
$\qquad$
sophia antipoli

## Teaching organization

 <br> \section*{Algorithmics for Biology <br> \section*{Algorithmics for Biology <br> Département Génie Biologique <br> GB4 - year 2023-2024 <br> $\because \because: ~ C O ̂ T E$ <br> D'AZUR <br>  <br> Jean-Paul Comet}

Université Côte d'Azur

19/01/2024

## Plan

(1) Introduction to algorithm complexity

- Generality
- Complexity analysis
- Notations
- Divide and ConquerExact Pattern Matching
(3) Graph algorithmsDynamic ProgrammingSequence Comparison

- Lectures: 9 sessions of 1 hours 30
- TDs : 9 sessions of 1 hours 30
- teachers:

Jean-Paul Comet Jean-Paul.Comet@univ-cotedazur.fr

Lisa Guzzi
lisa.guzzi@etu.univ-cotedazur f

|  | Date | hours | Lecture | TDs |
| :--- | :--- | :--- | :--- | :--- |
| 1 | $19 / 01 / 2024$ | $13 \mathrm{~h} 30-16 \mathrm{~h} 45$ | JPC | LG |
| 2 | $09 / 02 / 2024$ | $8 \mathrm{~h} 30-11 \mathrm{~h} 45$ | JPC | LG |
| 3 | $16 / 02 / 2024$ | $8 \mathrm{~h} 30-11 \mathrm{~h} 45$ | JPC | LG |
| 4 | $08 / 03 / 2024$ | $8 \mathrm{~h} 30-11 \mathrm{~h} 45$ | JPC | LG |
| 5 | $12 / 03 / 2024$ | $15 \mathrm{~h} 15-16 \mathrm{~h} 45^{*}$ | JPC | LG |
| 6 | $29 / 03 / 2024$ | $8 \mathrm{~h} 30-11 \mathrm{~h} 45$ | JPC | LG |
| 7 | $05 / 04 / 2024$ | $13 \mathrm{~h} 30-16 \mathrm{~h} 45$ | JPC | LG |
| 8 | $11 / 04 / 2024$ | $8 \mathrm{~h} 30-11 \mathrm{~h} 45$ | JPC | LG |
| 9 | $19 / 04 / 2024$ | $8 \mathrm{~h} 30-1 \mathrm{~h} 45$ | JPC | LG |

- Evaluation : Final exam (3 hours), 23/04/2024 13h30-16h30 70\%
- 4 TD report, to finish at home
- course material + TD + annals
https://www.i3s.unice.fr/~comet/SUPPORTS/ $\square$



## Generality

An algorithm is a sequence of actions to be performed by a machine or automaton in a finite amount of time, to achieve the desired result.

- finite sequence of instructions
- inputs / outputs
sort an array - insertion sort
${\underset{q}{i n s e r t i o n}-s o r t ~(d o u b l e ~ A[], ~ i n t ~}_{n}$ )
for ( $\mathrm{j}=1$; $\mathrm{j}<\mathrm{n}$; $\mathrm{j}+\mathrm{+}$ ) $\{$
 $i=j-1 ;$
while $(i>=0)$ \&\& $(A[i]>k e y)\{$
hile $(i>=0)=\& \&(A+1]=A[i] ;$
$A[i+1]$
$A[i+1]=$
$i=i-1 ;$
${ }_{\mathrm{A}}^{\mathrm{f}[\mathrm{i}+1]} \mathrm{=}$ key;
\}

| $\mathrm{j}=1$ : | 5 | $\underline{2}$ | 4 | 1 | 3 | 2 | 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{j}=2$ : | 2 | 5 | 4 | 1 | 3 | 2 | 4 |  |  |
| $\mathrm{j}=3$ : | 2 | 4 | 5 | 1 | 3 | 2 | 4 |  |  |
| $\mathrm{j}=4$ | 1 | 2 | 4 | 5 | 3 | 2 | 4 |  |  |
| $\mathrm{j}=5$ | 1 | 2 | 3 | 4 | 5 | $\underline{2}$ | 4 |  |  |
| $\mathrm{j}=6$ : | 1 | 2 | 2 | 3 | 4 | 5 | $\underline{4}$ |  |  |
| $\mathrm{j}=7$ : | 1 | 2 | 2 | 3 | 4 | 4 | 5 |  |  |

- Complexity analysis shows whether one algorithm is more efficient than another
- This analysis must be independent of the physical resources used (processor, memory access time)


## Complexity $\equiv$ number of steps required to solve the problem for an input of a given size

What's the point of complexity?

