
Phylogenetics

A phylogenetic C interpreter for TNT

Pablo A. Goloboff* and Martı́n E. Morales

Unidad Ejecutora Lillo (Fundación Miguel Lillo – Consejo Nacional de Investigaciones Cientı́ficas y Técnicas), S. M. de Tucumán 4000,

Argentina

*To whom correspondence should be addressed.

Associate Editor: Russell Schwartz

Received on February 5, 2020; revised on March 17, 2020; editorial decision on March 20, 2020; accepted on March 24, 2020

Abstract

Motivation: TNT (a widely used program for phylogenetic analysis) includes an interpreter for a scripting language,
but that implementation is nonstandard and uses several conventions of its own. This article describes the imple-
mentation and basic usage of a C interpreter (with all the ISO essentials) now included in TNT. A phylogenetic library
includes functions that can be used for manipulating trees and data, as well as other phylogeny-specific tasks. This
greatly extends the capabilities of TNT.

Availability and implementation: Versions of TNT including the C interpreter for scripts can be downloaded from
http://www.lillo.org.ar/phylogeny/tnt/.

Contact: pablogolo@yahoo.com.ar

1 Introduction

TNT (Goloboff and Catalano 2016; Goloboff et al., 2008), a
parsimony-based program for phylogenetics, can be used for a num-
ber of comparisons, simulations and analyses beyond parsimony
searches. The program implements numerous metrics for tree com-
parisons (e.g. Goloboff, 2008; Goloboff et al., 2017), routines for
consensus and supertree calculations (e.g. Goloboff and Pol, 2002;
Goloboff et al., 2003), identification of rogue taxa (e.g. Goloboff
and Szumik, 2015) and other facilities.

In addition to the built-in commands, TNT also implements a
scripting language of its own. This language is specifically designed
for ease of use within TNT instruction files, making it possible to
intersperse scripting instructions (e.g. decision making, storing val-
ues of calculations, flow control) with regular TNT commands (i.e.
commands for calculating and handling trees). The scripting lan-
guage of TNT allows programming rather elaborate routines, such
as creation of matrices with only four homoplasy-free multistate
characters determining any given tree topology (based on Steel and
Penny, 2005; see Supplementary Material of Goloboff and
Wilkinson, 2018), creation of matrices with minimum number of
homoplastic binary characters determining known fully symmetrical
or pectinate trees (based on Chai and Housworth, 2011; see
Supplementary Material of Goloboff, 2014), or enumeration and
manipulation of alternative most parsimonious reconstructions of
continuous characters (Giannini and Goloboff, 2010, see script at
http://www.lillo.org.ar/phylogeny/tnt/scripts/xdelcor.run).

Several other phylogeny programs include a scripting language,
often with its own syntax and conventions. Examples are Psoda
(Carroll et al., 2009), RevBayes (Höhna et al., 2014, 2016) and
Mesquite (Maddison and Maddison 2019). These scripting lan-
guages generally have the advantage of simplicity, and of having
been designed specifically for a phylogenetic setting. A drawback,

however, is that their syntax tends to be significantly different from
standard programming languages. The tutorial at https://revbayes.
github.io/tutorials/intro/rev.html, for RevBayes, is an example. In the
case of TNT, assignments must be made by means of the command
set (because TNT parses input for commands first), accessing user
variables requires the use of quotation marks as sigils (so that the
parser can distinguish between standard numbers or user variables to
be read as numbers), and other nonstandard aspects (http://www.
lillo.org.ar/phylogeny/tnt/scripts/General_Documentation.pdf).

Among programming languages, C continues being one of the
most widely used languages (second only after Java; see https://stack
ify.com/popular-programming-languages-2018/). C is widely con-
sidered to be a programming lingua franca, and the basics of it are
learnt at some point or another by most programmers. To make it
easier to take advantage of the facilities for tree search and manipu-
lation in TNT, we have included a C-language interpreter into TNT.
We have chosen for that purpose a C interpreter noted for its light-
weight and versatility, PicoC (Saleeba, 2019), which is widely used
for scripting in robotic and embedded applications. Despite having
only about 3.5 K lines of code and using little memory at run-time,
PicoC implements all of the essentials of ISO (International
Organization for Standardization) for the C language, including
data types, structures, pointers, functions and pre-processor
directives.

