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Abstract

Summary: Single-cell RNA sequencing technology provides a novel means to analyze the transcriptomic profiles of
individual cells. The technique is vulnerable, however, to a type of noise called dropout effects, which lead to zero-
inflated distributions in the transcriptome profile and reduce the reliability of the results. Single-cell RNA sequencing
data, therefore, need to be carefully processed before in-depth analysis. Here, we describe a novel imputation
method that reduces dropout effects in single-cell sequencing. We construct a cell correspondence network and ad-
just gene expression estimates based on transcriptome profiles for the local subnetwork of cells of the same type.
We comprehensively evaluated this method, called PRIME (PRobabilistic IMputation to reduce dropout effects in
Expression profiles of single-cell sequencing), on synthetic and eight real single-cell sequencing datasets and veri-
fied that it improves the quality of visualization and accuracy of clustering analysis and can discover gene expres-
sion patterns hidden by noise.

Availability and implementation: The source code for the proposed method is freely available at https://github.com/
hyundoo/PRIME.

Contact: hdjeong@chosun.ac.kr or zhandonl@bcm.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The rapid development of single-cell RNA sequencing technologies
(Hashimshony et al., 2012; Islam et al., 2014; Klein et al., 2015;
Macosko et al., 2015) has enabled researchers to acquire detailed
transcriptomic profiles for individual cells in a high-throughput
manner. This technology provides an important means for studying
cell-to-cell variability, and it is becoming a critical tool for a variety
of research endeavors, including cell type identification, pseudo time
ordering and deconvolution of heterogeneous samples (Haque et al.,
2017; Hu et al., 2018; Liang and Fu, 2017; Tang et al., 2011; Wang
and Navin, 2015).

The principle drawback of current single-cell RNA sequencing
technology is its vulnerability to technical and biological noise.
Individual cells have only a very small amount of mRNA (compared
to tissue samples), which requires enormous amplification before
analysis. A low initial quantity of a particular transcript can mean
that it will be completely missed during the reverse transcription and
DNA amplification steps, and thus will not be detectable by subse-
quent sequencing. Neighboring cells can have wide variability in
gene expression, such that a gene expressed at a moderate or high
level in one cell is expressed at a low level in another and thus fails
to be detected, leading to a ‘false zero’ known as a dropout event.

Single-cell RNA seq data are notorious for producing an excessive
number of artificial zeros in the expression profile, which must be
distinguished from ‘true zeroes’. Several new analytic tools have
been developed using zero-inflated models (Finak et al., 2015;
Kharchenko et al., 2014; Pierson and Yau, 2015), but most of the
current genomic tools were developed based on the distribution of
bulk sequencing data (Love et al., 2014; Robinson et al., 2010),
which is inappropriate to the nature of single-cell sequencing data.

Several computational methods have been developed to reduce
the dropout events by imputing the missing values in single-cell
sequencing (Eraslan et al., 2019; Huang et al., 2018; Kwak et al.,
2017; Li and Li, 2018; van Dijk et al., 2018). SAVER (Huang et al.,
2018) models single-cell gene expression with unique molecular
identifier (UMI) counts through Poisson–Gamma mixture and esti-
mates the prior parameter using Poisson lasso regression. Then it
recovers the dropouts based on the weighted average of the observed
and predicted counts. DrImpute (Kwak et al., 2017) identifies the
set of similar cells through k-means clustering and imputes the miss-
ing values by averaging the gene expression in the same cluster. To
enhance the robustness of the imputation results, DrImpute averages
them for multiple k parameters. ScImpute (Li and Li, 2018) esti-
mates the dropout probability through a mixture model, where it
models the gene expression as a Gaussian distribution and the zero-
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inflated dropout event as a Gamma distribution. It then imputes
only those genes with a high dropout probability by utilizing gene
expression values from similar cells that are less affected by the
dropout events. MAGIC (van Dijk et al., 2018) constructs a Markov
transition matrix to represent similarities between cells and powers
the matrix up to t times in order to model a heat diffusion process.
Then, it imputes the missing values through the weighted average of
the same genes for the neighboring cells in the Markov affinity ma-
trix. DCA (Eraslan et al., 2019) adopts the zero-inflated negative bi-
nomial distribution to model the single-cell RNA sequencing
including dropout events and utilizes a modified autoencoder, where
it has three outputs to predict important parameters: dropout prob-
ability, dispersion and mean of the negative binomial component.
Then, it reduces the zero-inflated noise by substituting the original
expression count by the learned mean of the negative binomial
component.

In this article, we propose a novel imputation method, called
PRIME (PRobabilistic IMputation to reduce dropout effects in
Expression profiles of single-cell sequencing), to effectively deal
with dropout events in single-cell RNA sequencing. First, we con-
struct a cell correspondence network through similarity measure-
ments across cells (Fig. 1). Next, we identify the local subnetwork
for a target cell by using an efficient random walk protocol. Finally,
we impute the gene expression in the target cell based on the prob-
abilistic weight parameter, which is computed based on the variance
of gene expression in the local subnetwork. We perform these steps
until it meets the stop conditions (Fig. 1).

