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Abstract

Motivation: Understanding how antibodies specifically interact with their antigens can enable better drug and
vaccine design, as well as provide insights into natural immunity. Experimental structural characterization can detail
the ‘ground truth’ of antibody–antigen interactions, but computational methods are required to efficiently scale to
large-scale studies. To increase prediction accuracy as well as to provide a means to gain new biological insights
into these interactions, we have developed a unified deep learning-based framework to predict binding interfaces on
both antibodies and antigens.

Results: Our framework leverages three key aspects of antibody–antigen interactions to learn predictive structural
representations: (i) since interfaces are formed from multiple residues in spatial proximity, we employ graph convo-
lutions to aggregate properties across local regions in a protein; (ii) since interactions are specific between anti-
body–antigen pairs, we employ an attention layer to explicitly encode the context of the partner; (iii) since more data
are available for general protein–protein interactions, we employ transfer learning to leverage this data as a prior for
the specific case of antibody–antigen interactions. We show that this single framework achieves state-of-the-art per-
formance at predicting binding interfaces on both antibodies and antigens, and that each of its three aspects drives
additional improvement in the performance. We further show that the attention layer not only improves perform-
ance, but also provides a biologically interpretable perspective into the mode of interaction.

Availability and implementation: The source code is freely available on github at https://github.com/vamships/
PECAN.git.

Contact: cbk@cs.dartmouth.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As one of its mechanisms to combat disease, the immune system
develops B cells that secrete antibodies to specifically recognize and
either neutralize or help drive functional responses against a patho-
gen. An antibody recognizes a particular region, called its epitope,
on a particular part of the pathogen, called its antigen; the region of
the antibody directly involved in the recognition is called its para-
tope. The interface between an epitope and paratope is crucial to the
affinity and specificity of an antibody–antigen interaction, and thus
the antibody’s function. Characterizing antibody–antigen interac-
tions at the epitope–paratope resolution can thus reveal mechanisms
of immune recognition, and, over a set of antibodies, can even pro-
vide insights into the development of the immune response. For ex-
ample, recent studies have revealed new insights into antibody
evolution (Mishra and Mariuzza, 2018; Sok et al., 2013), and have
shown that those insights could be used for guiding the affinity mat-
uration process using appropriate immunogens (Briney et al., 2016).
Such characterization can also benefit the development of

therapeutics and vaccines. For example, therapeutic antibodies are
being used to treat many different diseases (Carter, 2006; Holliger
and Hudson, 2005), and early development processes typically yield
large arrays of candidate antibodies from which to select.
Understanding their different recognition mechanisms can aid selec-
tion and subsequent development. Similarly, subunit vaccines are
being developed to train the immune system against a pathogen by
mimicking an important part but without causing actual infection
(Briney et al., 2016; Delany et al., 2014; Doria-Rose and Joyce,
2015). Understanding the recognition processes driving beneficial
responses, as well as those that are not helpful, can guide the devel-
opment of these vaccines so as to ensure the desired immune
targeting.

Experimental structure determination methods, namely X-ray
crystallography, nuclear magnetic resonance spectroscopy and cry-
oelectron microscopy, provide the gold standard for characterizing
antibody–antigen binding modes (Bai et al., 2015; Lee et al., 2015).
Unfortunately, they remain expensive and time consuming, and

VC The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 3996

Bioinformatics, 36(13), 2020, 3996–4003

doi: 10.1093/bioinformatics/btaa263

Advance Access Publication Date: 22 April 2020

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/13/3996/5823885 by C
N

R
S user on 17 Septem

ber 2020

http://orcid.org/0000-0003-1860-0912
https://github.com/vamships/PECAN.git
https://github.com/vamships/PECAN.git
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa263#supplementary-data
https://academic.oup.com/


cannot feasibly keep up with the exploding amount of antibody se-
quence data for which it is desirable to understand antigen recogni-
tion, e.g. the millions of sequences obtained from analysis of an
immune repertoire (Miho et al., 2018; Truck et al., 2015; Zhu et al.,
2013). Alternative experimental methods like H–D exchange mass
spectrometry (Gallagher and Hudgens, 2016) and alanine scanning
(Weiss et al., 2000) are faster and cheaper, and of lower resolution/
confidence, but still require substantial experimental effort per tar-
get. Higher-throughput methods such as multiplexed surface plas-
mon resonance can characterize many interactions simultaneously
but do not provide direct localization information (Brooks et al.,
2014; Safsten, 2009). Computational methods thus have the most
promise to scale to characterization of large numbers of possible epi-
tope–paratope interactions, but it is necessary to ensure that predic-
tions provide sufficient grounds to support further investigations, in
terms of overall accuracy as well as the underlying reasoning for a
prediction.

