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Teaching organization

Lectures : 9 sessions of 1 hours 30
TDs : 9 sessions of 1 hours 30
teachers :
Jean-Paul Comet Jean-Paul.Comet@univ-cotedazur.fr
Lisa Guzzi lisa.guzzi@etu.univ-cotedazur.fr

Date hours Lecture TDs
1 19/01/2024 13h30-16h45 JPC LG
2 09/02/2024 8h30-11h45 JPC LG
3 16/02/2024 8h30-11h45 JPC LG
4 08/03/2024 8h30-11h45 JPC LG
5 12/03/2024 15h15-16h45∗ JPC LG
6 29/03/2024 8h30-11h45 JPC LG
7 05/04/2024 13h30-16h45 JPC LG
8 11/04/2024 8h30-11h45 JPC LG
9 19/04/2024 8h30-11h45 JPC LG

Evaluation : Final exam (3 hours), 23/04/2024 13h30-16h30 70%
4 TD report, to finish at home 30%
course material + TD + annals :

https://www.i3s.unice.fr/∼comet/SUPPORTS/ □
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Plan

1 Introduction to algorithm complexity
Generality
Complexity analysis
Notations
Divide and Conquer

2 Exact Pattern Matching

3 Graph algorithms

4 Dynamic Programming

5 Sequence Comparison
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Generality
An algorithm is a sequence of actions to be performed by a machine or auto-
maton in a finite amount of time, to achieve the desired result.

finite sequence of instructions
inputs / outputs

sort an array – insertion sort
1 insertion_sort ( double A[], int n)
2 {
3 for (j=1; j<n; j++) {
4 key = A[j];
5 /* insertion of A[j] in the sorted sequence A [0...( j-1)] */
6 i=j-1;
7 while (i>=0) && (A[i]>key) {
8 A[i+1] = A[i];
9 i = i-1;

10 }
11 A[i+1] = key;
12 }
13 }

j=1 : 5 2 4 1 3 2 4
j=2 : 2 5 4 1 3 2 4
j=3 : 2 4 5 1 3 2 4
j=4 : 1 2 4 5 3 2 4
j=5 : 1 2 3 4 5 2 4
j=6 : 1 2 2 3 4 5 4
j=7 : 1 2 2 3 4 4 5
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Complexity analysis

Complexity analysis shows whether one algorithm is more efficient than
another.
This analysis must be independent of the physical resources used
(processor, memory access time).

Complexity ≡ number of steps required to solve the problem for an input of a
given size.

What’s the point of complexity ?
Plan the resources required for an algorithm
What are the critical resources ?
the time, the memory, (the bandwidth of a communication)
Complexity will depend on the machine model. Generally
- random access memory (RAM)
- a single processor
If this model changes, so does the complexity, since you may have to take
into account communication times between processors and/or the time it
takes to access information in memory.
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Complexity analysis

1976 1 Mhz 8 Ko 1 core
1984 8 Mhz 512 Ko 1 core
1992 33 Mhz 4 Mo 1 core
1998 400 Mhz 64 Mo 1 core
2000 1 Ghz 512 Mo 1 core
2007 3 Ghz 4 Go 1/2 cores
2012 3.5 Ghz 8 Go 1/2/4 cores
2014 3.5 Ghz 8 Go 2/4/8 cores
2018 3.6 Ghz 16 Go 8 cores
2021 3.7 Ghz 32 Go 10 cores

Insertion sort execution time depends on the input :
on the number of elements to be sorted
on the nature of the array :
- if the elements are already sorted, very quickly

the shifting is no longer necessary, and the # of comparisons is very low.
- if sorted in reverse : much longer
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In general, execution time increases with input size.
execution time = f (input size)

input size
- for an array : number of elements
- for a graph : (number of vertices, number of arcs) ...
To estimate execution time :
- execution time for each elementary instruction

Example : Tri insertion

1 def Tri_insertion ( array ):
2 n = len( array )
3 for j in range (n):
4 key = array [j]
5 i=j-1
6 while (i>=0) and (A[i]>key):
7 A[i+1] = A[i]
8 i = i-1
9 A[i+1] = key