2 Materials and methods

2.1 Datasets and preprocessing
To assess and compare the performance of single-cell imputation
methods, we utilized eight single-cell RNA sequencing datasets. (i)
Buettner et al. (2015) provide single-cell RNA sequencing datasets
for mouse embryonic stem (ES) cells at different cell cycle stages.
There are 59, 58 and 65 cells in G1, G2M and S phases, respectively.
The read count for the cell cycle genes is provided in the
Supplementary File in Buettner et al. (2015). (ii) Usoskin et al.
(2015) provided single-cell RNA sequencing data for mouse sensory
neurons (for peptidergic nociceptors, non-peptidergic nociceptors,
neurofilament containing and tyrosine hydroxylase containing). The
raw sequencing data are available at gene expression omnibus
(GEO) with accession number GSE59739. (iii) Zeisel et al. (2015)
performed large-scale single-cell RNA sequencing on the mouse
somatosensory cortex and hippocampal CA1 region. In this dataset,
there are seven major cell types that can be classified into 47 differ-
ent subclasses. We retained only the four major cell types (interneur-
ons, oligodendrocytes, pyramidal CA1 and pyramidal S1 neurons)
because other cell types have relatively smaller gene expression val-
ues and its population is also smaller than that of the other major
cell types. The raw data are archived at the GEO with the accession
number GSE60361. (iv) The Darmanis dataset (Darmanis et al.,
2015) provided single-cell RNA sequencing for human brain, and
we removed only the cell type labeled ‘hybrid’ because it can be con-
sidered as the intermediate stage between neurons and astrocytes

(Picardi et al., 2017). The raw data are deposited at GEO with the
accession number GSE67835. (v) Chu et al. (2016) provided bulk
and single-cell sequencing for human ES cells and also the time series
sequencing for cell differentiation to endoderm. The raw data are
archived at GEO with the accession number GSE75748. (vi) The
peripheral blood mononuclear cell (PBMC) 4k dataset provided
single-cell RNA sequencing for PBMCs obtained from a healthy
donor. (vii) Brain 9k dataset includes single-cell RNA sequencing
for brain cells from E18 mouse. The brain cells are obtained from
cortex, hippocampus and subventricular zone of an E18 mouse. For
PBMC 4k and Brain 9k datasets, the gene expression count matrix
and cell type labeling are obtained from 10� Genomics webpage.
We utilized the predicted cell type labels through a graph clustering,
where it is originally reported by 10� Genomics. For all datasets,
we removed genes that are not expressed across all cells. The num-
ber of cells and cell types for different datasets are summarized in
Table 1.

We also utilized synthetic single-cell RNA sequencing datasets to
verify the robustness of imputation results for different dropout
rates. To generate synthetic single-cell RNA sequencing datasets, we
utilized the R package called splatter (Zappia et al., 2017). In the
synthetic datasets, we generated 1000 cells with 20 000 genes and
equally divided cells into three cell types. To generate gene expres-
sion matrices with a differentially expressed genes in each cell type,
we set de.prob as 0.1 and the dropout rates are controlled by set-
ting dropout.mid¼f0, 1, 2, 3g. We generated 10 different gene
expression matrices for different parameter settings.

2.2 Parameter settings for each algorithm
To compare the performance of PRIME with SAVER (Huang et al.,
2018), DCA (Eraslan et al., 2019), scImpute (Li and Li, 2018),
DrImpute (Kwak et al., 2017) and MAGIC (van Dijk et al., 2018),
we utilized R implementation to run each method with the respect-
ive default parameters. If the method supports parallel processing,
we utilized the maximum number of CPU cores. In this study, we
utilized 4 CPU cores for SAVER and scImpute. We tested scImpute
based on the default parameters and set the number of the clusters
as the number of cell types. For a fair comparison, we tested
scImputed without the true label for each cell type, as the other
methods do not require the true label. To run DrImpute, we utilized
the default parameters and performed the normalization as recom-
mended in the package. We also utilized the default parameter for
MAGIC so that it optimizes the diffusion parameter based on their
own criterion.

2.3 Data normalization and network construction
The proposed single-cell imputation method consists of three major
steps: (i) constructing a cell correspondence network, (ii) identifying
a local subnetwork for each cell and (iii) performing a probabilistic
imputation for each gene expression. These three steps continue
until the maximum number of iterations have been reached or there
are no meaningful changes in the imputed expression values com-
pared to the previous iteration. The basic intuition of the iterative
approach is that since the raw single-cell RNA sequencing data
could be corrupted by technical noise such as dropout events, it is

Fig. 1. Overall workflow of PRIME. PRIME reduces the dimensionality of the datasets and estimates two similarities matrix using Euclidean and Pearson correlation. Next, it

constructs a network by inserting edges between similar cells. Finally, PRIME adjusts expression levels using the average expression levels of cells in the local subnetwork. This

process is iterated till convergence
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unreliable to impute the dropouts based on noisy datasets. As we im-
pute the technical noise, the reliability of the dataset increases,
which improves imputation results in the next iteration.

