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Abstract

Motivation: Microbial communities have been proved to have close relationship with many diseases. The identifica-
tion of differentially abundant microbial species is clinically meaningful for finding disease-related pathogenic or
probiotic bacteria. However, certain characteristics of microbiome data have hurdled the accuracy and effectiveness
of differential abundance analysis. The abundances or counts of microbiome species are usually on different scales
and exhibit zero-inflation and over-dispersion. Normalization is a crucial step before the differential abundance test.
However, existing normalization methods typically try to adjust counts on different scales to a common scale by
constructing size factors with the assumption that count distributions across samples are equivalent up to a certain
percentile. These methods often yield undesirable results when differentially abundant species are of low to medium
abundance level. For differential abundance analysis, existing methods often use a single distribution to model the
dispersion of species which lacks flexibility to catch a single species’ distinctiveness. These methods tend to detect a
lot of false positives and often lack of power when the effect size is small.

Results: We develop a novel framework for differential abundance analysis on sparse high-dimensional marker
gene microbiome data. Our methodology relies on a novel network-based normalization technique and a two-stage
zero-inflated mixture count regression model (RioNorm2). Our normalization method aims to find a group of rela-
tively invariant microbiome species across samples and conditions in order to construct the size factor. Another con-
tribution of the paper is that our testing approach can take under-sampling and over-dispersion into consideration
by separating microbiome species into two groups and model them separately. Through comprehensive simulation
studies, the performance of our method is consistently powerful and robust across different settings with different
sample size, library size and effect size. We also demonstrate the effectiveness of our novel framework using a pub-
lished dataset of metastatic melanoma and find biological insights from the results.

Availability and implementation: The R package ‘RioNorm2’ can be installed from Github athttps://github.com/yuanj
ing-ma/RioNorm2.

Contact: yuanjingma2020@u.northwestern.edu or hongmei@northwestern.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Microbial communities have been proved to have close relationship
with diseases such as diabetes (Kåhrström, 2012; Larsen et al.,
2010), Crohn’s disease (Morgan et al., 2012), bacterial vaginosis
(Ravel et al., 2011), eczema (Harris and Wagner, 2012), obesity
(Turnbaugh et al., 2009) and metastatic melanoma (Matson et al.,
2018). The identification of differentially abundant microbial spe-
cies is clinically helpful for finding disease-related pathogenic or pro-
biotic bacteria. It is a powerful means of understanding the
contribution of the human microbiome to health and its potential as
a target for therapeutic interventions.

Microbiome data are usually collected from marker gene surveys

of DNA representing communities of microorganisms found in en-
vironmental samples. Our method focuses on the OTU table that is
generated using 16S rRNA targeted sequencing (Dethlefsen et al.,
2008; Shah et al., 2011; Venter et al., 2004). By studying the abun-
dance level of OTUs from different conditions, it is possible to iden-
tify OTUs that are associated with conditions. However, the

identification of differentially abundant OTUs (DA-OTUs) is diffi-
cult and complex due to zero-inflation and over-dispersion of micro-
biome data. Under-sampling causes the degree of sparsity to be high

(Paulson et al., 2013). The zero count of an OTU does not
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necessarily mean the OTU is absent; it can be caused by under-
sampling which makes the low abundant OTUs not detectable.
Another issue related to microbiome data is its high variation. The
microbiome data are known to contain a large amount of both bio-
logical and technical variation (Nayfach and Pollard, 2016). One
source of biological variability is the natural diversity of bacterial
species due to environment factors. Besides, the microorganisms
vary over time; there is large variation of the same bacteria species
among different samples. When detecting the DA-OTUs, we are
only interested in the difference caused by specific conditions (e.g.
health versus certain disease). Therefore, it is important to take the
biological variation into consideration. Another type of variation is
technical variation which is usually caused by equipment and experi-
mental design. The library size is a major cause of the technical vari-
ation. It defines the number of random fragments generated and
sequenced from a sample; with small library size, the low abundant
OTUs are more difficult to be detected which causes the high vari-
ation in observed count numbers. Different library sizes also make
count numbers incomparable across samples.