Prediction of antibody–antigen binding interfaces can be seen as
a special case of predicting protein–protein binding interfaces.
However, as discussed above these particular interactions are of sig-
nificant importance, and the interfaces have their own special char-
acteristics (Esmaielbeiki et al., 2016; Kunik and Ofran, 2013) (as
does each different class of protein–protein interaction), specific
methods have been developed for epitope prediction and others for
paratope prediction. Many methods make predictions based on
amino acid sequence alone, e.g. predicting epitopes based on neural
networks (Saha and Raghava, 2006), support vector machines
(SVMs) (El-Manzalawy et al., 2008; Singh et al., 2013), hidden
Markov models (Zhao et al., 2011) and random forests (Jespersen
et al., 2017), and paratopes using long short-term memory networks
(Deac et al., 2019; Liberis et al., 2018) and random forests
(Olimpieri et al., 2013). Though sequence-based methods can per-
form well on paratope prediction, most sequence-based epitope pre-
dictions are limited to the special case of a sequentially contiguous
epitope (Yao et al., 2013), whereas in contrast, most epitopes are
found to be conformational (distal in sequence, but close in 3D
structure) (Regenmortel, 1996; Walter, 1986). Thus we and others
focus on structure-based methods that leverage geometric informa-
tion in making predictions. Fortunately, while the complex structure
is not known, in most common scenarios, the structure of the anti-
gen by itself is available, and antibody structure prediction techni-
ques enable confident prediction of most of the antibody’s structure
(Sircar, 2012; Sircar et al., 2009). We thus briefly review this body
of most closely related work on structure-based prediction of epito-
pes and paratopes.

Docking: Many structure-based methods for epitope and para-
tope predictions rely on computational docking techniques, which
estimate the most likely conformations of a complex based on com-
plementarity (geometric, chemical, energetic) between the individual
proteins in many possible poses (Chen et al., 2003; Schneidman-
Duhovny et al., 2005; Sircar and Gray, 2010). The resulting docking
models may be ranked using a scoring function incorporating many
different geometric and physicochemical parameters; defining a
good scoring function is a challenging task that typically relies on
domain expertise (Pedotti et al., 2011), and has been specialized for
antibody–antigen docking (Brenke et al., 2012). From the top-
ranked conformations, regions on one protein that are close to the
partner protein can be identified as binding interfaces. Thus anti-
body–antigen docking can simultaneously predict epitopes and para-
topes. While docking achieves a fairly high recall rate (fraction of
true interface residues that are computationally identified) if enough
docking models are considered, the corresponding precision rate
(fraction of computationally identified residues that are truly in the
interface) is then fairly low. This has prompted the development of
methods that design targeted mutagenesis experiments so as to
evaluate predicted docking models and improve precision (Hua
et al., 2017).

Epitope prediction: Some approaches, e.g. PEPITO
(Sweredoski and Baldi, 2008), ElliPro (Ponomarenko et al., 2008),
EPSVR (Liang et al., 2010) and DiscoTope (Kringelum et al.,
2012), apply machine learning methods to structural features of

the antigen’s residues. These methods can be considered antibody-
agnostic as they do not use information from the partner anti-
body, and thus just reveal parts of the antigen generally amenable
to antibody binding (Sela-Culang et al., 2015). For prediction of
an epitope targeted by a particular antibody, the context of which
residues are likely to be involved in the interaction can improve
the prediction performance, as well as distinguish specificity dif-
ferences among different antibodies. This aspect of antibody–anti-
gen interactions was leveraged by the antibody-specific prediction
method EpiPred (Krawczyk et al., 2014) to achieve state-of-the-art
performance. EpiPred first performs geometric matching of
patches (e.g. based on docking models) and then scores residues
on the antigen with a customized binding potential specific for
antibodies and antigens.