To begin, suppose that we have single-cell RNA sequencing data
and it can be represented as an M by N dimensional matrix, where
M is the number of genes and N is the number of cells. We normal-
ize the library size of the single-cell RNA sequencing data matrix
using a counts per million (cpm) and take a log-transformation. We
have a normalized input Xn, which is given by

Xn ¼ log10ð1þXÞ; (1)

where X is cpm transformed input data. Note that the input value
is not limited to read counts and it is acceptable if it represents
relative expressions of genes across cells. Once we have a normal-
ized data matrix Xn, we start the iterative imputation process by
constructing the cell correspondence network based on the cell-to-
cell similarity. The cell correspondence network can be repre-
sented as a graph G ¼ ðV; EÞ, where a node vi 2 V represents an i-
th cell and the cell correspondence can be represented as an edge
ei;j 2 E so that if cells vi and vj are similar to each other, the edge
weight ei;j can have a positive value. In this study, we utilized
both Euclidean distance and Pearson correlation to estimate cell-
to-cell similarity. Before estimating the similarity, since a single-
cell sequencing generally includes a number of cells and genes, we
first reduce the dimension of the input data Xn in order to reduce
the computational complexity and shorten the running time of the
method. To this end, we select highly variable genes across all
cells using Seurat (Macosko et al., 2015) and obtain a low-
dimensional representation for each cell using principal compo-
nent analysis (PCA).

Next, we construct the cell correspondence network (GE) based
on the Euclidean distance and the network (GC) for the Pearson cor-
relation and combine them to obtain a comprehensive cell corres-
pondence network G. First, we compute the Pearson correlation
between each cell using top 20 principal components (PCs) to con-
struct a cell correspondence network for the Pearson correlation.
Note that we empirically utilized first 20 PCs in order to estimate
the cell-to-cell correlation because it leads acceptable results for
various datasets based on our experimental results. For a given cell
vi, we select the cells having a high correlation and consider the cells
as the neighboring nodes in the cell correspondence network, GC.
Note that the neighboring nodes indicate the set of cells that can be
classified as the same cell type with similar expression patterns, and
the neighboring nodes for the cell vi can be selected based on the fol-
lowing criterion:

N CðviÞ ¼ fvjjCi;j � ctðviÞg; (2)

where Ci;j is a Pearson correlation between the cell vi and vj, and
ctðviÞ is the threshold to select the neighboring cells. We adaptively
select the threshold by taking minfNth; ðQth � percentileofCi;j; 8jÞg.
Note that we utilized the default parameter for Nth as 0.85 and Qth

as 0.9 in experiments and these parameter setting could lead an ac-
ceptable result, but it can be adjusted depending on datasets. Then,
we insert edges between the cell vi and the cell vj 2 N C. The adja-
cency matrix for a cell correspondence network based on Pearson
correlation is given by

AC
i;j ¼ f

1; vj 2 N CðviÞ; 8vi

0; o:w:
: (3)

The above adjacency matrix is asymmetric and it generates a
directed network because the selection of cell vj as the neighbor of
cell vi does not necessarily guarantee the opposite case even though
the Pearson correlation matrix is symmetric. To make it an undirect-
ed network and give more confidence to the bidirectional edges (i.e.
the cell vi selects the cell vj as its neighboring node, and vice versa),
the adjacency matrix for the undirected network can be obtained by
linear combination of AC and its transpose, which is given by

PC ¼ 0:5� ðAC þA
†

CÞ: (4)

Similar to the cell correspondence network based on the Pearson
correlation, we first compute the Euclidean distance between the
first 20 PCs for each cell. Since the Euclidean distance becomes
smaller as the cell-to-cell similarity increases, we utilize the
Gaussian kernel to obtain the Euclidean similarity, which is given by

E ¼ exp ð�~EÞ; (5)

where ~E is the element-wise square of the rescaled Euclidean dis-
tance matrix M̂ ¼ 2 �M=maxðMÞ and M is the jNj � jNj dimension-
al matrix representing Euclidean distance between each cell. Then,
we can obtain the adjacency matrix PE for the cell correspondence
network, GE, through the same process described in Equation (2) to
Equation (4).

After computing the adjacency matrices for the Pearson correl-
ation and Euclidean similarity, we combine both similarities through
a linear combination with an equal weight and take an element-wise
square, where it gives more weight on the edges consistently identi-
fied by both metrics and decreases the weight on the edges identified
by only one similarity measurement. The resulting adjacency matrix
for the cell correspondence network G is given by

P ¼ 0:5� ðPC þ PEÞ: (6)

In the network construction step, starting from a directed net-
work with an equal weight, we iteratively rescale the edge weights
by performing a linear combination of matrices and element-wise
square, and this process gives more weight to the consensus edges
(e.g. the edge connecting the cells vi and vj identified simultaneously
by both Pearson correlation and Euclidean criteria).