2 Running C scripts from TNT; communication
with TNT

The command runc runs a C script from TNT. The stack size for the
interpreter is by default 512 kb, but this can be changed by setting
an environment variable STACKSIZE. C scripts can be run from
TNT in two modes:

VC The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 3988

Bioinformatics, 36(13), 2020, 3988–3995

doi: 10.1093/bioinformatics/btaa214

Advance Access Publication Date: 28 March 2020

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/13/3988/5813334 by C
N

R
S user on 17 Septem

ber 2020

http://www.lillo.org.ar/phylogeny/tnt/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa214#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa214#supplementary-data
http://www.lillo.org.ar/phylogeny/tnt/scripts/xdelcor.run
https://revbayes.github.io/tutorials/intro/rev.html
https://revbayes.github.io/tutorials/intro/rev.html
http://www.lillo.org.ar/phylogeny/tnt/scripts/General_Documentation.pdf
http://www.lillo.org.ar/phylogeny/tnt/scripts/General_Documentation.pdf
https://stackify.com/popular-programming-languages-2018/
https://stackify.com/popular-programming-languages-2018/
https://academic.oup.com/

a. By invoking a separate file with the script, runc filename arg1

arg2 . . . argn. In this case, the entry point for script execution is

main(). The file containing the script can have any extension, al-

though we recommend using *.pic instead of the standard *.c to

avoid confusion with regular C files.

b. On the fly, e.g. interspersed within other TNT instructions. This

uses the runc! option (ending C-style instructions with a line

containing only "!"):

. . . (regular TNT commands here). . .

runc!

fprintf (stderr, “Hello, world!\n”);

!

. . . (other TNT commands follow). . .

Only the first mode admits arguments being passed to the C
script (via argc and argv in main). The advantage of the second
mode is that it allows mixing C and TNT syntax in a single file. For
additional flow control, it is also possible to use TNT-style scripting
to call different C-style scripts, e.g.:

if (ntax > 100)

runc big_data_script.pic;

else

runc small_data_script.pic;

end

Execution of a C script ends when reaching a return statement in
main(), or when the exit() function is called. The exit value of the
script will be subsequently accessible to TNT if set with exit() (the
return value from main() is not).

All the headers and libraries implemented in PicoC (ctype.h,
math.h, stdio.h, stdlib.h, string.h, time.h and unistd.h) are automat-
ically included in any C script, with no need to #include any library.
In addition to those, another library, which we call the tnt library, is
included. These libraries are included from TNT itself; note that ex-
ternal libraries (e.g. ncurses or libpll; Flouri et al., 2015) cannot be
included, as there is no compilation and linking –just interpretation.
Likewise, there is at the time no independent tnt library which could
be used to compile and link the scripts. The C-style scripts are
intended for simplicity; they can be executed as soon as they are
typed (at the file or console), but minimalism always comes at a
cost.

The tnt library defines functions that enable communication be-
tween the C script and TNT, allowing C scripts access to values of
internal TNT variables (e.g. numbers of taxa, characters or trees;
lengths of trees; etc.), displaying formatted text in the output system
of TNT, and executing standard TNT instructions. All of this is
done internally, in memory, without the need to create temporary
files or pipes; this is one of the biggest advantages of a C interpreter
with a tnt library. Execution of TNT built-in commands from a C
script is done with the tnt() and tntlog() functions, the prototypes of
which are

int tnt (char* format, . . .)

int tntlog (FILE* fileptr, char* format, . . .)

The tnt() function runs the instructions in string format as if they
were commands typed at the TNT prompt. The tntlog() function
does the same, except that it automatically writes any TNT output
into the file pointed to by fileptr (bypassing output files opened in
TNT, if any). In both cases, the instructions in format can be for-
matted (with escape sequences as in the standard printf() function),
and can be any TNT commands, up to 512 characters long (exceed-
ing this triggers an error message). The instructions passed to TNT

can be any valid commands, including commands for TNT-style
scripting. The only command that is not valid within format is the
runc command itself (i.e. precluding recursive calls to the C
interpreter).

