28.1.27

36. Consortium GO, et al. The Gene Ontology (GO) database and informatics resource. Nucleic acids

research. 2004; 32(suppl 1):D258–D261. https://doi.org/10.1093/nar/gkh036

37. Kelder T, van Iersel MP, Hanspers K, Kutmon M, Conklin BR, Evelo CT, et al. WikiPathways: building

research communities on biological pathways. Nucleic Acids Research. 2012; 40(D1):D1301. https://

doi.org/10.1093/nar/gkr1074

38. Nishimura D. BioCarta. Biotech Software & Internet Report: The Computer Software Journal for Scient.

2001; 2(3):117–120. https://doi.org/10.1089/152791601750294344

39. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for

interaction datasets. Nucleic acids research. 2006; 34(suppl_1):D535–D539. https://doi.org/10.1093/

nar/gkj109

40. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in

2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic acids

research. 2017; 45(D1):D362–D368. https://doi.org/10.1093/nar/gkw937

41. Xenarios I, Rice DW, Salwinski L, Baron MK, Marcotte EM, Eisenberg D. DIP: the database of interact-

ing proteins. Nucleic acids research. 2000; 28(1):289–291. https://doi.org/10.1093/nar/28.1.289

42. Peri S, Navarro JD, Kristiansen TZ, Amanchy R, Surendranath V, Muthusamy B, et al. Human protein

reference database as a discovery resource for proteomics. Nucleic acids research. 2004; 32(suppl_1):

D497–D501. https://doi.org/10.1093/nar/gkh070

43. Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, et al. IntAct: an open

source molecular interaction database. Nucleic acids research. 2004; 32(suppl_1):D452–D455. https://

doi.org/10.1093/nar/gkh052

44. Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G, Helmer-Citterich M, Cesareni G. MINT: a

Molecular INTeraction database. FEBS letters. 2002; 513(1):135–140. https://doi.org/10.1016/S0014-

5793(01)03293-8

Dynamic cell line specific Boolean networks from multiplex time-course data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006538 October 29, 2018 22 / 23

https://doi.org/10.1016/0022-5193(69)90015-0
https://doi.org/10.12688/f1000research.4431.2
https://doi.org/10.12688/f1000research.4431.2
https://doi.org/10.1074/jbc.M506005200
https://doi.org/10.1158/0008-5472.CAN-09-3399
https://doi.org/10.1158/0008-5472.CAN-09-3399
https://doi.org/10.1371/journal.pcbi.1004049
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/gkh036
https://doi.org/10.1093/nar/gkr1074
https://doi.org/10.1093/nar/gkr1074
https://doi.org/10.1089/152791601750294344
https://doi.org/10.1093/nar/gkj109
https://doi.org/10.1093/nar/gkj109
https://doi.org/10.1093/nar/gkw937
https://doi.org/10.1093/nar/28.1.289
https://doi.org/10.1093/nar/gkh070
https://doi.org/10.1093/nar/gkh052
https://doi.org/10.1093/nar/gkh052
https://doi.org/10.1016/S0014-5793(01)03293-8
https://doi.org/10.1016/S0014-5793(01)03293-8
https://doi.org/10.1371/journal.pcbi.1006538


45. Razick S, Magklaras G, Donaldson IM. iRefIndex: a consolidated protein interaction database with prov-

enance. BMC bioinformatics. 2008; 9(1):405. https://doi.org/10.1186/1471-2105-9-405

46. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environ-

ment for integrated models of biomolecular interaction networks. Genome research. 2003; 13

(11):2498–2504. https://doi.org/10.1101/gr.1239303

47. Rodriguez A, Crespo I, Androsova G, del Sol A. Discrete Logic Modelling Optimization to Contextualize

Prior Knowledge Networks Using PRUNET. PloS one. 2015; 10(6):e0127216. https://doi.org/10.1371/

journal.pone.0127216

48. Cheng A, Esparza J, Palsberg J. Complexity results for 1-safe nets. Theoretical Computer Science.

1995; 147(1):117—136. https://doi.org/10.1016/0304-3975(94)00231-7

49. Lifschitz V. What Is Answer Set Programming? In: AAAI. AAAI Press; 2008. p. 1594–1597.

Dynamic cell line specific Boolean networks from multiplex time-course data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006538 October 29, 2018 23 / 23

https://doi.org/10.1186/1471-2105-9-405
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1371/journal.pone.0127216
https://doi.org/10.1371/journal.pone.0127216
https://doi.org/10.1016/0304-3975(94)00231-7
https://doi.org/10.1371/journal.pcbi.1006538