Due to the characteristics of metagenomics data, normalization
is an essential first step for any downstream analysis. Some of the
methods assume that counts distribution are equivalent up to a cer-
tain quantile across samples and aim to find the quantile for deriving
the size factor. Total count normalization uses the sum of all counts
within a sample as the size factor. Upper quartile normalization
(Bullard et al., 2010) scales counts by the 75th percentile of each
sample’s non-zero count distribution. MetagenomeSeq (Paulson
et al., 2013) improves upper quartile method by proposing a project
specific data-driven way to determine the exact percentile level
(CSS). EdgeR (Robinson and Oshlack, 2010) uses TMM as the de-
fault normalization approach. The assumptions behind the TMM
method are similar to the assumptions commonly made in quantile
normalization. DESeq (Anders and Huber, 2010), originally
designed for RNA-seq, creates quantile-adjusted ‘pseudodata’ by
comparing each sample to an artificially created reference sample.
These methods assume that OTUs whose counts are below this
quantile are not differentially abundant among different conditions.
However, the assumption might be controversial. A recent paper by
Matson et al. (2018) points out that some DA-OTUs have relatively
low and medium abundance levels. Therefore, the above quantile-
based normalization approaches might include DA-OTUs when cal-
culating the size factors. Besides, these approaches of rescaling
counts are most appropriate for comparing OTU compositions from
different conditions instead of identifying individual DA-OTUs.
They will detect a large amount of false positives when the large dif-
ferences in total abundances of DA-OTUs have caused proportions
of non-DA-OTUs to change. RAIDA (Sohn et al., 2015) is developed
to find individual DA-OTUs. It utilizes the ratio between features in
a modified zero-inflated log-normal model to find size factors. It can
solve the above-mentioned problems, but tends to have low power
when the effect sizes are small. To avoid including DA-OTUs into
size factor calculation and to account for proportion changes of
non-DA-OTUs caused by abundance change of DA-OTUs, we pro-
pose a novel network-based method which finds a group of relative-
ly invariant OTUs (riOTUs) across samples and conditions. The idea
is inspired by the concept of housekeeping genes in microarray
study. A gene is usually chosen as a housekeeping gene if it is uni-
formly expressed with low variation under both control and experi-
mental conditions. The expression of one or multiple housekeeping
genes is used as a reference or baseline for gene expression analysis
of other genes. In microbiome data analysis, we cannot measure an
OTU’s variation directly with the raw count data and we may not
have prior knowledge on which OTUs having relatively stable abun-
dance level across all samples. Therefore, we propose to find a group
of OTUs whose relative abundance or relative change has low vari-
ation across all samples and conditions. The sum of counts of these
riOTUs will serve as size factor for normalization. Our approach
reduces the bias introduced by scaling raw counts by size factor that
might incorporate DA-OTUs and at the same time performs well for
detecting DA-OTUs.

After normalization, counts are brought to the same scale for dif-
ferential abundance analysis. Methods which are developed for
detecting differentially expressed genes using RNA-seq data such as
edgeR, DESeq and DESeq2 (Love et al., 2014) have been applied to
the microbiome setting. However, RNA-seq data does not exhibit as
much zero-inflation as microbiome data. Other methods such as
RAIDA, ANCOM (Mandal et al., 2015), Omnibus (Chen et al.,
2018), MetagenomeSeq and Metastats (White et al., 2009) are dif-
ferential abundance tests specially designed for microbiome data.
RAIDA constructs a moderated t-statistics (Smyth, 2005) for the
log-ratio of each feature using the estimated mean and variance.
ANCOM performs statistical tests on point estimates of transformed
OTU counts by an additive log ratio, where invariant taxa are
chosen as the denominator. Omnibus performs differential abun-
dance test by jointly testing the abundance, prevalence and disper-
sion. The test is built on a zero-inflated negative binomial (ZINB)
regression model and winsorized count data to account for zero-
inflation and outliers. MetagenomeSeq takes into account of zero-
inflation by using a zero-inflated Gaussian distribution mixture
model. Metastats applies non-parametric t-test for detecting high
abundance DA-OTUs and separately handles sparsely-sampled fea-
tures using Fisher’s exact test. The non-parametric part may lack of
power when the sample size is small. In general, these approaches
usually assume over-dispersion for all OTUs, which does not incorp-
orate the individual difference.

In order to incorporate zero-inflation and to model over-
dispersion with flexibility directly on count data, our second contri-
bution is to propose a two-stage zero-inflated mixture count regres-
sion model. In the first stage, every OTU goes through a score test or
bootstrap parametric test for testing over-dispersion. OTUs will be
divided into two groups, i.e. with or without over-dispersion. In the
second stage, OTUs without over-dispersion will be modeled using
zero-inflated Poisson (ZIP) distribution and OTUs with over-
dispersion will be modeled using ZINB distribution.