2.4 Identifying local subnetwork and probabilistic

imputation
To reduce the dropout effects in single-cell sequencing in a biologic-
ally unbiased manner, it is necessary to distinguish dropouts from
true biological zeros (Li and Li, 2018). To this end, we take advan-
tage of the surrounding cells. The basic intuition is that if the gene is
not expressed in the majority of cells of the same type, the observed
zero is highly likely to be a true zero. However, if the gene has a
positive expression in the most of the cells in the same type (i.e. cells
in the local subnetwork) but it is not expressed in a particular cell,
the detected zero has a higher probability of being a dropout event,
where it should be recovered to the true (or expected) values. Thus,
we compare the gene’s expression in a particular cell to its expected

Table 1. Single-cell RNA sequencing datasets

Data source # cells # cell types Source

Buettner et al. 182 3 Mouse ES cells

Usoskin et al. 622 4 Mouse sensory neurons

Zeisel et al. 2448 4 Mouse brain

Darmanis et al. 366 4 Human brain

Chu et al. 1018 7 Human ES cells

Chu et al. (Chu_time) 758 6 Human DE cells

PBMC 4k 4340 8 Peripheral blood mononuclear cells

Brain 9k 9128 13 Cells from cortex, hippocampus and subventricular zone of mouse
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expression in the set of similar cells—a local subnetwork identified
by a random walk approach inspired by local graph partitioning
using a personalized PageRank (PPR) vector (Andersen et al., 2006).
Although the PPR vector can be used to identify the exact local net-
work clustering, it has high computational complexity when dealing
with the large-scale networks. Since our aim is not to derive the
whole set of cells of the same type but to identify a reasonable local
subnetwork, we adopt a heuristic approach to approximate the PPR
vector. First, we perform a column-wise normalization in order to
obtain the legitimate stochastic matrix (i.e. the transition probability
matrix for the random walker). Then, we obtain the transition prob-
ability matrix for the random walker over the cell correspondence
network G by performing a matrix product to consider a secondary
structural similarity.

Next, to identify the set of similar cells for the cell vi, we identify
the local subnetwork in the cell correspondence network G through
a random walk. Starting from the i-th cell vi, the random walker per-
forms a random movement for J steps over the cell correspondence
network G and identifies the local subnetwork for the cell vi by
selecting K neighboring cells based on the visiting frequency of the
random walker for each node. Note that the parameter J is empiric-
ally set to 3 and K is selected by minfðKmin �NÞ; ðKmax � jN ðviÞjÞg,
where NðviÞ is the neighboring nodes for the cell vi in G and N is the
number of cells. Note that we utilized a default parameter 0.2 for
Kmin and 1.25 for Kmax, respectively. After identifying a local com-
munity for the cell vi, we computed the mean vector li and variance
vector ri for M genes in the local subnetwork, where the m-th elem-
ent in these vectors is the mean and variance for the m-th gene of the
cells in the local subnetwork. Then, we impute the expression xi for
M genes in the cell vi based on the mean and variance of the expres-
sion values in the local subnetwork. That is, if the m-th gene expres-
sion in the cell vi is reliable (i.e. similar to the mean value for the
local subnetwork), we will assign more weight to the expression of
cell vi and utilize the least information from the neighboring cells to
adjust the gene expression values. However, if it significantly devi-
ates from the local mean toward zero, we will assign more confi-
dence to the information obtained from the neighboring cells so that
the potential dropout events can be recovered. Based on this intu-
ition, the updated rule for gene expression in the cell vi is given by

xnþ1
i ¼ p � xn

i þ ð1� pÞ � li; (7)

where p is the probabilistic weight for the current gene expression
and the probabilistic weight p is determined by the following sig-
moid function:

p ¼ 1

1þ exp �a � x� liÞ
� �

;
� (8)

where a is scaling coefficients for the sigmoid function and it is
selected using the following criterion: minf2 � exp ð�0:05 � riÞ; 1g.
To avoid the extreme case, we set the marginal value for the scaling
coefficient a as 1 because if the a is set to very low value, the sigmoid
function can approximate a step function. Note that the above
framework using a sigmoid function can reduce zero-inflated noise
as well as the extremely high expression values because we supposed
that the extreme values as an artificial noise with a high chance and
it would be desirable to be corrected into a moderate level.
However, based on the selected genes, we confirmed that it has
more impact on the zero values rather than the highly expressed val-
ues (see Supplementary Figs S8 and S12).

We perform the iterative imputation process until it converges or
exceeds the maximum number of iterations. Empirically, we stop
the iteration if jXnþ1 �Xnj2=ðjMj � jNjÞ is smaller than 0.05 or the
number of iteration exceeds five.

3 Results

3.1 Simulation results using synthetic datasets
To verify the robustness of PRIME for various levels of dropout
events in a single-cell RNA sequencing, we generated synthetic

datasets using R package called splatter (Zappia et al., 2017). The
synthetic dataset includes a reference data with rare dropout events
and noisy data having different number of dropout events, where it
depends on the parameter setting of dropout.mid.

For a simple and intuitive comparison, we compared a low-
dimensional visualization of the raw and imputed gene expressions
(Fig. 2). We utilized uniform manifold approximation (UMAP)
(McInnes et al., 2018) to obtain a low-dimensional visualization of
a gene expression for a single-cell sequencing. As we can see in the
visualization results for the raw datasets, it is difficult to separate
the different cell types as the dropout rate increases. However,
PRIME shows a clear separation for different cell types even though
the dropout rate increases, where it shows a robustness of PRIME
against to the various dropout rates (Fig. 2). Low-dimensional
results using PCA andstochastic neighbor embedding stochastic
neighbor embedding (t-SNE) (Maaten and Hinton, 2008) also show
the similar trend (Supplementary Fig. S1). Although scImpute can
separate cells into three types, if we carefully examine the cell type
labels, we can easily recognize that the different cell types are clus-
tered together even though the dropout rates are not very high.
DrImpute can make a clear separation across different cell types.
However, its robustness is not stronger than PRIME because differ-
ent cell groups in a low-dimensional visualizations are quickly
closed as the dropout rate increases. MAGIC can make a clear
grouping for datasets having a number of dropout events. However,
as we will see in later, it could decrease a variety of gene expressions
in each cell, where it is a crucial advantage of single-cell RNA
sequencing. Although DCA could separate three cell types for the
synthetic data with the least dropout events, DCA failed to clearly
separate different cell types as the dropout event increases.