Many TNT commands require or accept ranges of taxa, charac-
ters or trees, on which to execute operations. These lists can be long,
and the number of elements to include in the selections may be un-
known ahead of time. Our implementation then allows defining lists
of elements to be used in any TNT command invoked from the C
script. Function prototypes are

int charlist (char* list)

int taxlist (char* list)

int treelist (char* list)

list must have as many cells as characters, taxa, or trees; use list
[i] ¼ 0 or 1 to indicate exclusion or inclusion of element i in any sub-
sequent TNT command. Modifications to list (e.g. adding or remov-
ing an element from the list) take effect without the need to use
charlist(), taxlist() or treelist() again; what remains connected to the
TNT parser of ranges is the pointer list, not the values themselves. If
list5NULL, then the use of character, taxon, or tree lists is discon-
nected (using the default selections for all TNT commands). The
functions return the resulting status of the corresponding type.

C scripts can also access names in the matrix. The function
prototype is

char* name (char* option, . . . [int number])

Some of the values for option can be ‘dataset’ (which requires no
further arguments), ‘taxon’, ‘character’ or ‘ttag’ (which require a
taxon, character or branch number), or ‘state’ (which requires a
character and state number as second and third arguments). The op-
posite (retrieve an element number, given its name) is done by

int namtonum (char* type, char* name, . . . [int exact_match])

Type can be "taxon", "character" or "block" (among others);
name is the name of the element. Using these functions, it is easy to,
e.g. save a list of all the taxa in the matrix to the file pointed to by
fileptr:

for (i 5 0; i < Ntax; 11 i)

fprintf (fileptr, "Taxon %i: %s\n", i, name ("taxon", i));

TNT-style user variables can be declared and accessed from a C
script. The function vardec() declares TNT variables to be used dur-
ing execution of the C script (they cease to exist when the script fin-
ishes execution); the varget() and varset() functions access the values
of TNT user variables, for reading and writing, respectively. The
prototypes of these functions are:

void vardec (char* varname, . . . [int dims])

void varget (void* saveto, char* varname, . . . [int dims])

void varset (void* readfrom, char* varname, . . . [int dims])

TNT user variables defined before execution of the C script are
thus accessible to the script, and the script can modify those values
for subsequent use in the TNT script, e.g.:

macro=;

var: n;

set n 666;

runc! /*** begin C-script *****/

double k;

varget (&k, “n”);

C interpreter in TNT 3989

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/13/3988/5813334 by C
N

R
S user on 17 Septem

ber 2020

printf (“C-script: variable in TNT is %d\n”, k);

k 5 12345;

varset (&k, “n”);

!/**** return to TNT script ****/

quote TNT-script: C-script changed value to ‘n’;

proc/;

This produces the following two lines of output:

C-script: variable in TNT is 666

TNT-script: C-script changed value to 12345

Specifying appropriate dimensions, the varget() and varset()

functions can be used to transfer whole arrays or matrices, instead

of single values.

3 Memory management

The standard functions malloc(), calloc(), free() and realloc() are
included in stdlib.h. In normal execution, PicoC will run a script

and exit after termination, thus automatically releasing any memory
allocated during the run. In the current implementation, however,
exiting the interpreter goes back to TNT; any memory allocated

within the script and not freed explicitly before returning to TNT
would remain allocated. To prevent this, by default, the C interpret-

er in TNT keeps track of all memory allocations, and automatically
frees all unfreed memory when returning control to TNT (explicitly
freeing pointers does no harm, though). This incurs a small penalty

in time and memory, but makes it possible to write simpler scripts.
The maximum number of simultaneous allocations to track is set

from TNT itself, prior to running the script, with runc[N (where N

is the number of allocations; use N 5 0 to track no allocations)]. The
default number of allocations to track is 5000; if more than 5000

simultaneous allocations are done, some of those will be untracked
and may cause memory leaks if the script is run repeatedly.