We evaluate our proposed framework, RioNorm2, through com-
prehensive simulation studies and compare the results with those of
DESeq, DESeq2, metagenomeSeq, RAIDA and Omnibus.
RioNorm2 consistently yields high power while controlling the false
discovery rate (FDR). RioNorm2’s performance is robust and super-
ior in simulated settings with small to medium effect size, library
size and sample size. DESeq, DESeq2, RAIDA and Omnibus have
very low power in detecting differential abundance when effect sizes
are small or medium and the overall performance based on AUC is
highly sensitive to the library size. Even though MetagenomeSeq has
high power with small effect size, it also yields a large number of
false positives. In the situation where some OTUs’ abundance level
change without suppressing other OTUs’ abundance, RioNorm2
and RAIDA work the best. If the absolute abundance (count) is of
interest rather than the relative abundance (i.e. proportion), it is
dangerous to use DESeq, DESeq2, metagenomeSeq and Omnibus
which tend to detect more false positives as the effect size increases.

We also apply RioNorm2 to a newly published dataset which
studies the relationship between microbiome species and cancer
treatment efficiency (Matson et al., 2018). The detected group of
relatively invariants OTUs by RioNorm2 have similar phylogenetic
tree information, which may imply that they have similar physical
or genetic characteristics by sharing similar evolutionary paths from
Kingdom to Genus level. Using this group of OTUs as reference
OTUs has biological meanings. Besides, by separately modeling
OTUs with and without over-dispersion by a two-stage model,
RioNorm2 largely increases the power of detecting DA-OTUs.

2 Materials and methods

Figure 1 summaries the framework of our proposed method
RioNorm2. The section is organized as follows. Section 2.1 gives
detailed instruction on how to build taxa network for identifying
riOTUs and use them to calculate size factors for normalization.
Section 2.2 discusses the two-stage differential abundance test.
Section 2.3 discusses the issues related to multiple testing correction.
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2.1 Normalization using riOTUs
Suppose the OTU count data are stored in a matrix C 2 Nm�n

0 ; the
total number of OTUs is m and the total sample size is n. Let cij de-
note the observed raw count for OTU i from the jth sample, i¼1,
2,. . ., m, j¼1, 2,. . ., n and N0 denote the set of natural numbers f0,
1, 2,. . .g. To account for sampling biases, the first step is usually to
normalize the count data of each sample with respect to some size
factor Sj. Here, we use the total count normalization method as an
example to illustrate the characteristics of such transformed data.

Suppose Sj ¼
Pm
i¼1

cij. Then relative abundance of OTUs from sample j

are calculated as
c1j

Sj
;

c2j

Sj
; . . . ;

cmj

Sj

h iT
. Due to the normalization, OTU

abundance is no longer independent, which prohibits the application
of standard statistical analysis techniques. Major contributions in
the compositional data analysis were made by Aitchison in the
1980’s (Pawlowsky-Glahn et al., 2015). Instead of considering com-
positional data in the simplex, Aitchison proposed to use log-ratio

for studying compositional data. Since log
cij=Sj

ci0 j=Sj
¼ log

cij

ci0 j
for two

OTU i and i0, the effect of size factor Sj is canceled out in the log-
ratio. Therefore, statistical inferences drawn from analysis of log-
ratio of normalized count data are equivalent to the ones drawn
from the raw count data.

Aitchison transformation connects two OTUs using log-ratio.
Inspired by Aitchison transformation, we propose a new dissimilar-
ity measurement between OTU i and OTU i0:

di;i0 ¼ variance ðlog
ci

ci0
Þ; (1)

where ci and ci0 are the counts for OTU i and i0, respectively, di;i0 rep-
resents the dissimilarity between OTU i and OTU i0 with respect to
their co-abundance pattern across samples and conditions. To avoid
adding small number to zero counts, we only consider samples
where both OTU i and OTU i0 are none zeros when calculating
Equation (1). When two OTUs are perfectly correlated, their ratio is
constant, therefore di;i0 ¼ 0, whereas the ratio of uncorrelated OTUs
varies and the corresponding variance will be large. The proposed
dissimilarity measurement is not only suitable for raw counts, but
also applicable to pre-processed or scaling-based normalized micro-
biome data.