10 return ( array )

cost no. of passes
c2 1
c3 n − 1
c4 n − 1
c5 n − 1
c6 Σ(j − 1)
c7 Σ(j − 1)
c8 Σ(j − 1)
c9 n − 1
c10 1

The overall execution time is then given by the formula :

t = c1(n − 1) + c2(n − 1) + ...
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Remarks :
If the array is already sorted : complexity linear.
This is the most favorable case.
If the array is sorted in reverse : exact complexity calculable.
- time proportional to the square of n.
- The algorithm is said to be quadratic.

As execution time depends
{

on the size of the input
on the nature of the input ,

it is difficult to give a complexity independent of the input.
We’re interested in execution time in the worst case :

upper bound for any input of the same size,
for certain algorithms, the worst happens quite often (e.g., if you’re looking
for information in a database that doesn’t contain it),
the average case is often as bad as the worst case (e.g. insertion sorting).
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Simplification of the expression found :
The real cost of each instruction is neglected,
We neglect the abstract cost (ci ) of each instruction,
We’re interested in the order of magnitude of the execution time. We retain
only the dominant term when n is very large.
Finally, we neglect the coefficient in front of this term.
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Notations

Θ(g(n))

1 Notation Θ(g(n)) : Asymptotic Approximate Bound

Θ(g(n)) =

{
f (n) |

∃c1 > 0
∃c2 > 0
∃n0 > 0

, s.t. 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n),
∀n ≥ n0

}

Note that f (n) = Θ(g(n)) for f ∈ Θ(g(n)).
« f (n) is equal to g(n) to within one constant factor. »
g(n) is an approximate asymptotic bound for f .
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Notations

O(g(n))Θ(g(n))

2 Notation O(g(n)) : Asymptotic Upper Bound

O(g(n)) =
{

f (n) | ∃c > 0
∃n0 > 0 , s.t. 0 ≤ f (n) ≤ cg(n),

∀n ≥ n0

}

This is an upper bound to within one constant.
Θ(g(n)) ⊂ O(g(n))
Θ(n) ⊂ O(n2). Be careful.
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Notations

O(g(n))Θ(g(n)) Ω(g(n))

3 Notation Ω(g(n)) : Asymptotic Lower Bound

Ω(g(n)) =
{

f (n) | ∃c > 0
∃n0 > 0 , s.t. 0 ≤ cg(n) ≤ f (n),

∀n ≥ n0

}

This is an lower bound to within one constant.
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Notations

O(g(n))Θ(g(n)) Ω(g(n)) o(g(n))
ω(g(n))

4 Notation o(g(n)) : non-asymptotically approximated upper bound

o(g(n)) =
{

f (n) | ∀c > 0
∃n0 > 0 s.t. 0 ≤ f (n) < cg(n),

∀n ≥ n0

}

f (n) becomes negligible in front of g(n) as n tends to +∞. Examples :
For example, 2n = o(n2) and 2n = O(n2).
On the other hand, 2n2 ̸= o(n2) and 2n2 = O(n2).

5 Notation ω(g(n)) : non-asymptotically approximated lower bound
f (n) ∈ ω(g(n)) ⇐⇒ g(n) ∈ o(f (n))
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Divide and Conquer

Many algorithms have a recursive structure :
recursive calls to very similar sub-problems,
these calls separate the problem into several similar subproblems of smaller
size.
they solve the sub-problems recursively
then combine the solutions of the sub-problems to calculate the solution to
the problem.

There are three steps to each level :
Divide the problem,
Reign in the sub-problems by solving them recursively,
Combine sub-problem solutions.
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Divide and conquer : Merge sorting.

Divide : divide the array into 2 sub-arrays of approximately same size.
Reign : sort each of the sub-arrays.
Combine : merge the two previously sorted sub-arrays.

Remark :
a- If size(table) ≤ 1 : it’s sorted, nothing to do. (basic case)
b- Main stage : the fusion.