In order to quantitatively evaluate the visualization results, we
also compared the within-cluster sum of squares based on two-
dimensional representation for each method. Note that the within-

cluster sum of squares is given by
P3

k¼1

PjNk j

j¼1

kyk;j � �ykk
2, where jNkj is

the number of cells with k-th label and �yk ¼ 1
jNk j

PjNk j

j¼1

yk;j. To this aim,

we generated 10 synthetic datasets for different dropout rates and
computed the average within-cluster sum of squares. For various
dropout rates, PRIME achieves much smaller average within-cluster
sum of squares then other methods, where it shows the potential of
PRIME for cell type identification (Supplementary Fig. S2).

Fig. 2. Low-dimensional representation of synthetic single-cell RNA sequencing

datasets for various dropout rates. Tow dimensional representation is obtained

through UMAP. Dropout rates are controlled by setting the model parameter dro-

pout.mid as 0–3. Note that as the parameter increases, the number of dropout

events in the dataset also increases
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3.2 Better identification of cell types from expression

profiles
In analyzing single-cell RNA sequencing datasets, the fundamental
first step is to visualize each cell in a low-dimensional space and to
identify known and novel cell types through clustering-based meth-
ods. Dropout events can decrease cell-to-cell similarity within the
same cell type, resulting in mistaken identification of cell type. To
visualize single cells in a low-dimensional space, we utilized the cell
type labels reported in the original papers and employed three popu-
lar dimensional reduction methods, PCA, t-SNE and UMAP. Since
the imputation recovers dropouts in each cell and depends strongly
on the frequency of the dropout events for each cell, the total num-
ber of counts for each cell can change dramatically after the imput-
ation. We therefore renormalized each single cell using the library
size after the imputation. In fact, MAGIC normalizes the imputation
result by default, but the other methods do not consider post-
normalization after imputation. For a fair comparison, we renor-
malized the imputed gene expression matrix using cpm and perform

a log-transformation to obtain low-dimensional visualizations. Our
approach was able to impute dropout values across different cell
types and led to a better separation between different cell types
(Fig. 3).

We compared our method to five other approaches on eight
datasets (Buettner et al., 2015; Chu et al., 2016; Darmanis et al.,
2015; Usoskin et al., 2015; Zeisel et al., 2015) with the cell type
labels provided by each original publication. PRIME generated clear
visualization results for all eight datasets (Fig. 3). SAVER showed a
negligible effect on the visualization results for most cases. One pos-
sible explanation is that SAVER assumed that the gene count can be
modeled as a Poisson–Gamma mixture, which can be effective for
single-cell sequencing based on UMI counts. But if the count does
not follow a Poisson–Gamma mixture distribution, SAVER could
fail to effectively impute the dropouts. Even though the count data
fits the assumption [e.g. Zeisel dataset (Zeisel et al., 2015)], SAVER
does not clearly separate different cell types in a low-dimensional
space (Supplementary Figs S3 and S4). ScImpute showed a

Fig. 3. Low-dimensional embedding of imputed scRNAseq data over eight benchmark datasets. The first two components in the UMAP were plotted. PRIME tends to yield a

more clear separation for different cell types while preserving the original features demonstrated in the UMAP plot using raw input
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comparable result to PRIME in the Buettner dataset (Buettner et al.,
2015), but in the Usoskin (Usoskin et al., 2015) and Zeisel (Zeisel
et al., 2015) datasets, it divided the same cell types into different
clusters and merged different cell types into the same cluster. We
also checked the similar issues using a synthetic dataset in the previ-
ous section. In fact, if the true label is not available, scImpute first
perform a clustering to identify the set of cells that can be potentially
classified to the same type. However, the clustering method in
scImpute could be inaccurate and unreliable so that it can group dif-
ferent cell types into the same group, where it can also lead incorrect
imputation results. MAGIC failed to separate cell types in the low-
dimensional space in most of the datasets. In PBMC 4k and Brain
9k datasets, since the cell types that are originally provided by 10�
Genomics are computationally predicted labels, it could be possible
that the different labels are assigned to the same cell type, and vice
versa. Although the cell type labels for PBMC 4k and Brain 9k could
have a mislabeling, PRIME clearly separates the major cell types
and PRIME produced better visualization results than the competing
algorithms; the PCA and t-SNE plots for the different imputation
methods are provided in Supplementary Figures S3 and S4. Overall,
PRIME improves the visibility of single cells when compared to the
raw datasets.