Based on Equation (1), we propose a data-driven algorithm to
automatically find riOTUs for calculating size factors. We assume
that most OTUs are not of differential abundance. To reduce the
computation time, we only calculate the pairwise dissimilarity
among top abundant OTUs. We recommend to keep OTUs observed
in at least 80% of samples with average count larger than 5 (readers
can also choose these values based on their application). Then the
network of OTUs is constructed using hard threshold approach;
there is an edge connecting two OTUs only when their dissimilarity
is smaller than some threshold value h. By definition, dissimilarity
between any two riOTUs should be small. Therefore, it is natural to
model riOTUs as vertices of the largest clique in the network.
However, there are two issues remained to be solved: (i) how to
choose the optimal threshold value h and (ii) how to avoid finding a
group of co-changed DA-OTUs across conditions and accidentally
treat them as riOTUs. To automatically find h and to avoid the se-
cond issue, we will gradually increase h value within a range. For
each h value, a network is constructed and the corresponding largest
cliques will be detected. We want to exclude cliques that are formed
only under large h values, and also exclude cliques that only show
up under one h value and do not grow when h value increases.
Therefore, the cliques are required to grow continuously from small
h value to large h value. Let’s suppose h takes two values and OTUs
are labeled using capital letters. The largest cliques under the smaller
h value are fA, B, Cg, fD, E, Fg and fG, H, Ig, when we increase h
to the larger value, the corresponding largest cliques become fA, B,
C, Jg, fD, E, K, Lg and fW, X, Y, Zg. In this case, only clique fA, B,
Cg has grown continuously to fA, B, C, Jg; we would then have
riOTUs to be fA, B, C, Jg. We recommend possible h values to be in
the range of the 0.01th to 0.1th quantile of dissimilarity distribution
with 0.005 increment. If at certain h value, all current largest cliques
do not include any largest clique calculated using previous smaller h
value, riOTUs will be the largest clique calculated using previous h
value. If cliques grow continuously from the smallest h value to larg-
est h value, we will stop and use one of the largest cliques under the
largest h value as riOTUs. Please see Figure 2 for the summary of
the algorithm.

After finding a group of riOTUs, the size factor for sample j is
defined as:

Sj ¼
X

k 2 friOTUsg
ckj; (2)

where riOTUs is the group of riOTUs.

Fig. 1. Workflow of RioNorm2 (BH FDR represents BH FDR control procedure) Fig. 2. Network-based algorithm for identifying the riOTUs
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2.2 Two-stage differential abundance test
In the two-stage test, we first assume that all OTUs are not over-
dispersed and fit ZIP regression model to all OTUs. The estimated
parameters will be later used for testing over-dispersion. OTUs with
over-dispersion will be refitted with ZINB models.

We model cij which is the count of OTU i from sample j using
ZIP mixture model:

cij ¼ f
0 with probability pij

Poisson ðlijÞ with probability ð1� pijÞ; (3)

so that Prðcij ¼ 0Þ ¼ pij þ ð1� pijÞe�lij and

Prðcij ¼ kÞ ¼ ð1� pijÞ
e
�lij lk

ij

k! , where pij represents the probability that

a zero count is observed due to under-sampling and lij represents
the mean of observed counts that are generated from Poisson distri-
bution. The mean model for Poisson part is specified as:

log ðlijÞ ¼ b0i þ b1i � jðjÞ þ b2i � log ðSjÞ; (4)

where jðjÞ ¼ 0 if sample j is from condition 1 and jðjÞ ¼ 1 if sample j
is from condition 2. Sj is the size factor defined in Equation (2). The
parameter b1i is an estimate of fold-change in OTU i’s mean abun-
dance between two conditions. b2i is the OTU-specific impact of the
size factor on mean abundance level. The mean specification
Equation (4) is very flexible with respect to incorporating relevant
or confounding covariates. The probability of counts generated
from spike 0 is assumed to be associated with sample library size
and microbiome species (Paulson et al., 2013). Therefore, we model
pij using the logit model:

logit ðpijÞ ¼ log
pij

1� pij
¼ a0i þ a1i � log ðSjÞ: (5)

The parameters can be estimated using EM algorithm combined
with maximum likelihood estimation (See Supplementary File S1
Section S1 for details). The hypothesis for testing differential abun-
dance is H0: bi1 ¼ 0 versus H1: bi1 6¼ 0. If OTU i is differentially
abundant between two conditions, we should reject H0. Here, nor-
mal approximation will be used to construct the raw P-value for
each OTU i.

ZIP can incorporate the over-dispersion caused by zero inflation
because E[cij] ¼ lij(1 – pij) < Var(cij) ¼ lijð1� pij) (1 þ lijpij) given
pij > 0. Therefore, it is suitable for OTUs whose abundance level
within the same environment is stable and zero-inflation is the only
source for over-dispersion. For OTUs, whose abundance varies
within the same condition due to the biological replicate, the vari-
ation of counts tend to be greater than what a Poisson regression
models. In this case, ZINB regression can be used to better incorpor-
ate the additional over-dispersion.

Correctly specifying the model is critical to increase power for
detecting differential abundance, therefore, it is necessary to con-
struct a test to rigorously check for over-dispersion. Here, we adopt
the score test for determining the ZIP and ZINB models which is
first proposed by Ridout et al. (2001). The test is operated on a per-
OTU basis. Initially, we assume that none of the OTUs are over-
dispersed and all OTUs are fitted using ZIP. Evidence against the
null will be taken as the presence of over-dispersion and a ZINB will
be used to fit over-dispersed OTUs.