MERGE(A,p,q,r) where A is an array, p,q,r are s.t. p ≤ q < r .
A[p..q] and A[q+1..r] are supposed to be sorted.
it merges them to form A[p..r] sorted.

It’s easy to write an algorithm in Θ(r − p + 1) that performs this fusion
(leave as an exercise).

1 def Merge_sort (A, p, r):
2 if (p<r) :
3 q = (int) (q+p)/2
4 Merge_sort (A,p,q)
5 Merge_sort (A,q+1,r)
6 MERGE (A,p,q,r)
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Divide and conquer : Merge sorting.

5 2 4 6 1 3 2 6

5 2 4 6 1 3 2 6

5 4 6 1 62 3 2

1 2 2 3 4 5 6 6

2 4 5 6 1 2 63

2 6316452

5 2 4 6 1 3 2 6

mergemerge

mergemerge

merge

mergemerge

divide

divide

divide

divide divide divide divide
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Complexity of divide-and-conquer algorithms

Execution time can often be written as a recurrence equation that describes
the overall execution time for a problem of size n as a function of the execution
time for smaller inputs.

Let T (n) be the execution time for an input of size n.
If the size is reduced (n ≤ n0) : direct solution, calculable in Theta(1).
Assume that :
- we divide the problem into a ss-pb each of size n/b.
- we need D(n) to divide the problem, and
- we need C(n) to construct the final solution.

The recurrence is then :

T (n) =
{ Θ(1) if n ≤ n0

aT (n/b) + D(n) + C(n) otherwise

Merge sort :
Divide : center index calculation : D(n) = Θ(1)
Reign : 2 × T (n/2)
Combine : C(n) = Θ(n)
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3 methods for solving recurrence equations
1 Substitution method : Only if we have an idea of the solution.

We replace one of the terms in the equation by the solution presented.

T ( n
2 ) ≤ c( n

2 )log2( n
2 )

T (n) ≤ 2T ( n
2 ) + C(n) = 2(c( n

2 )log2( n
2 )) + kn

≤ cnlog2( n
2 ) + kn

≤ cnlog2(n) − cnlog2(2) + kn on a : log2(2) = 1
≤ cnlog2(n) − cn + kn
≤ cnlog2(n) + n(k − c)

(1)

We find the solution for n (only if c > k).
We must also check that this property is also valid at the limits, i.e. that
we can can choose c such that T (n) ≤ cnlog2(n) also holds at the limit.
There may be a few problems. For n = 1 we have :

{ T (1) = 1
T (1) ≤ c × 1 × log2(1) = 0

The property must therefore be verified for n ≥ n0. From the recurrence, we
have T (2) = 5 and T (3) = 9 and we must choose c such that, :

{ 5 = T (2) ≤ c × 2 × logn(2)
9 = T (3) ≤ c × 3 × log2(3)︸ ︷︷ ︸

=1.58

c ≥ 2 is a sufficient condition.
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3 methods for solving recurrence equations
2 Iterative method : we iterate the recurrence until we obtain the solution.

To simplify : n is assumed to be a power of 2.
T (n) = 2T (n/2) + n︸︷︷︸

fusion

+ 1︸︷︷︸
diviser

= 2


2T (n/4) + n/2︸︷︷︸+ 1︸︷︷︸


+ n︸︷︷︸+ 1︸︷︷︸

= 4T (n/4) + 2/2n + n︸ ︷︷ ︸+ 1 + 2︸︷︷︸

= 2


4T (n/8) + n/4︸︷︷︸+ 1︸︷︷︸


+ 2/2n + n︸ ︷︷ ︸+ 1 + 2︸︷︷︸

= 8T (n/8) + 4/4n + 2/2n + n︸ ︷︷ ︸+ 1 + 2 + 4︸ ︷︷ ︸

(1)

Iteration leads to T(1) when n/2i = 1, i.e. when i ⩾ log2(n).