Paratope prediction: Many paratope predictors focus on special
regions on antibodies called complementarity determining regions
(CDRs), as they are well-defined from sequence and constitute the
majority of the paratope and the majority of the differences among
antibodies driving antigen-specific recognition. In the nonparametric
method Paratome (Kunik et al., 2012), the query antibody’s struc-
ture and sequence are compared against a nonredundant dataset of
antibodies, and paratopes are predicted based on resemblance to
those on the closest matching antibody. Antibody i-Patch
(Krawczyk et al., 2013) uses a scoring function derived from an ana-
lysis of antibody–antigen interactions in a nonredundant training
set. Recently, Daberdaku and Ferrari (2019) achieved state-of-the-
art performance with a method that applies SVMs to classify patches
extracted from the surface of the antibody, based on rototranslation-
ally invariant shape descriptors and other physicochemical proper-
ties representing the patches.

A common drawback of current structure-based methods for epi-
tope and paratope predictions is the use of fixed representations,
which can be limited by the extent of available domain knowledge.
Furthermore, epitope and paratope predictions are treated as two
separate tasks, leading to the use of different representations and
prediction methods for antigens and antibodies. Sequence-based
methods, Parapred (Liberis et al., 2018) and AG-Parapred (Deac
et al., 2019), demonstrate the utility of learning representations for
better paratope prediction. However, there are currently no methods
to learn structural representations for either epitope or paratope pre-
diction tasks. Recently, a spatial graph convolution network was
proposed to learn structural representations of proteins for interface
prediction in general protein–protein interactions (Fout et al.,
2017). While graph convolution networks can encode structural rep-
resentations of residues with information from their spatial neigh-
borhood, they do not encode the context of the target protein. As
shown by current methods, embedding the correct context of the
target protein can improve the prediction performance (Krawczyk
et al., 2013, 2014). Therefore, there is a need to develop methods
for learning context-aware structural representations for epitope
and paratope predictions.

In this work, we present a unified deep learning-based frame-
work for learning context-aware structural representations of anti-
gens and antibodies to predict their binding interfaces. Our
framework consists of a novel combination of graph convolution
networks, attention and transfer learning to capture several desired
aspects of antibody–antigen interactions. We show that the models
trained on our framework can overcome the limitations of current
computational methods and achieve state-of-the-art performance on
both epitope and paratope prediction tasks. We also show that the
prediction performance of these networks is only marginally
affected when using homology models of antibodies compared to
that when using their crystallized structures. Using the attention
layer, we demonstrate the ability of our framework to reveal the
mode of interaction between antigens and antibodies, enabling a
deeper study of the biological factors driving their interactions.
Therefore, our framework improves prediction accuracy and pro-
vides interpretable results to expedite the process of large-scale anti-
body–antigen characterization.
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2 Materials and methods

We propose a novel deep learning framework, PECAN, Paratope
and Epitope AQ5prediction with graph Convolution Attention
Network (Fig. 1), to learn the structural representations of antigens
and antibodies to predict their binding interfaces (i.e. antigen epito-
pes and antibody paratopes). Our framework comprises three com-
ponents to leverage biological insights: (i) graph convolutions to
capture the spatial relationships of the interfaces, (ii) an attention
layer to enable each protein’s interface predictions to account for
the potential binding context provided by its partner and (iii) trans-
fer learning to leverage the larger set of data available for general
protein–protein interactions to provide a baseline model to be fine-
tuned with antibody–antigen data.

We use this general framework to train two separate networks
for the two prediction tasks: (i) an epitope prediction network in
which the antigen is the primary protein on which we want to pre-
dict the interface (epitope) and the antibody is the secondary protein
providing the context for a suitable interface; (ii) a paratope predic-
tion network with the antibody as primary for interface prediction
(paratope) and the antigen secondary providing the context. We
note that in both tasks, the interface labels of the secondary protein
are hidden during training and prediction phases, forcing the atten-
tion layer to learn the correct context of the secondary protein in an
unsupervised fashion.