Next, we compared the number of dropouts corrected by each
algorithm in order to confirm the impact of imputation. For this
purpose, we counted how many zeros are corrected to a positive
value after performing each imputation method (Supplementary Fig.
S5). Interestingly, SAVER corrects almost all the zeros in the raw
single-cell RNA sequencing datasets but its visualization result is not
much striking. One possible explanation is that SAVER could cau-
tiously correct the majority of artificial zeros so that it can lead neg-
ligible changes for the majority of dropouts. We also verified the
same results for the selected genes (Supplementary Figs S8 and S12).
scImpute changes the least number of zeros for all test cases. PRIME
generally corrects about 75–90% of observed zeros to a positive
value, and it keeps about 10–25% of estimated zeros as true zeros.

To measure the improvement on cell type clustering of imput-
ation methods, we used pcaReduce (Yau et al., 2016), hierarchical
clustering based on a normalized Euclidean distance among cells,
Louvain algorithm (Blondel et al., 2008) and spectral clustering
using the first two PCs as in Li and Li (2018). We obtained spectral
clustering through R package, speccalt (Bruneau et al., 2014). To
obtain clustering results using Louvain algorithm, we utilized clus-
ter_louvain in igraph R package. We evaluated the quality of the
clustering based on adjusted rand index, normalized mutual infor-
mation, Jaccard index and Purity. PRIME outperformed the other
methods (Supplementary Fig. S6). These results demonstrate the ef-
fectiveness of PRIME in improving cell type discovery.

3.3 Uncover cell state-dependent gene expression

patterns
To demonstrate that effective imputation methods can reduce drop-
outs and lead to the discovery of hidden gene expression patterns in
the single-cell data, we compared all the methods on a set of tran-
scriptomic profiles (Buettner et al., 2015) of 182 mESCs over differ-
ent cell cycle stages (G1, G2M and S). Cells belonging to the same
cell cycle phase were not clustered together using hierarchical clus-
tering (i.e. the color label for the column annotation). In each cell
cycle phase, the expression of cell cycle genes typically changes in a
periodic pattern—one not observable at the normalized raw single-
cell expression level (Fig. 4). To determine whether PRIME can im-
prove the signal-to-noise ratio and detect cell cycling patterns, we
identified differentially expressed genes with a large fold change
across different cell cycle stages in the raw dataset using DEseq2
(Love et al., 2014) for 892 cell cycle genes reported in Buettner et al.
(2015). Specifically, to identify differentially expressed genes for
each cell cycling stage, we obtained a log2 fold change for 892 cell
cycle genes through DEseq2. Next, we filtered out genes with the
adjusted P-value greater than 0.01 and finally selected a set of genes
if their log2 fold change is greater than 1.5. Then, we plotted the
heatmap for differentially expressed genes with a row-wise

normalization to visualize cyclical patterns in gene expression in the
different cell cycle stages and performed hierarchical clustering to
validate the consistency of gene expression at the same stages. The
row-wise normalization can be obtained by computing a z-score for
each row. Note that the z-score is given by zi ¼ xi��x

r , where �x is a
sample mean and r is a sample standard deviation. The legend in
Figure 4 indicates z-scores for corresponding genes.

After PRIME imputation, we observed a clear pattern where cells
were grouped correctly based on their cell cycle stage. In contrast,
no cyclical patterns in DrImpute or SAVER were apparent, and cells
across multiple cell cycle phases were clustered together. Although
DCA shows better cyclical patterns than DrImpute and SAVER, the
cells that are actually in a different cell cycle stage are grouped to-
gether by showing the similar expression patterns, which could lead
to incorrect differential analysis results. MAGIC showed a notice-
able periodic pattern in the heatmap, but careful examination of the
hierarchical clustering results reveals that cells in different phases
are clustered together, indicating that gene expression in the same
cell cycle phase is highly incoherent. The choice of clustering meth-
ods is not the main reason for the mis-clustering of different cell
cycle stages (Supplementary Fig. S7).

We verified that PRIME recovers dropouts while keeping bio-
logical differences between different cycles through the gene expres-
sion profiles for the selected genes at different stages of the cell cycle
(Supplementary Fig. S8). SAVER yields negligible imputation
effects, and MAGIC and DCA decrease biological variations across
different cell cycle phases. For example, although Cdc25b, Troap
and Katnb1 are not highly expressed in G1 phase but they are well
expressed in S phase, MAGIC and DCA could remove this biological
heterogeneity and they make their gene expression values almost
similar to different cell cycling stages. It clearly shows that the pro-
posed method effectively recovers a greater number of dropouts
while maintaining biological heterogeneity (i.e. changing gene ex-
pression patterns in different cell cycling stages) across different
cycling phases (Supplementary Fig. S8).