ZINB is specified as follows:

cij ¼ f
0 with probability pij

NBðlij;/iÞ with probability 1� pij;
(6)

so that Prðcij ¼ 0Þ ¼ pij þ ð1� pijÞð1þ /ilijÞ�1=/i and

Prðcij ¼ kÞ ¼ ð1� pijÞCðcijþ1=/iÞ
Cð1=/iÞcij !

ð1þ /ilijÞ�1=/i ð1þ 1=ð/ilijÞÞ�cij ,

where /i is the OTU-specific dispersion factor and we assume it is
independent of other covariates. The mean and variance of ZINB
are lij(1 – pij) and lij(1 – pij)(1 þ lijpij þ /i). The distribution

approaches to ZIP as /i ! 0. The mean specification and the logit
model of pij are the same as in Equations (4) and (5). The hypothesis
for testing over-dispersion is: H0: /i ¼ 0 versus H1: /i > 0.

The score statistics is defined as S(/i0) ¼ Uð/i0Þ2
Ið/i0Þ

, where U(/i0) ¼
1
2

Pn
j¼1

f½ðcij � l̂ijÞ2 � cij� � Iðcij¼0Þl̂
2
ijp̂ ij=ðp̂ ij þ ð1� p̂ ijÞe�l̂ ij Þg is the

score function of ZINB likelihood under null hypothesis and Ið/i0Þ ¼
1
4

Pn
j¼1

l̂2
ij 2ð1� p̂ijÞ � l̂2

ijp̂ ijð1� p̂ ij

p̂ ijþð1�p̂ ijÞe�l̂ ij

� ��
is the information

matrix evaluated at the maximum likelihood estimates under H0,
where l̂ ij and p̂ij are maximum likelihood estimates from Equations

(4) and (5) under H0. Asymptotically, under H0,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð/i0Þ

p
� N(0,1).

The one-sided test is appropriate for checking over-dispersion. Score
test only requires to fit the model under H0, therefore, it avoids the fit-
ting of more complex model. However, the asymptotic distribution
of the score statistic approaches more slowly than that of the likeli-
hood ratio statistic (Ridout et al., 2001). With small sample size, the
significant levels based on score statistic may be misleading. Ridout
et al. (2001) suggests that from a practical perspective, if a ZIP model
is inappropriate at a weak level (say 10%), a ZINB model should be
used to fit data. In addition to use a larger significance level (say 0.1)
for score test, Jung et al. (2005) propose a parametric bootstrap
method to solve the underestimation issue related to the normal ap-
proximation of score test statistic with small sample size. However,
the bootstrap method usually requires heavy computation, we con-
sider to apply it only when the number of OTUs being tested for dif-
ferential abundance is relatively small.

After going through the over-dispersion test, OTUs will be div-
ided into two groups. The group of OTUs without over-dispersion
are fitted using ZIP model; the group of OTUs with over-dispersion
will be fitted using ZINB. Parameters of ZINB can be estimated
using BFGS algorithm. It is a quasi-Newton optimization method
which only requires the first derivatives of log-likelihood function
(See Supplementary File S1 Section S2 for details).

2.3 FDR control for multiple testing
Since microbiome data are usually high dimensional, even after fil-
tering out OTUs with few observations, there are still hundreds of
OTUs remained for differential abundance test. Without multiple
correction of P-values, the Type I error will reach an unacceptable
level. In order to control the false positive rate, we adopt the
Benjamini–Hochberg (BH) procedure for multiple testing
correction.

In our two-stage zero-inflated count regression model, since we
use different distributions for the test with different underlying
assumptions, pooling P-values together can be problematic. If one
set of P-values contains a larger proportion of DA-OTUs, a com-
bined FDR control may lack of statistical power. Auer and Doerge
(2010) propose to use the BH control of the FDR separately at level
q for different types of differential expression test in RNA-seq data.
Here, we adopt the same procedure by applying BH FDR controlling
procedure at q for each of the two sets of OTUs separately. See
Supplementary File S1 Section S3 for justification of using separate
multiple correction procedure.