Problem statement: The objective is to assign a label, either inter-
face (positive class) or non-interface (negative class), to each residue
of the primary protein.

A. Input representation: Each protein structure is represented as
a graph, with nodes for the amino acid residues and edges between
residues with Cb–Cb distance less than 10 Å. For Gly residues,
which lack a b carbon, Ca was used. Associated with each node is a
62-dimension feature vector encoding important sequence and struc-
tural properties as used in Fout et al. (2017): (i) a one-hot encoding
of the amino acid type (d¼20); (ii) a conservation profile for that
position across a set of homologous proteins returned by PSI-BLAST
(Altschul et al., 1997) (d¼20); (iii) the absolute and relative solvent
accessible surface area of the residue as computed by STRIDE
(Heinig and Frishman, 2004) (d¼2); (iv) a local amino acid profile
indicating the number of times each amino acid type appears within
8 Å of the residue (d¼20). The structure-based features (iii and iv)
were calculated for each protein in isolation from its partner.

As antibody CDRs drive antigen-specific recognition and the rest
of the antibody framework is quite similar across all antibodies,
nodes in the antibody graph are limited to ‘CDR clouds’ as follows:
(i) identify the six CDRs using the IMGT annotation tool (Lefranc
et al., 2003); (ii) for each CDR, consider two sequentially adjacent
residues; (iii) further extend these sets to include all residues within
6 Å in the structure (the maximum of the minimum Cb–Cb distance
between any two CDR residues in the training sets).

B. Neural network: The neural network consists of graph convo-
lution, attention and fully connected layers. Given two input graphs,
primary P ¼ fpigN

i¼1 and secondary S ¼ fsigM
i¼1, the network assigns

to each node pi 2 P a probability of belonging to the positive class
(i.e. binding interface).

B.1 Graph convolutions: Graph convolution (Fout et al., 2017)
enables order-independent aggregation of properties over a neigh-
borhood of residues that together contribute to the formation of a
binding interface. For a node xi and its receptive field consisting of
K spatial neighbors Gi ¼ fgjgK

j¼1 from the input graph, the convolu-
tion operation results in a vector ẑ i 2 Rv, where v is a specified
number of filters for the layer (Eq. 1). The parameters of this oper-
ation represent the aggregation weight matrix Wc for the center
node, the aggregation weight matrix Wg for the neighboring nodes,
and the bias vector b̂. Thus, the convolution operation for a node xi

results in a spatial vector representation x̂ 0i in the latent space Rv.

ẑ i ¼ ReLU Wcx̂i þ
1

jGij
XK

j¼1

Wgĝj þ b̂

0
@

1
A (1)

Multiple layers can be stacked to produce high-level representa-
tions for each node. Each convolution layer has two weight-shared
graph convolution modules, one for the primary graph and one for
the secondary graph.

B.2 Attention: An attention layer encodes the context of the sec-
ondary graph in the residue-level representations of the primary
graph, providing information for each primary residue about sec-
ondary residues that are likely to interact with it. An attention score
aij is computed between all node pairs pi 2 P and sj 2 S after projec-
ting them into a latent space via an attention weight matrix Wa

(Eq. 2). The dimensions of Wa are determined by the number of neu-
rons in the final convolution layer and the desired dimension of the
latent space. This dot product style of computing attention scores is

Fig. 1. Schematic overview of PECAN, Paratope and Epitope prediction with graph Convolution Attention Network. (A) The antibody and antigen protein structures are

ordered as primary and secondary according to the task. (B) Graph representations of the two proteins are input to the neural network consisting of graph convolution, atten-

tion and fully connected layers. (C) For transfer learning, a base network trained on general proteins is used as initialization for training epitope and paratope prediction

networks
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used to directly estimate complementarity between hidden represen-
tations as in Luong et al. (2015) and Deac et al. (2019). The context
vector ĉ i 2 Rv for node pi is then computed by aggregating the
node-level representations of S using normalized attention scores
(Eq. 3). The normalization is performed to calibrate the score be-
tween each pair with respect to scores across all possible pairs. The
normalized score aij can therefore be interpreted as a pairwise inter-
action potential between pi and sj.