In addition to tracking memory automatically, the tnt library
implements three other functions that facilitate memory

management:

int tagmem(void)

void freetag (int mem_ID)

void freeall (void)

The tagmem() function returns an int (32 bit) that can be used to

reset memory status. Subsequent invocation of freetag() resets the
system, releasing any memory allocated subsequently to the

tagmem() call which had returned the value used as argument for
freetag(). Thus, in the following example:

void internal_function (void) f
int mytag 5 tagmem ();

int* ptr15malloc (. . .), * ptr2 5malloc(. . .);

char* ptr35malloc (. . .);

. . .

do stuff with ptr1 – ptr3 here

. . .

freetag (mytag);

g

the use of freetag() at the end of internal_function() allows return-
ing to the calling function without individually having to release
every one of the pointers allocated within internal_function(). The
freeall() function releases all memory allocated within the script—
this is equivalent to freetag (0).

4 TNT library

The functions in the tnt library are the most important addition to
the interpreter. These allow not only internally executing any TNT
command from a C script, but also accessing internal variables,
lengths and dimensions of trees, exchanging trees and data between
TNT memory and arrays, handling and enumerating most parsimo-
nious reconstructions for characters, exploring TBR and SPR neigh-
borhoods of trees, and comparing trees. We have taken care to
include functions that facilitate most of the operations that may be
needed in phylogenetic analyses and comparisons. The tnt library
defines 40 read-only values (i.e. constants) and over 150 functions,
the code for which is about 4.5 K lines (i.e. more than the code for
PicoC itself).

The read-only values are set by TNT on reading data and calcu-
lating trees. Table 1 exemplifies some of the most commonly used
expressions and their meanings. Several simple functions (Table 2)
allow retrieving information about trees and groups. These func-
tions find ancestors, sisters, or descendants, as well as monophyly of
groups; they also allow exchanging trees (as ancestor lists) between
a C-script and internal TNT memory.

Other functions (Table 3) perform more involved types of opera-
tions, such as calculation of group frequencies, Bremer (1994) sup-
ports, tree comparisons, exchange of values between TNT tables
and scripts, calculation of tree scores and retrieving character states
at terminal or internal nodes (i.e. mapped states). We discuss here
only a simple example, to illustrate the potential of the tnt library.
The function swaptree() takes a tree and generates all the trees in the
SPR or TBR neighborhood. For every tree, a user-defined function
(the name of which must be passed as argument to swaptree()) is

Table 1. Expressions recognized in the context of C scripts, defined in the tnt library

Expression Meaning

exstatus Last exit status of TNT (e.g. closing TNT instructions with ‘return N’ sets exstatus to N)

listsize In functions that write lists (e.g. deslist(), downlist(), grptogrp()), number of elements written to list

maxtrees Maximum number of trees to hold in memory (set in TNT)

missing Value of a missing entry (this depends on maximum number of states, set in TNT)

nblocks Number of blocks in the current dataset

Nchar Number of characters in current dataset (lower case n: minus 1)

Ntax Number of taxa in current dataset (lower case n: minus 1)

Ntrees Number of trees now in memory (lower case n: minus 1)

numhits Number of hits to best length found in last TNT search

outgroup Current outgroup taxon

3990 P.A.Goloboff and M.E.Morales

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/13/3988/5813334 by C
N

R
S user on 17 Septem

ber 2020

called, which can be used to process the tree. For example, the fol-
lowing code in a file swapdemo.pic,

int numrearrangs 5 0;

int best_length;

int tree_num;

int tree_processing (int cut, int rooted_at, int location) f
int i 5 length (tree_num);

tntprintf (“Rearrangement nr. %i. Length %i\n”,

numrearrangs 11, i);

tnt (“tplot %i;”, tree_num);

if (i < best_length) best_length 5 i;

return 1;

g
void main (int argc, char ** argv) f

tree_num 5 atoi (argv [1]);

best_length 5 length (tree_num);

swaptree (“tree_processing”, tree_num);

tntprintf (“Tried %i rearrangs. Best tree: %i steps.\n”,

numrearrangs, best_length);

g

will perform SPR on tree number N (passed as argument, with runc
swapdemo.pic N). This simply explores the neighborhood of the ini-
tial tree, without moving to better trees, if found. The function
swaptree() switches to a new neighborhood when the tree_process-
ing() function returns 2 (instead of 1). The function progress() pro-
duces a progress report, and the expression percswap gives the
(estimated) percentage of swapping completed (on a 0–100 scale).
Thus, modifying the processing function to be:

int tree_processing (int cut, int rooted_at, int location) f
int i 5 length (tree_num);