3.4 Stable inference on co-expression network
Many bioinformatic studies estimate gene co-expression networks
from bulk RNA sequencing data. The number of observations pro-
vided by single-cell RNA sequencing—from 500 to 10 K cells in a
typical experiment—makes this method even more powerful. A
large number of dropouts could decrease the stability of the co-
expression network, however, resulting in spurious inferences on
gene–gene co-expression patterns. To determine whether PRIME
can improve the stability of the network inference, we estimated co-
expression networks from both raw and imputed data on single-cell
profiles generated from human ES cells and differentiated definitive
endoderm (DE) cells at 0, 12, 24, 36, 72 and 96 h. We estimated net-
work stability by subsampling 758 cells in this time series dataset.
We then used the method of Meinshausen and Bühlmann (2006) to
estimate over 100 regularization parameters for the network. For a
fair comparison, networks estimated from different imputation
methods were aligned by their network sparsity level, where it can
be computed through the ratio of the edges to the number of nodes
in the inferred co-expression network. Among these inferred edges,
we only counted the reliable edges where it can be reproducible
>90%. PRIME consistently identified more reliable edges, no mat-
ter the sparsity level (Fig. 5). The number of reliable edges for
SAVER and DrImpute is smaller than the raw dataset.

For each imputation method, the Meinshausen and Buhlmann
method (Meinshausen and Bühlmann, 2006) also selected an opti-
mum network at a global stability threshold of 0.90. The optimum
network for the raw data has 276 singleton nodes and 391 edges;
the optimum network for PRIME has the lowest number of single-
ton nodes (212) and the largest number of edges (483) of all the
methods (Table 2). Since the learned network based on MAGIC is
an almost fully connected network that violates the sparsity rule, we
excluded it for this comparison. Additionally, we also excluded the
inferred network based on DCA as it yields extremely sparse net-
work and clearly breaks the sparsity constraint. When comparing
the raw data, the proposed method can decrease 64 singleton nodes
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by identifying more reliable edges, and it can identify 14% more re-
liable edges than the next best algorithm, scImpute.

Lastly, we compared the false signaling edges induced by each
imputation method. To this aim, we added 40 pseudo genes that are
almost constantly expressed with very small standard deviation.

Among 40 pseudo genes, 20 pseudo genes have a standard deviation
of 0.05 and the rest of 20 pseudo genes have a standard deviation of
0.1 for their gene expression values in log scale. We controlled the
mean expression values across 758 cells ranges from 0.1 to 3.0 in a
log scale with a step size of 0.1. Then, we performed the same pro-
cedure to infer a robust co-expression network and considered the
inferred edges connecting to a pseudo gene as the false signaling
edges. We confirmed that SAVER and scImpute induce no false sig-
naling edges and PRIME induces a few false signaling edges.
However, when we considered the number of reliable edges in the
inferred co-expression network using PRIME imputation, the num-
ber of false signaling edges introduced by PRIME is negligible and
there are more advantages (i.e. the number of inferred reliable edges)
using PRIME to infer the stable co-expression network
(Supplementary Section S8).

3.5 Improved correlation with bulk RNA sequencing
Because there tends to be less heterogeneity in single-cell RNAseq
data from cell lines than from tissues, single-cell transcriptomes tend
to be tightly correlated with bulk RNA sequencing when profiled on
cell lines. We took advantage of this property to evaluate the accur-
acy of various imputation methods. In particular, we used single-cell
sequencing for human ES cells, where the dataset includes 173 neur-
onal progenitor cells, 138 DEs, 105 endothelial cells, 69
trophoblast-like cells, 159 human foreskin fibroblasts, 212 H1 and
162 H9 human ES cells. For each of the respective cell lines, Chu
et al. (2016) also profiled the bulk RNA samples at the same time
points using Illumina single-end sequencing. Since the gene expres-
sion in bulk RNA sequencing approximates the average gene expres-
sion of cells in the tissue, bulk sequencing has greater sequencing
depth and is less susceptible to dropout events. We therefore
hypothesized that effective imputation would increase the ability to
find gene expression correlations by effectively removing dropouts.

The correlation between raw data and bulk sequencing was low
even though both were sampled from the same cell types. After
reducing dropout effects, however, the correlation between bulk and
single-cell sequencing clearly increased (Fig. 6). MAGIC and DCA
showed the best performance, and PRIME recorded the next highest

Fig. 4. Heatmap plot for the cell cycle genes over single cells at different cell cycle stages. Color indicates row-wise normalized expression values and the legend indicates the z-

scores. The column color bar indicates the cell cycle stage; blue for G1, red for S phase and green for G2M. A clear cycling pattern is observed in PRIME imputed data. The

similar pattern is only observed MAGIC but not the other imputation methods. (Color version of this figure is available at Bioinformatics online.)
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Table 2. Optimum network structures for various methods

Singleton nodes Edges

Raw 276 391

PRIME 212 483

SAVER 292 343

scImpute 245 425

DrImpute 298 332
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correlation in average. Chu et al. (2016) also generate bulk and
single-cell RNA sequencing data to produce endoderm derivative
cells from human ES cells at different time points (12, 24, 36, 72
and 96 h). Supplementary Figure S11 shows the correlation between
bulk and single-cell sequencing at different time points and it shows
a similar trend to the Figure 6. Supplementary Figure S12 shows the
genes differentially expressed between each pair of adjacent time
point at different time points, and it shows that PRIME effectively
recovers the gene expression that is close to the bulk sequencing. For
example, NANOG, GATA4 and PRDM1 clearly show the similar
expression patterns to the bulk sequencing. .