aij ¼ ReLUðhT
i hjÞ;

ĥi ¼Wap̂ 0i; ĥj ¼Wa ŝ 0j:
(2)

ĉ i ¼
XM
j¼1

aij ŝ
0
j; where aij ¼

aijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼N;j¼M

i;j¼1

a2
ij

s (3)

B.3 Node classification: A final fully connected layer performs
classification for each primary node pi based on its spatial vector p̂ 0i
and context vector ĉ i (Eq. 4). An inverse logit function transforms
each node’s output yi to indicate the probability of belonging to the
positive class.

yi ¼ Ŵ
Tðcijjp0iÞ þ b; wherejj indicates concatenation (4)

C. Transfer learning: A base network / for interface prediction
is learned for a relatively larger set of general protein–protein inter-
actions. The learned weights from the base model are then used to
initialize weights for training the two task-specific networks, essen-
tially fine-tuning the general base network for epitope and paratope
predictions using antibody–antigen data.

2.1 Implementation details
The framework was implemented in TensorFlow (Abadi et al.,
2015). Validation sets were used to find the optimal set of network
training parameters for final evaluation. A grid search was per-
formed over the following parameters: (i) Optimizer: Stochastic gra-
dient descent, Momentum (Sutskever et al., 2013), Adagrad (Duchi
et al., 2011) or Adam (Kingma and Ba, 2015); (ii) learning rates:
0.0001, 0.001, 0.005, 0.01, 0.05 or 0.1; (iii) batch size: 32, 64 or
128 and (iv) dropout: 0.5 or 0.8. For each combination, networks
were trained until the performance on the validation set stopped
improving or for a maximum of 250 epochs. For both epitope and
paratope predictions, the best validation set performance was
achieved when training till 120 epochs using the Momentum opti-
mizer with Nesterov accelerated gradients (Su et al., 2016) at a
learning rate of 0.001, with batch size of 32 and 50% dropout rate.
Training was carried out by minimizing the weighted cross-entropy
loss function as in Fout et al. (2017). The same network settings
were used for training on general protein–protein complexes, but
the fine-tuning was carried out on antibody–antigen complexes for
half the original time (i.e. 60 epochs). The graph convolution layers
were set to have 32 filters and the latent space dimension for
attention was also set to 32. All weight matrices were initialized as
in He et al. (2015) and biases set to zero. For graph convolution, the
receptive field (spatial neighborhood) for each node was set to
include the 15 nearest nodes in the graph.

2.2 Datasets
For benchmarking purposes, we use the datasets provided with the
state-of-the-art epitope predictor, EpiPred (Krawczyk et al., 2014)
and the state-of-the-art paratope predictor, by Daberdaku and
Ferrari (2019), and compare the performance against these predic-
tors. We note that the datasets were already curated to avoid over-
lap (too much similarity in antibodies or antigens) between testing
and training.

Epitope prediction: The dataset from EpiPred (Krawczyk et al.,
2014) consists of 148 antibody–antigen complexes, 118 for training
and 30 for testing, filtered to ensure that antigens shared no more
than 90% pairwise sequence identity. As a separate validation set

was not used, we constructed one from the antibody–antigen com-
plexes in the Docking Benchmarking Dataset (DBD) v5 (Vreven
et al., 2015), ensuring that antigens in the validation set had no

more than 25% pairwise sequence identity to those in the test set.
This yielded 103 complexes for training, 29 for validation and 30

for testing. To test on homology models of the antibodies, in add-
ition to the crystal structures provided in the EpiPred comparison,
the PIGS server (Marcatili et al., 2014) was used to generate hom-

ology models. In homology modeling, we ensured that structures of
the same or closely related antibodies were not used as templates for

modeling by considering only those antibody structures with less
than 95% sequence identity to the query sequence (on heavy and
light chains). The definition of the true epitope was still taken from

the cocrystal structures. In addition, we compiled from SabDab
(Krawczyk et al., 2014) a new, distinct epitope prediction test set of