11 numrearrangs;

progress (percswap, 100, “Swapping, best length: %i”,

best_length);

if (i < best_length) f
best_length 5 i;

Table 2. Functions for basic handling of trees, defined in the tnt library

Type Function Arguments Action

int anc int T, int N Ancestor of node N in tree T

int comnod int T, char* list Return common node, in tree T, of all nodes listed in list (list is an array, with at least

2*Ntax values; list[i]50 or 1 excludes or includes node i). Alternatively, passing three or

more int arguments to comnod, list of nodes is taken from args2, arg3, . . ., argn

int deslist int* save, int T, int N Save list of immediate descendants of node N, in tree T, into array save. Return (and write to

listsize) number of values saved in array

int distnode int T, int N1, int N2 Distance (¼branches) between nodes N1-N2, for tree T

int downlist int* save, int T, . . . [int N] Save list for down-pass (htu’s only) of tree T, into array save. Return (and write to listsize)

number of values saved in array. Optionally, indicate node N for building list.

int eqgroup int T1, int N, int T2 Node of tree T2 that corresponds to node N of tree T1

int eqtrees int T1, int T2 Are trees T1 and T2 the same? 0: different, 1: same

int gettree int* save, . . . [int T] Copy TNT tree number T onto array save. If no arg2 given, then it copies from last memory

tree. Special cases of arg2: -1 constraint, -2 tagtree.

int ismono int T, char* list Return common node for taxa listed in list if they form a monophyletic group in tree T, 0

otherwise. Array list must have at least Ntax values; list[i]50 or 1 excludes or includes

taxon i). If more than two arguments passed, they are read as int’s, and ismono returns

node common to taxa N1-Nn if they form a monophyletic group in tree T.

int nnodes int T Number of nodes of tree T, minus 1

int mono int T Does tree T satisfy defined constraints? (defined with TNT command “force’’)

int nodfork int T, int N Number of immediate descendants of node N in tree T

int numdes int T, int N Number of terminals belonging to node N of tree T

int sister int T, int N Sister of node N, in tree T; if node polytomous, last sister ¼ –1

int settree int* source, . . . [int T] Copy source tree onto TNT memory tree T. If no arg2 given, copy onto last memory tree

(and increase number of trees in memory). Source is a list of ancestors, and it must fulfill

certain rules (see online help of TNT for details). TNT performs a sanity check before stor-

ing the tree, possibly renumbering nodes when storing in memory (so that they follow

TNT’s internal rules for node numbering, enabling tree handling and comparison)

int tagset int N, char* format, . . . Copy string in format into tree-tag of node number N (formatted as in printf()). Return

length of resulting tree-tag.

int tagtree int T Make tree T the tag tree (and clear all tags)

int tnodes int T Number of nodes (¼groups) in tree T

int tsize int T Number of terminal taxa included in tree T

C interpreter in TNT 3991

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/13/3988/5813334 by C
N

R
S user on 17 Septem

ber 2020

Table 3. Functions for various types of phylogenetic calculations, defined in the tnt library

Type Function Arguments Action Return value

int bremlist double* save

char* options

Run options (as in TNT command

‘bsupport’), write Bremer values

to array save.

Largest node of tree

int collectable double* save If any table displayed in TNT, store

values in array save (if

save¼NULL, stop retrieving).

Status of table retrieval

double combine int* list, char* funcname,

int num,

int min,

. . .[int max]

Produce all combinations of min out

of num elements; if max indicated

[optional], also produce minþ1,

minþ2, . . ., max. Write elements

combined into list. For each com-

bination, call function funcname.