- Plan the resources required for an algorithm
- What are the critical resources?
the time, the memory, (the bandwidth of a communication)
- Complexity will depend on the machine model. Generally
- random access memory (RAM)
- a single processor

If this model changes, so does the complexity, since you may have to take into account communication times between processors and/or the time it takes to access information in memory.

| 1976 | 1 Mhz | 8 Ko | 1 core |
| :---: | :---: | :---: | :---: |
| 1984 | 8 Mhz | 512 Ko | 1 core |
| 1992 | 33 Mhz | 4 Mo | 1 core |
| 1998 | 400 Mhz | 64 Mo | 1 core |
| 2000 | 1 Ghz | 512 Mo | 1 core |
| 2007 | 3 Ghz | 4 Go | $1 / 2$ cores |
| 2012 | 3.5 Ghz | 8 Go | $1 / 2 / 4$ cores |
| 2014 | 3.5 Ghz | 8 Go | $2 / 4 / 8$ cores |
| 2018 | 3.6 Ghz | 16 Go | 8 cores |
| 2021 | 3.7 Ghz | 32 Go | 10 cores |




Insertion sort execution time depends on the input

- on the number of elements to be sorted
- on the nature of the array
- if the elements are already sorted, very quickly
the shifting is no longer necessary, and the \# of comparisons is very low. if sorted in reverse : much longer
- In general, execution time increases with input size
execution time $=f$ (input size)
- input size
for an array : number of elements
- for a graph : (number of vertices, number of arcs)
- To estimate execution time
- execution time for each elementary instruction

Example: Tri_insertion

```
\begin{tabular}{|c|c|c|c|}
\hline 1 & def Tri_insertion (array) : & cost & no. of passe \\
\hline 2 & \(\mathrm{n}=1 \mathrm{en}\) (array) & \(c_{2}\) & \\
\hline 3 & for j in range( n ) : & \(c_{3}\) & \(n-1\) \\
\hline 4 & key \(=\) array \([\mathrm{j}]\) & \(c_{4}\) & \(n-1\) \\
\hline 5 & \(\mathrm{i}=\mathrm{j}-1\) & \(c_{5}\) & \({ }^{n-1}\) \\
\hline 6 & while(i>=0) and (A[i]>key) : & \(c_{6}\) & \(\Sigma(j-1)\) \\
\hline 7 & \(\mathrm{A}[\mathrm{i}+1]=\mathrm{A}[\mathrm{i}]\) & \(c_{7}\) & \(\Sigma(j-1)\) \\
\hline 8 & \(i=1-1\) & \(c_{8}\) & \(\Sigma(j-1)\) \\
\hline 9 & \(\mathrm{A}[\mathrm{i}+1]=\mathrm{key}\) & \({ }_{9}\) & \({ }_{1}-1\) \\
\hline
\end{tabular}
```

The overall execution time is then given by the formula

$$
t=c_{1}(n-1)+c_{2}(n-1)+\ldots
$$

Remarks

- If the array is already sorted : complexity linear.

This is the most favorable case.

- If the array is sorted in reverse : exact complexity calculable.
- time proportional to the square of $n$.

The algorithm is said to be quadratic
As execution time depends $\left\{\begin{array}{l}\text { on the size of the input } \\ \text { on the nature of the inp }\end{array}\right.$
the nature of the input
complexity independent of the input
We're interested in execution time in the worst case

- upper bound for any input of the same size,
- for certain algorithms, the worst happens quite often (e.g., if you're looking for information in a database that doesn't contain it),
- the average case is often as bad as the worst case (e.g. insertion sorting)



## Notations

Simplification of the expression found

- The real cost of each instruction is neglected,
- We neglect the abstract cost $\left(c_{i}\right)$ of each instruction,
- We're interested in the order of magnitude of the execution time. We retain only the dominant term when $n$ is very large.
- Finally, we neglect the coefficient in front of this term.

(1) Notation $\Theta(g(n))$ : Asymptotic Approximate Bound

$$
\Theta(g(n))=\left\{\begin{array}{cc}
\exists c_{1}>0 \\
f(n) \mid & \exists c_{2}>0 \\
\exists n_{0}>0
\end{array}, \text { s.t. } \quad 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n), \quad \forall n \geq n_{0}\right\}
$$

Note that $f(n)=\Theta(g(n))$ for $f \in \Theta(g(n))$
" $f(n)$ is equal to $g(n)$ to within one constant factor. " $g(n)$ is an approximate asymptotic bound for $f$

## Notations

## Algorithmics for Biology Jean-Paul Comet


(2) Notation $O(g(n))$ : Asymptotic Upper Bound

$$
O(g(n))=\left\{\begin{array}{ll}
f(n) \mid & \begin{array}{l}
\exists c>0 \\
\exists n_{0}>0
\end{array}, \text { s.t. }
\end{array} \quad 0 \leq f(n) \leq c g(n), \quad \forall n \geq n_{0}, ~\right\}
$$

This is an upper bound to within one constant.