3 Simulation

Large scale of simulation studies are conducted to compare the per-
formance of RioNorm2 to that of DESeq, DESeq2, metagenomeSeq,
RAIDA and Omnibus which all use relative log expression for nor-
malization. Specifically, we focus on evaluating the impact of sam-
ple size, library size and effect size. We explore two simulation
settings which are based on different distributions. The first one is
adopted from the simulation setting B in McMurdie and Holmes
(2014); the second is based on the Dirichlet–Multinomial distribu-
tion. We show the detailed simulation setup and results of the first
simulation setting in the following subsections and leave the second
simulation study based on the Dirichlet–Multinomial distribution to
Supplementary File S1 Section S4. The simulation/evaluation codes
are available on https://github.com/yuanjing-ma/RioNorm2_
simulation.
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3.1 Simulation setting
We adopt similar simulation setup as simulation setting B in
McMurdie and Holmes (2014). To mimic OTU counts observed in
the real world, we choose the real dataset ‘GlobalPattern’ in R pack-
age ‘phyloseq’ (McMurdie and Holmes, 2013) as our simulation
template. ‘GlobalPattern’ dataset contains 26 samples collected
from 9 different environments [feces, freshwater, freshwater (creek),
mock, ocean, sediment (estuary), skin, soil and tongue] with more
than 2 samples in each environment. We have three parameters:
sample size per condition (25, 35 and 50), median library size
(5000, 10000 and 50000) and effect size (2, 3, 4 and 5).

Firstly, OTU counts are summed across all samples of one envir-
onment in the ‘GlobalPattern’ dataset to derive a single ‘pseudo-
population’ per environment. Then, we randomly pick a library size
for each sample from 26 library sizes in the ‘GlobalPattern’ dataset
with replacement. These library sizes are scaled to have the pre-
determined median library size. Secondly, the OTU counts of each
simulated sample are generated using a multinomial distribution
with the OTU proportions obtained from the ‘pseudo-population’.
Thirdly, to add artificial effect, the simulated samples of an OTU-
table are divided into two equally-sized conditions, control and test
and the effect size is multiplied to the count values of a randomly
selected subset of OTUs in the test condition. Each of these per-
turbed OTUs is differentially abundant between two conditions.
The above process for generating OTU tables will be repeated 10
times for each combination of the 3 parameters and 9 environments.
Therefore, for each combination of sample size per condition, me-
dian library size and effect size, we will have 90 simulated OTU
tables (10 times for each of the 9 environments) which can be used
to calculate the mean and SD of evaluation metrics. Please refer to
Supplementary File S1 Figure S1 for a detailed diagram illustration.

3.2 Simulation results
Empirical FDR and power are used to evaluate the performance of
different methods (Figs. 3 and 4). Each curve traces the mean FDR
and power across all replicates and microbiome templates for vari-
ous effect size (See Supplementary File S2 for the SD of FDR and
power). RioNorm2 is the only approach that can control FDR under
5% across all simulation settings. RAIDA controls FDR in the most
settings; other four approaches have severe FDR inflation that are
near or higher than 20%. When the effect size is small, compared to

other approaches, RioNorm2 constantly yields high detection
power. When effect size increases, MetagenomeSeq, Omnibus,
DESeq and DESeq2 all have inflated FDR. This is within our expect-
ation since these four approaches capture the proportion change of
non-DA-OTUs due to the abundance change of true DA-OTUs and
tend to detect more false positives when total abundances of DA-
OTUs across different conditions are large. RioNorm2 and RAIDA
perform the best when the abundance change of DA-OTUs does not
impact or suppress other OTUs’ abundance. They achieve high
power at the same time controlling for FDR. RioNorm2 surpasses
RAIDA under small effect sizes and library sizes. In general,
RioNorm2 is the most robust and stable across all settings with dif-
ferent sample sizes, effect sizes and median library sizes. We also
plot the AUC, sensitivity and specificity values, readers can refer to
Supplementary File S1 Figures S2, S3 and S4 for more information.
Since RioNorm2 contains two components: the network-based
normalization and a two-stage differential abundance test, it is of
interest to check whether the superiority of RioNorm2 is due to the
two-stage test or better normalization (i.e. the size factors). Both
RioNorm2 and RAIDA try to cast common size factors for the nor-
malization. To compare the effects of normalization step of RAIDA
and RioNorm2, we combine RAIDA size factors with the two-stage
test of RioNorm2 to detect DA-OTUs. Supplementary Figure S5
(Supplementary File S1) shows that RAIDA’s size factors combined
with the two-stage test yields a severe FDR inflation when effect size
is small. However, RioNorm2 can successfully control FDR and
yield comparable detection power across all simulation settings
(Supplementary File S1 Fig. S6).