Function funcname must take a

single argument (the number of

elements picked in that combin-

ation) and return an int to com-

bine (which indicates whether to

stop process, 0, or continue gener-

ating combinations, 1).

Return number of combinations gen-

erated. Note: if list NULL, it

returns number of combinations

to generate (calling no other

functions)

void disptable double* values, int nvals,

char* title,. . .

[int prec],

. . .[int names]

Display values in a TNT table (for-

matted as set with TNT command

‘tables’), with nvals values, and

title. Optionally, precision can be

given as prec. For tables with op-

tional format (‘tables=;’ command

of TNT), character or taxon

names can be used (if ‘char-

names=;’ or ‘taxnames=;’ set in

TNT), passing a fifth argument; 1

character names, or 2 taxon names

(0 no names used).

int freqlist int* save, char*

options

Run options (as in ‘majority’ com-

mand of TNT), write values of

group frequencies into save.

Largest node of tree

int gcomp int T1, int N1, int T2, int N2 Are nodes N1 of tree T1, and node

N2 of tree T2 compatible? (0) in-

compatible; (1) node N1 includes

N2; (2) node N1 included in N2;

(3) node N1 equals N2; (4) N1 and

N2 are disjunct taxon sets.

Result of comparison

double gfreq int T, int N Frequency of group N of tree T.

Functions charlist() and taxlist()

determine which trees and taxa to

consider (otherwise, all).

Group frequency

int grouplist int* save, int T, int N Write to save the list of the terminals

that belong to node N of tree T.

Return value is also written in

listsize.

Number of terminals written in save

int grptogrp int* save, int T1, int T2 Write to save node correspondences

between two trees, saving for each

node of tree T1 the number of equi-

valent node in tree T2 (none¼ �1).

Can ignore positions of taxa with

taxlist().

Number of nodes of target tree.

double implik int T Calculate likelihood of tree T by

finding optimal branch length for

each character (the same for each

branch, different for each charac-

ter, as in Goloboff and Arias,

2019), summing over alternative

reconstructions. This can use a

common morphospace (possibly

changed to N states with TNT

command ‘lset gstate N’, or the

Log likelihood value

3992 P.A.Goloboff and M.E.Morales

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/13/3988/5813334 by C
N

R
S user on 17 Septem

ber 2020

Table 3. (continued)

Type Function Arguments Action Return value

largest state in matrix) or individ-

ual morphospace (with ‘lset

nogstatespace’).

void iterrecs double* values,

char* funcname,

int T, int C,

. . .[int options, int sample,

int increment]

Iterate reconstructions for tree T,

char C; for every reconstruction,

store state for each tree node on

values, and call function named

funcname. Function funcname

must take as argument a double

(the score of the reconstruction),

and return an int to iterrecs() (0 ¼
stop process, 1 ¼ continue).

Individual bits in options deter-

mine special ways to reconstruct,

including forcing certain states to

some nodes (hence the need to

pass score as argument to func-

name). See online help of TNT for

details.

double mklik int T Calculate likelihood for tree T, under

Mk model (single rate).

Morphospace determined as for

implik().

Log likelihood value

void progress int done, int todo,

char* message, . . .

Draw a progress bar, showing the

percentage of todo that done rep-

resents. Display message (format-

ted as in printf()). Every update of

the progress bar also checks for

user interrupts

void randomlist int* save,

int N, . . . [int first]

Write to save a random list, from 0

to N-1. Arg3 [optional] is the

value to place as first value of the

list.

double rfdist char* options Robinson-Foulds distances between

trees (options as in ‘tcomp <’ com-

mand of TNT). Use r as prefix (i.e.

rrfdist) for a rooted distance; use p

as a suffix (i.e. rfdistp, rrfdistp) to

normalize by number of groups

present in trees (instead of all pos-

sible groups).

Distance value

double score int T, . . . [int C] Score of tree T (optional, character

C). If implied weights is off, num-

ber of steps; otherwise, return tree

fit.