53 Ab:Ag complexes (Supplementary Table S1). In this new dataset,
we ensured that no antigen had more than 50% sequence similarity
with any antigen in this set and in the Epipred dataset (which used a

cutoff of 80% sequence identity).
Paratope prediction: The dataset from Daberdaku and Ferrari

(2019) consists of 471 antibody–antigen complexes, with 213 com-
plexes for training, 106 for validation and 152 for testing, filtered to
ensure that antibodies shared no more than 95% pairwise sequence

identity. As our framework accepts only proteins, we discarded
complexes with nonprotein antigens (e.g. DNA), resulting in 205

complexes for training, 103 for validation and 152 for testing. For
evaluation on homology modeled structures, we used the same anti-
body models provided in the dataset, which had been built using the

ABodyBuilder server (Leem et al., 2016).
Transfer learning: To facilitate unbiased transfer learning, the

DBD v5 dataset (Vreven et al., 2015) was processed to discard com-
plexes that were categorized as antibody–antigen, resulting in a

dataset of 191 protein–protein complexes.
Following the previous studies (Daberdaku and Ferrari, 2019;

Krawczyk et al., 2014), residues were labeled as part of the interface

if they had any non-hydrogen atoms within 4.5 Å of any non-
hydrogen atoms of residues on the other protein.

Table 1 summarizes the percentage of residues that form the
interface in training, validation and test sets for epitope and para-

tope prediction tasks.

3 Results

We evaluate our approach in head-to-head benchmark comparisons
against state-of-the-art epitope and paratope predictors, showing
that our unified framework outperforms approaches specifically tar-

geted to each. Furthermore, we elaborate general precision and re-
call trends in the full architecture, as well as versions enabling

characterization of the contributions of convolution, attention and
transfer learning. Finally, we explore the ability of the attention
layer to provide insights into the basis for the model’s predictions.

Table 1. Summary of datasets used for training, validation and

testing

Epitope prediction dataset

Data split # complexes % epitopes

Training 103 8.9%

Validation 29 8.7%

Test 30 7.8%

Paratope prediction dataset

Data split # complexes % paratopes

Training 205 8.8%

Validation 103 8.9%

Test 152 9.4%
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3.1 Evaluation
Epitope and paratope prediction networks were trained using the
validation-set optimized hyperparameters from above. Per-protein
prediction performance was measured on the test sets by comparing
predicted scores against ground truth labels.

While our networks output a probability for each residue, to en-
able a direct comparison to other epitope prediction methods we
computed precision and recall by predicting as interface residues
those with probability above 0.5. To further elaborate precision-
recall trade-offs, we considered all such classification thresholds and
computed the area under the precision recall curve (AUC-PR).
Though some previous methods have used the area under the re-
ceiver operating characteristics curve (AUC-ROC) metric, AUC-PR
is more suitable here as the emphasis is on predicting binding inter-
faces (positive class) and the negative class constitutes roughly 90%
of the samples. To summarize the performance, AUC-PR was aver-
aged over all proteins in the test set. To provide robust estimates of
performance, the training and testing procedures were repeated five
times, and the mean and standard error reported. As results from
the previous studies were reported as single numbers, from either
one evaluation or an average of multiple evaluations, the statistical
significance of the difference between our performance and those
single values was evaluated by way of a tail probability, the fraction
of times our networks performed worse than the reported values.

Our evaluations included two learning schema: task-specific
learning (i.e. just using antibody–antigen data) and transfer learning
(i.e. fine tuning from a model trained with general protein–protein
data). For each schema, five networks were evaluated: one network
with a single fully connected layer (no convolution), one with a sin-
gle graph convolution layer (Conv1-layer) and one with two
(Conv2-layer), and likewise one network with the attention layer
following a single graph convolution layer (Conv1-layerþAttn) and
one following two convolution layers (Conv2-layerþAttn). Two-
sided Wilcoxon-Mann-Whitney tests were performed to estimate
the statistical significance of the performance differences between
different models.