T (n) = 2i T (1) + n + 2/2n + 4/4n + ... + 2i /2i n︸ ︷︷ ︸+
k=log2(n)−1∑

i=0

2i

︸ ︷︷ ︸= nT (1) + nlog2(n)︸ ︷︷ ︸+ 2log2(n)−1+1 − 1︸ ︷︷ ︸
= nT (1) + nlog2(n)︸ ︷︷ ︸+ n − 1︸︷︷︸
= O(n.log2(n))

(2)
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3 methods for solving recurrence equations
2 Iterative method :

n/2

n

n/2

n/4n/4 n/4 n/4

n

n

n

n
n ln(n)

ln(n)

A reminder of a remarkable identity :
(An −Bn) = (A−B)(An−1 +An−2B +An−3B2 + . . .+ABn−2 +Bn−1)
An − 1 = (A − 1)(An−1 + An−2 + An−3 + . . . + A + 1)
2n − 1 = (2 − 1)(2n−1 + 2n−2 + 2n−3 + . . . + 2 + 1)

A reminder of logarithms
loga(A) is the number x such that ax = A
log neperian, : ln = loge where e = 2.718...
log decimal : Log(x) = log10(x) = ln(x)/ ln(10)
Properties :

ln(ab) = ln(a) + ln(b) ln(a/b) = ln(a) − ln(b)
ln(ab) = b ln(a) logb(a) = ln(a)/ ln(b) because bx = ex ln(b)

In fact, I’m looking for x such that bx = a, i.e. such that
exln(b) = a. Taking the logarithm, we have xln(b) = ln(a).
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3 methods for solving recurrence equations

3 General method :

Theorem
Let a ≥ 1, b > 1, f (n) be a positive function and let T (n) be defined by the
recurrence :

T (n) = aT (n/b) + f (n)
Then T (n) can be asymptotically bounded as follows :

1 if f (n) = O(nlogb a−ϵ) for a constant ϵ > 0 then
T (n) = Θ(nlogb a)

2 if f (n) = Θ(nlogb a) then
T (n) = Θ(nlogb a ln(n))

3 if f (n) = Ω(nlogb a+ϵ) for a constant ϵ > 0 and
if af (n/b) ≤ cf (n) for c < 1 and for any n large enough, then

T (n) = Θ(f (n))

Please note that some possible situations are not covered.
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3 methods for solving recurrence equations

3 General method : Example of using the theorem
1 T (n) = 9T (n/3) + n

a = 9, b = 3, nlogb a = nlog3 9 = Θ(n2)
f (n) = O(nlog3 9−ϵ) for ϵ = 1

Case #1 =⇒ T (n) = Θ(n2)

2 T (n) = T ( 2
3 n) + 1

a = 1, b = 3
2 , f (n) = 1, nlogb a = n

log 3
2

1
= n0 = 1

f (n) = Θ(nlogb a)
Case #2 =⇒ T (n) = Θ(ln(n))

3 T (n) = 3T ( n
4 ) + n.ln(n)

a = 3, b = 4, f (n) = n.ln(n), nlogb a = nlog4 3 = 0(n0.793)
Since f (n) = Ω(nlogb a+ϵ) with ϵ = 0.2 and that
af ( n

b ) = 3
4 n.ln( n

4 ) ≤ 3
4 n.ln(n) = cf (n)

Case #3 =⇒ T (n) = Θ(n.ln(n))

4 T (n) = 2T (n/2) + n.ln(n)

a = 2, b = 2, f (n) = n.ln(n), nlogb a = nlog2 2 = n
f (n) = n.ln(n) is asymptotically larger than than n but is not
polynomially larger (for ϵ > 0 ),

=⇒ we can’t conclude.

Algorithmics
for Biology

Jean-Paul
Comet

Complexity
Generality
Complexity analysis
Notations
Divide and Conquer

Pat. Matching

Graphs

Dyn.Prog.

Sequences

17/112

An atypical sorting algorithm

A sorting algorithm NOT based on the comparison of its elements :
Assumption : the array to be sorted is composed only of integers ∈ [0, 63].

1 An array of size 64 is created (initialized to 0).
2 We browse the initial array, and when we find the value k, we update the

array C : C[k]++;.
3 The sorted array is then reconstructed.

Complexity : O(n).