Score value

int simgroup int T1, int N, int T2 Return the group of tree T2 that is

most similar to group N of tree T1

(determining similarity as done by

the ‘rfreq’ command of TNT, and

returning 0 when maximum simi-

larity is 0). If T1¼ -1, then it uses

reference taxonomy; if T1¼ -2,

then it uses constraint tree. Stores

number of taxa shared by both

groups (reg_beta), added to group

in N (reg_alfa), or removed from

group in N (regr)

Node number

(or 0 for no similar group)

void sortlist int* save,

double* values,

int N

Write to save indices of ordered val-

ues (increasing order), for N val-

ues. Differs from qsort() in that it

preserves the indices of values.

double sprdiff int T1, int T2,

int R, int P

Return number of SPR moves to con-

vert tree T1 into T2, using R

Distance value

C interpreter in TNT 3993

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/13/3988/5813334 by C
N

R
S user on 17 Septem

ber 2020

Table 3. (continued)

Type Function Arguments Action Return value

replications, and P passes (see

Goloboff, 2008 for details of the

algorithm). If P is negative, then it

alternates passes with and without

stratification. Moves can be

weighted by distance (set with the

TNT command ‘sprdiff’)

int states void* save,

. . .[int T, int C, int N]

Save data matrix onto array (int **)

pointed to by arg1 (must be large

enough to hold Nchar*Ntax val-

ues), as state (¼bit) sets. If T speci-

fied, then array will save 2*Ntax-1

values, with states for internal

nodes resulting from optimizing

tree T. If T, C and N specified,

then arg1 can point to a single

number. If C is -1, then it copies

all characters for the node(s) speci-

fied (with arg1 pointing to int**

or int*, depending on whether N

is negative or not). Likewise for N.

Thus, states(ptr) is equivalent to

states(ptr,-1,-1,-1). If

save¼NULL, then it only returns

number of dimensions required to

store values for the given rest of

arguments; regalfa and regbeta

contain the sizes needed along first

and second dimension (0¼none).

Function downstates() is similar,

but copying down-pass states to

internal nodes.

Number of dimensions needed for

the given arguments (0¼a pointer

to a single number)

int swaptree char* funcname,

int T, . . . [int swaptype]

Perform branch swapping on mem-

ory tree T, calling function func-

name for every rearrangement.

Function funcname must return

an int to swaptree (indicating

whether to stop search, 0, con-

tinue, 1, or resetting swap and

start swapping from new tree, 2),

and take three arguments (what is

cut, where it is rooted, and where

it is inserted). Swaptype indicates

whether to perform SPR (0), SPR

moving outgroup (1), or TBR (2);

default swaptype is 0. When swap-

ping, variable percswap indicates

percentage of swapping

completed.

Number of moves made

double symcoeff char* options Calculate symmetric distortion coef-

ficient (modified from Farris

1973), with options as in

‘tcomp=¼’ command of TNT

Distortion value

int travtree char* travel,

char* funcname,

int T, . . .[int N]

Sequentially visit nodes of tree T, as

indicated in travel, calling every

time function named funcname

(function must return int, and take

as argument the node being vis-

ited, as int). Travel can be ‘up’,

‘down’, ‘path’, ‘below’ or ‘des’.

For up and down, the node N used

as pivot for the travel is by default

the root node (it can be indicated

Number of nodes visited.

3994 P.A.Goloboff and M.E.Morales

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/13/3988/5813334 by C
N

R
S user on 17 Septem

ber 2020

return 2;

g
return 1;

g

and erasing the progress bar in main() after returning from
swaptree():

swaptree (“tree_processing”, tree_num);

progress (0, 0, NULL);

the resulting code will find the best tree it can, by doing SPR on the
starting tree, reporting progress as it works. The tree_processing()
function itself could be designed to use a different criterion to score
trees [e.g. certain groups monophyletic, a certain maximum
Robinson-Foulds distance (Robinson and Foulds 1981) to a refer-
ence tree etc.] instead of a standard parsimony search (which, after
all, is already implemented internally in TNT).

Financial Support: none declared.

Acknowledgements

The authors thank Steve Farris for his insistence that a more standard script-

ing interpreter should be included in TNT. The support from CONICET

(PUE 0070) was deeply appreciated. We also thank Santiago Catalano for

testing many of the functions of the tnt library and suggesting some features.