3.2 Epitope prediction
Figure 2 summarizes the epitope test set prediction performance for
our different neural network implementations along with the state-
of-the-art Epipred (Krawczyk et al., 2014) and DiscoTope
(Kringelum et al., 2012). Our networks all perform better than
Epipred and DiscoTope in terms of precision and recall (substantial-
ly stronger on recall alone) at the 0.5 cutoff (Fig. 2A) (tail probabil-
ity P<0.001). Elaborating performance for a range of cut-offs via
AUC-PR in Figure 2B enables further comparison among our archi-
tecture implementations (these numbers are not available for the
other methods). The network with an attention layer after two con-
volution layers achieves the best performance, confirming the utility
of embedding the context of the target antibody into the representa-
tion of antigen’s residues in addition to information from their spa-
tial neighbors. The models predicting epitopes without the context
of the antibody can be considered as predicting general hotspots on
the antigens, which succeeds to a certain extent, as is the basis for
generic (not antibody-specific) ‘B cell epitope prediction’ methods.
The Conv2-layerþAttn network achieves similar prediction per-
formance on the additional epitope prediction test set
(Supplementary Fig. S7) as on the Epipred dataset, thus confirming
our results on this completely separate dataset.

Furthermore, the improvements in performance of all models
after transfer learning illustrates the benefits of leveraging data from
general protein–protein interactions to establish a base model that
can be fine-tuned with antibody–antigen data. The networks trained
on general protein–protein interactions, however, show poor predic-
tion performance compared to the task-specific and transfer learning
networks (Supplementary Fig. S1A), demonstrating that these base
models only served as good initialization points to networks that
were trained for predicting epitopes.

To identify most importance features for prediction, networks
were trained independently on each of the four feature types.
Feature-specific networks did not perform as well as those networks

trained on all features together (Supplementary Fig. S2A), thus
showing that features extracted from both sequence and structure
are necessary for better epitope prediction. We also show that we
avoid overfitting to the training dataset by limiting our training runs
to 120 epochs, after which the prediction performance on the valid-
ation set starts to worsen (Supplementary Fig. S8).

Similar prediction performance can be observed when homology
modeled structures of antibodies, instead of their crystal structures,

Fig. 2. Epitope prediction networks performance summary. (A) Precision and recall

metrics obtained at decision boundary of 0.5. The measures for EpiPred (Krawczyk

et al., 2014) and DiscoTope (Kringelum et al., 2012) were taken from Krawczyk

et al. (2014). (B) AUC-PR measures obtained over a range of cutoffs. (Wilcoxon–

Mann–Whitney P-values: **P<0.01, *P<0.05, -not significant)

Fig. 3. Paratope prediction networks performance summary. Performance measures

of Antibody i-Patch (Krawczyk et al., 2013) and Daberdaku and Ferrari (2019)

were taken from Daberdaku and Ferrari (2019). (Wilcoxon–Mann–Whitney

P-values: **P< 0.01, *P<0.05, -not significant)
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are used to predict epitopes on corresponding antigens
(Supplementary Fig. S3A). Interestingly, networks performed slight-
ly better when using homology models compared to the crystal
structures, which may be due to some relaxation of the structure
during the modeling process. However, we found no significant cor-
relation between the change in performance and the root mean
squared distance between the models and crystal structures of CDR-
H3 loops (Supplementary Fig. S3C).

3.3 Paratope prediction
Figure 3 summarizes the paratope test set prediction performance of
our different neural networks, and state-of-the-art structure-based
methods (Daberdaku and Ferrari 2019) and antibody i-Patch
(Krawczyk et al., 2013). To enable a direct comparison to previous
studies, we predict for the entire structure of the antibody Fv region
instead of just the CDR clouds, as described in our methods. Our
networks perform better than the other methods on both AUC-PR
and AUC-ROC (Supplementary Fig. S4) (tail probability P<0.001),

establishing the superior performance of learned features over prede-
fined features as used by Daberdaku and Ferrari (2019). The no-
convolution network performs equivalently to Daberdaku and
Ferrari (2019) (tail probability P¼0.4), and the addition of convo-
lution adds a statistically significant boost. The network with a sin-
gle layer of convolution and attention achieves the best
performance, but the attention layer provides only a small perform-
ance improvement over convolution. We hypothesize that since par-
atopes are mostly localized to regions around the CDRs, the context
of the antigen may not provide much more information regarding
exact paratope location than the structural properties already cap-
tured by convolution. Nonetheless, as we show in the next section,
the attention layer offers the benefit of making the network inter-
pretable, which can be a difficult task for convolution layers alone.