In order to compare the performance of the two-stage test, we
combine the RioNorm2 normalization with other differential abun-
dance test methods such as ZIP, ZINB and t-test. To reduce the
computation time, only a subset of data is used. FDR and power
plots (Supplementary File S1 Figs. S7 and 8) show that ZIP-based
tests cannot properly control FDR, since ZIP treats over-dispersion
as differential abundance. Although t-test can control FDR, it has
very low power even when DA-OTUs are easy to be detected (i.e.
large effect size). In our simulation, most OTUs are over-dispersed
which leads to the similar detection power of the two-stage test and
ZINB. However, RioNorm2 has smaller FDR which gives the ad-
vantage of RioNorm2 for FDR control.

Besides the above mentioned five approaches, we also compare
RioNorm2 to ANCOM (Mandal et al., 2015) which is becoming a

Fig. 3. Comparisons of different methods in terms of FDR for various effect sizes.

Panel rows represent the median library size, and panel columns represent the sam-

ple size per condition

Fig. 4. Comparisons of different methods in terms of power for various effect sizes.

Panel rows represent the median library size, and panel columns represent the sam-

ple size per condition
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standard method due to its implementation in Qiime2. Since the
computation time of ANCOM is long (usually taking 20 min for an
OTU table with around 1000 OTUs and 50 samples using MacBook
Pro with 2.8 GHz intel Core i7), we only use a subset of simulated
data. We tune the ANCOM hyper-parameter and choose the one
that gives the best results. ANCOM has very low FDR value (close
to 0), which trades off its ability to detect DA-OTUs. Compared to
ANCOM, RioNorm2 has FDR rate close to 5% and gives high
power across various effect sizes (Supplementary File S1 Figs. S9
and 10).

To summarize, in the simulation studies, we mimic the situation
where some OTUs’ abundance level change in the test group without
suppressing other OTUs’ abundance. This is a fairly common case in
the real world. Our method works the best in the case that the abso-
lute abundance (count) is of interest rather than the relative abun-
dance (i.e. proportion).

3.3 Robustness of RioNorm2 with different h values for

finding riOTUs
In simulation studies, in order to reduce the computation time, in-
stead of using the iterative approach in Algorithm 1 to search for
riOTUs, we fix h value as 0.03th quantile of dissimilarity distribu-
tion. To justify using the fixed h value in the simulation, we conduct
the robustness analysis using a subsets of the simulated data and
apply RioNorm2 with various h values from 0.02th quantile to
0.04th quantile at a 0.005 increment. FDR and power plots
(Supplementary File S1 Figs. S11 and 12) show that RioNorm2
results are robust to different choices of h values. FDR are all
controlled under 5% with similar powers for various level of
effect sizes.

3.4 Impact of the different proportion of DA-OTUs
Figures 3 and 4 show the empirical FDR and power when the num-
ber of DA-OTUs is 30 in every simulated OTU table. We also ex-
plore the impact of different proportions of DA-OTUs on a subset
of simulated data. We vary the proportion of DA-OTUs from 10%
to 30% at an increment of 5%. We get similar results as shown in
the Section 3.2 (Supplementary File S1 Figs. S13 and 14).
RioNorm2 is the only approach that can properly control FDR at
5%. RAIDA has slightly FDR inflation when effect size is small.
DESeq, DESeq2, Omnibus and MetagenomeSeq have severe FDR
inflation as high as 40%. RioNorm2 is superior when the effect size
is small with controlled FDR and higher detection power compared
to RAIDA.

4 Real data: metastatic melanoma cancer
treatment

We apply RioNorm2 to the metastatic melanoma cancer treatment
efficiency study (Matson et al., 2018). There are 10 385 OTUs and
42 samples. Among 42 patients, 16 of them have responded to the
treatment while the other 26 are non-responders.

We rank OTUs reversely according to their sample counts, if a
tie, based on their total count sums across samples and keep the top
1720 OTUs for differential abundance test. For finding riOTUs, we
use OTUs that are observed in at least 80% of samples with average
count greater than 5 to build the taxa network. Dissimilarity matrix
is calculated based on Equation (1). Fourteen riOTUs are detected
using Algorithm 1. We extract their taxonomy information which
reflects the evolutionary relationships among various biological
species (Supplementary File S1 Fig. S24). It is remarkable that all
14 riOTUs share the same evolutionary paths from kingdom to
genus level.