Comments from three reviewers (Mark Simmons, and two anonymous)

helped improve the article, for which we are grateful.

Conflict of Interest: none declared.

References

Bremer,K. (1994) Branch support and tree stability. Cladistics, 10, 295–304.

Carroll,H. et al., (2009) An open source phylogenetic search and alignment

package. Int. J. Bioinf. Res. App., 5, 349–364.

Chai,J. and Housworth,E. (2011) On the number of binary characters needed

to recover a phylogeny using maximum parsimony. Bull. Math. Biol., 73,

1398–1411.

Farris,J. (1973) On comparing the shapes of taxonomic trees. Syst. Zool., 22,

50–54.

Flouri,T. et al., (2015) The phylogenetic likelihood library. Syst. Biol., 64,

356–362.

Giannini,N. and Goloboff,P. (2010) Delayed-response phylogenetic correl-

ation, an optimization-based method to test covariation of continuous char-

acters. Evolution, 64, 1885–1898.

Goloboff,P. (2008) Calculating SPR-distances between trees. Cladistics, 24,

591–597.

Goloboff,P. (2014) Hide and vanish: data sets where the most parsimonious

tree is known but hard to find, and their implications for tree search meth-

ods. Mol. Phyl. Evol., 79, 118–131.

Goloboff,P. and Arias,J. (2019) Likelihood approximations of implied weights

parsimony can be selected over the Mk model by the Akaike information

criterion. Cladistics, 35, 695–716.

Goloboff,P. and Catalano,S. (2016) TNT version 1.5, including a full imple-

mentation of geometric morphometrics. Cladistics, 32, 221–238.

Goloboff,P. and Pol,D. (2002) Semi-Strict Supertrees. Cladistics, 18, 514–525.

Goloboff,P. and Szumik,C. (2015) Identifying unstable taxa: efficient imple-

mentation of triplet-based measures of stability, and comparison with

Phyutility and RogueNaRok. Mol. Phyl. Evol., 88, 93–104.

Goloboff,P. and Wilkinson,M. (2018) On Defining a Unique Phylogenetic

Tree with Homoplastic Characters. Mol. Phyl. Evol, 122, 95–101.

Goloboff,P. et al. (2003) Improvements to resampling measures of group sup-

port. Cladistics, 19, 324–332.

Goloboff,P. et al. (2008) TNT, a free program for phylogenetic analysis.

Cladistics, 24, 774–786.

Goloboff,P. et al., (2017) Comparing tree-shapes: beyond symmetry. Zool.

Scripta, 46, 637–648.

Höhna,S. et al. (2014) Probabilistic graphical model representation in phylo-

genetics. Syst. Biol., 63, 753–771.

Höhna,S. et al. (2016) RevBayes: bayesian phylogenetic inference using graph-

ical models and an interactive model-specification language. Syst. Biol., 65,

726–736.

Maddison,W. and Maddison,D. (2019). Mesquite: a modular system for evo-

lutionary analysis. Version 3.61. http://www.mesquiteproject.org. (14

March 2020, date last accessed).

Robinson,D. and Foulds,L. (1981) Comparison of phylogenetic trees. Math.

Biosc, 53, 131–147.

Saleeba,Z. (2019). https://gitlab.com/zsaleeba/picoc.

Steel,M. and Penny,D. (2005). Maximum parsimony and the phylogenetic in-

formation in multistate characters. In: Albert,V. (ed.) Parsimony,

Phylogeny, and Genomics. Oxford University Press, London, pp. 163–178.

Table 3. (continued)

Type Function Arguments Action Return value

as argument, after T). For ‘path’,

two node numbers must be indi-

cated after tree number. Return

values of funcname indicate

whether to stop travel (0), con-

tinue with next node (1), or

whether to skip the descendants of

the current node (2, only for mode

‘up’).

C interpreter in TNT 3995

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/13/3988/5813334 by C
N

R
S user on 17 Septem

ber 2020

http://www.mesquiteproject.org
https://gitlab.com/zsaleeba/picoc