3.6 Computation time
One of the major advantages of single-cell RNA sequencing is its
ability to profile thousands to millions of cells simultaneously. The
computation time of the algorithm is thus an important factor to
consider for large-scale single cell analysis. We compared the run-
ning time for different imputation algorithms implemented by R
script (Figure 7). We utilized SAVER version 1.0, scImpute version
0.0.6 and the latest versions of MAGIC, DrImpute and DCA. In this
experiment, we used a laptop computer equipped with Intel i5
3.4 GHz and 16 GB RAM. If the algorithm supports a paralleliza-
tion, we utilized the maximum number of cores (i.e. 4 CPU cores).
PRIME and MAGIC required the least computation time even
though they utilize only a single core. Although DCA required
slightly longer computation time for the small-scale datasets, it
showed the least computation time as scale of dataset increases.
SAVER and scImpute utilized multiple CPU cores, but they required
much longer computation times and are the least scalable methods.
Please note that, although it depends on the computational resource
for each user, based on our simulation settings, the current version
of PRIME cannot handle single-cell RNA sequencing >10 000 cells
and we are working on optimize the source code.

4 Discussion

Here, we describe a probabilistic imputation method (PRIME) to re-
duce dropout effects in a single-cell RNA sequencing data. PRIME
iteratively recovers the missing values in single-cell RNA sequencing
data based on the expected gene expression in the set of cells that
putatively belong to the same cell type. First, we construct a cell cor-
respondence network through Euclidean distance and Pearson cor-
relation, and we identify the local subnetwork (i.e. set of highly
relevant cells to the imputation target cell) through an efficient ran-
dom walk protocol to employ the wisdom of crowd. Finally, to de-
crease dropout events, we impute the gene expressions based on the
mean and variance of the gene expressions in the local community.
Through a comprehensive evaluation using synthetic and real-world
single-cell sequencing datasets, we demonstrate that the proposed
imputation method can provide better visualization in a low-
dimensional space and cell type clustering, enhanced gene expres-
sion patterns and improved stability for the network inference with

rapid computation times. PRIME is also compatible with other
single-cell analysis methods. Since it does not change the dimension
(i.e. the number of genes and cells) of the input data and it effective-
ly recovers the dropouts in the raw count matrix, it can be directly
employed within existing analysis pipelines without complicated
and time-consuming manipulation. We propose that this method
can be used as the preprocessing step for various single-cell analyses
such as a visualization, single-cell clustering and gene expression
analysis. More importantly, the proposed method does not require
prior information, such as the number of cell types and cell-type spe-
cific marker genes: such information might not be available or it
may require additional biological experiments. The proposed
method is thus quite practical and versatile to most of the real-world
single-cell sequencing studies. It also requires less computational
time than the other state-of-the-art algorithms, and it is effective at
dealing with large-scale single-cell datasets. Although the proposed
method can effectively impute the dropout events in single-cell RNA
sequencing, there are certain limitations. For example, if all the
genes in a particular cell type are corrupted by dropouts, PRIME
would not be able to impute the missing values because there is not
enough information from the local community to recover the miss-
ing values. In fact, this is a common problem for most of the current
imputation methods. To effectively address the problem and im-
prove the accuracy of imputation results, we would integrate an ef-
fective data mining strategy with the imputation method. Then, it
can automatically identify the prior information such as gene regula-
tory relationships and cell-type specific marker genes and accurately
infer the missing values even under conditions of extreme dropout
events.
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Meinshausen,N. and Bühlmann,P. (2006) High-dimensional graphs and vari-

able selection with the lasso. Ann. Stat., 1436–1462.

Picardi,E. et al. (2017) Single-cell transcriptomics reveals specific RNA editing

signatures in the human brain. RNA, 23, 860–865.

Pierson,E. and Yau,C. (2015) Zifa: dimensionality reduction for zero-inflated

single-cell gene expression analysis. Genome Biol., 16, 241.

Robinson,M.D. et al. (2010) edger: a bioconductor package for differential expres-

sion analysis of digital gene expression data. Bioinformatics, 26, 139–140.

Tang,F. et al. (2011) Development and applications of single-cell transcrip-

tome analysis. Nat. Methods, 8, S6–S11.

Usoskin,D. et al. (2015) Unbiased classification of sensory neuron types by

large-scale single-cell RNA sequencing. Nat. Neurosci., 18, 145.

van der Maaten,L. and Hinton,G. (2008) Visualizing data using t-SNE. J.

Mach. Learn. Res., 9, 2579–2605.

van Dijk,D. et al. (2018) Recovering gene interactions from single-cell data

using data diffusion. Cell, 174, 716–729.e27

Wang,Y. and Navin,N.E. (2015) Advances and applications of single-cell

sequencing technologies. Mol. Cell, 58, 598–609.

Yau,C. et al. (2016) pcareduce: hierarchical clustering of single cell transcrip-

tional profiles. BMC Bioinform., 17, 140.

Zappia,L. et al. (2017) Splatter: simulation of single-cell RNA sequencing

data. Genome Biol., 18, 174.

Zeisel,A. et al. (2015) Cell types in the mouse cortex and hippocampus

revealed by single-cell RNA-seq. Science, 347, 1138–1142.

PRIME for scRNA-seq imputation 4029

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/13/4021/5826995 by C
N

R
S user on 17 Septem

ber 2020