Of the 1720 OTUs that pass the filtering criterion, the score test
finds that 642 OTUs are non-over-dispersed and 1078 OTUs are
over-dispersed. We apply the BH control of FDR separately on ZIP
and ZINB tests at level 0.05. After correction, 45 OTUs are detected
to be differentially abundant; 18 of them are non-over-dispersed and
27 of them are over-dispersed. Among the 45 DA-OTUs detected by

the RioNorm2 test, 29 belong to the phylum Firmicutes and 14 are
taxa in the phylum Bacteroidetes (Supplementary File S1 Fig. S25).
The consistency of large number of Firmicutes and Bacteroidetes
associations is remarkable. Besides, among these 45 OTUs, 20
OTUs are observed in at least 10 samples and 8 OTUs are observed
in at least 20 samples. Box plots of top 9 abundant DA-OTUs are
shown (Supplementary File S1 Fig. S26). We also compare our
results with those derived from the permutation test (Matson et al.,
2018), RAIDA, Omnibus and DESeq2. Omnibus identifies 53 DA-
OTUs while RAIDA detects 12 DA-OTUs and DESeq2 detects even
fewer with 3 DA-OTUs. We record the common DA-OTUs shared
by different approaches (Supplementary File S1 Section S5.1). The
integration of Shotgun, 16S rRNA and PCR methods has verified
Enterococcus to be more abundant in responders than non-
responders (Matson et al., 2018). Enterococcus has been detected
using all approaches except RAIDA, which indicates the low power
of RAIDA in this real application. We run the above analysis in R
using MacBook Pro with 2.8 GHz Intel Core i7 and 16 GB 2133
Mhz LPDDR3. The elapsed time for RioNorm2, RAIDA, DESeq2
and Omnibus are 5.58, 0.856, 0.101 and 0.395 min, respectively.

We also apply the RioNorm2 on another public dataset of in-
flammatory bowel disease which can be downloaded from Qiita
with study ID 11336. We compare the RioNorm2 with other
approaches such as RAIDA, Omnibus and DEseq2. Interested read-
ers can refer to the Supplementary File S1 Section S5.2.

5 Discussion

We develop a novel framework for normalizing sparse high-
dimensional marker gene microbiome data and performing differen-
tial abundance analysis. RioNorm2 relies on taxa networks to find a
group of riOTUs and use the sum of their counts to construct size
factors for the purpose of normalization. Since RioNorm2 does not
make the assumption that counts are equivalent up to a certain
quantile, it can reduce the bias by avoiding the inclusion of DA-
OTUs for the construction of size factor. Another contribution of
the paper is to propose a two-stage differential abundance test that
takes into consideration of under-sampling and over-dispersion with
flexibility. Microbiome species are divided into two different groups
after over-dispersion tests and each group of OTUs are modeled sep-
arately with suitable models. Besides, by separately modeling OTUs
with and without over-dispersion by a two-stage model, we largely
increase the power of detecting DA-OTUs.

Simulation studies show that the performance of RioNorm2 is
consistently satisfactory with controlled FDR and high power com-
pared to other popular methods. RioNorm2’s performance is robust
and comparable in all simulated settings with different levels of
effect size, median library size and sample size. Since RioNorm2
contains two components: the network-based normalization and a
two-stage test, we check the contribution of each component separ-
ately. Simulation results show that both components contribute to
the superiority of RioNorm2. In the situation where some OTUs’
abundance level change without suppressing other OTUs’ abun-
dance, RioNorm2, RAIDA and ANCOM are suitable. Compared to
RioNorm2 and RAIDA, ANCOM has very low FDR (close to 0)
which sacrifices its ability to detect DA-OTUs. When effect size is
small, RioNorm2 has higher power with controlled FDR compared
to RAIDA; otherwise, they have comparable performance. If the ab-
solute abundance (count) is of interest rather than the relative abun-
dance (i.e. proportion), it is unsuitable to use DESeq, DESeq2,
omnibus and metagenomeSeq which tend to detect more false posi-
tives when the effect size increases. From the practical aspects,
researchers want to avoid detecting false positives. Statistically test-
ing differential abundance always serves as the upstream analysis;
the declared positives will be further tested in the medical or biologic
experiments. Therefore, including false positives will cause a large
waste in the downstream experimenting analysis. In summary, our
method works the best in the case that the absolute abundance
(count) is of interest rather than the relative abundance (i.e.
proportion).

3964 Y.Ma et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/13/3959/5822876 by IN
IST-C

N
R

S BiblioVie user on 17 Septem
ber 2020

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa255#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa255#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa255#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa255#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa255#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa255#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa255#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa255#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa255#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa255#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa255#supplementary-data


In this article, we evaluate the performance of differential abun-
dance analysis in the setting with two conditions. However,
RioNorm2 can be easily extended to multiple conditions setting by
modifying the mean specification model. Besides, the model is flex-
ible to incorporate other covariates. For the future research, we will
focus on incorporating the taxonomy information into the differen-
tial abundant analysis. Since there are biologically hierarchical struc-
tures in bacterial species, we believe that by sharing information
among species with the same origin, the performance of differential
abundance test can be further improved.
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