As was done in the case of epitope prediction, feature-specific
networks were trained to identify most important feature types for
paratope prediction. Interestingly, networks trained on conservation
profile alone performed nearly as well as networks trained with all
features (Supplementary Fig. S2B), thus showing that features
extracted from sequence played a significant role in paratope
prediction.

While we observe a minor drop in prediction performance when
predicting on homology models compared to that obtained using
crystal structures, our networks perform better than Daberdaku and
Ferrari (2019) (Supplementary Fig. S5).

3.4 Assessing the contributions of attention
The attention layer provides the opportunity to study the mode of
interaction by revealing the learned context of the target protein
without requiring additional inference techniques. The attention
score between every pair of residues can be visualized as a matrix, as
Figure 4A illustrates for the complex on which our epitope predic-
tion network performed best. In this heatmap, epitopes have a sub-
stantially distinct attention profile compared to other residues on
the antigen, which results in improved epitope prediction (AUC-PR:
0.8) compared to convolution alone (AUC-PR: 0.48). These atten-
tion scores can further be projected onto the structures (Fig. 4B) by
taking for each residue the maximum of its scores with partner resi-
dues. This projection shows that attention is high between residues
in and around the actual interface region, suggesting that the atten-
tion layer encodes the correct context (i.e. paratopes) of the anti-
body for epitopes. The same pattern of high attention scores near
the interface regions was also observed for other antibody–antigen
complexes (Fig. 4C–F illustrate the next four top performers).

Intrigued by the attention layer’s ability to localize the appropri-
ate context during epitope prediction, we hypothesized that the
same ability could benefit paratope prediction. We thus performed a
‘cross-task evaluation’, in which a network was trained to predict

Fig. 4. Attention visualization (A) Heatmap of the attention score matrix for an anti-

body in complex with vascular endothelial growth factor A (VEGFA) (PDB ID

1TZH). The scores were normalized to have zero mean and unit variance, and trun-

cated to the range [-6,6]. (B–E) Projection of max-pooled attention scores onto

structures of example antigen and antibody complexes in the test set. Structural vis-

ualizations made using PyMOL (Schrödinger, 2015)

Fig. 5. Performance summary from ‘cross-task evaluation’, predicting paratopes

using networks trained only for predicting epitopes
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epitopes using the antigens in the epitope prediction training set.
This epitope prediction network was then evaluated for its perform-
ance at also predicting paratopes for the antibodies in the paratope
prediction test set—the reciprocal task to that for which it was
trained. For reference, paratope prediction networks were trained
on the antibodies from the epitope prediction training set and
applied (as normal) to the CDR clouds of antibodies in the paratope
prediction test set. Figure 5 summarizes the prediction performance
of our different neural networks on the cross-task evaluation. As
expected, the paratope prediction networks perform significantly
better at predicting epitopes than do the networks trained to predict
epitopes. However, the results from cross-task evaluation show that
even though none of the networks were trained to predict paratopes,
those with an attention layer perform better than convolution-only
networks. This suggests that the attention layer is indeed able to bet-
ter capture the specificity of antibody–antigen interactions, thereby
also benefiting paratope prediction.

4 Conclusion

We have presented a unified deep learning framework for predicting
binding interfaces on antibodies and antigens. Our results demon-
strate that the networks learn structural representations that capture
many desired aspects of antibody–antigen interactions and simultan-
eously achieve state-of-the-art performance on both epitope and par-
atope prediction tasks. We also show that the attention layer
successfully encodes the context of partner proteins, improving pre-
diction performance and providing an interpretable view of the
mode of interaction. Future work includes including additional resi-
due features while imposing sparsity constraints on the attention
matrix, applying the same framework to other large protein families
with specific recognition modes, and using predictions to focus
docking as well as experimental evaluation.
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