- $\Theta(g(n)) \subset O(g(n))$
- $\Theta(n) \subset O\left(n^{2}\right)$. Be careful


## Notations


(3) Notation $\Omega(g(n))$ : Asymptotic Lower Bound

$$
\Omega(g(n))=\left\{f(n) \left\lvert\, \begin{array}{l}
\exists c>0 \\
\exists n_{0}>0
\end{array}\right., \quad \text { s.t. } \quad 0 \leq \operatorname{cg}(n) \leq f(n), \quad \forall n \geq n_{0}, ~\right\}
$$

This is an lower bound to within one constant


(4) Notation $o(g(n))$ : non-asymptotically approximated upper bound

$$
o(g(n))=\left\{\begin{array}{ll}
f(n) \left\lvert\, \begin{array}{l}
\forall c>0 \\
\exists n_{0}>0
\end{array} \quad\right. \text { s.t. } & 0 \leq f(n)<c g(n), \\
\forall n \geq n_{0}
\end{array}\right\}
$$

$f(n)$ becomes negligible in front of $g(n)$ as $n$ tends to $+\infty$. Examples : For example, $2 n=o\left(n^{2}\right)$ and $2 n=O\left(n^{2}\right)$.
On the other hand, $2 n^{2} \neq o\left(n^{2}\right)$ and $2 n^{2}=O\left(n^{2}\right)$.
(5) Notation $\omega(g(n))$ : non-asymptotically approximated lower bound

$$
f(n) \in \omega(g(n)) \quad \Longleftrightarrow \quad g(n) \in o(f(n))
$$



Many algorithms have a recursive structure

- recursive calls to very similar sub-problems,
- these calls separate the problem into several similar subproblems of smaller size.
- they solve the sub-problems recursively
- then combine the solutions of the sub-problems to calculate the solution to the problem.

There are three steps to each level :

- Divide the problem,
- Reign in the sub-problems by solving them recursively,
- Combine sub-problem solutions.


## Divide and conquer : Merge sorting.



Execution time can often be written as a recurrence equation that describes the overall execution time for a problem of size $n$ as a function of the execution time for smaller inputs.

Let $T(n)$ be the execution time for an input of size $n$.

- If the size is reduced ( $n \leq n_{0}$ ) : direct solution, calculable in Theta(1)
- Assume that
- we divide the problem into a ss-pb each of size $n / b$
- we need $D(n)$ to divide the problem, and
- we need $C(n)$ to construct the final solution

The recurrence is then :

$$
\left.\begin{array}{rl}
T(n) & = \begin{cases}\Theta(1) & \text { if } \\
a T(n / b)+D(n)+C(n) & \text { otherwise }\end{cases} \\
\\
& \text { - Divide : center index calculation : } D(n)=\Theta(1)
\end{array}\right\}
$$

Merge sort :

(1) Substitution method: Only if we have an idea of the solution.

We replace one of the terms in the equation by the solution presented

```
T(\frac{n}{2})}\leqc(\frac{n}{2})\mp@subsup{\operatorname{log}}{2}{}(\frac{n}{2}
T(n) \leq 2T(\frac{n}{2})+C(n) = 2(c(\frac{n}{2})\mp@subsup{\operatorname{log}}{2}{}(\frac{n}{2}))+kn
cnlog}2(\frac{n}{2})+k
cnlog}2(n)-cnlog2(2)+kn on a : 每og(2 (2)=
cnlog}(n)-cn+k
```



We find the solution for $n$ (only if $c>k$ ).
We must also check that this property is also valid at the limits, i.e. that we can can choose $c$ such that $T(n) \leq c n \log _{2}(n)$ also holds at the limit. There may be a few problems. For $n=1$ we have

$$
\left\{\begin{array}{l}
T(1)=1 \\
T(1) \leq c \times 1 \times \log _{2}(1)=0
\end{array}\right.
$$

The property must therefore be verified for $n \geq n_{0}$. From the recurrence, we have $T(2)=5$ and $T(3)=9$ and we must choose $c$ such that,
$\left\{\begin{array}{l}5=T(2) \leq c \times 2 \times \log _{n}(2) \\ 9=T(3) \leq c \times 3 \times \underbrace{\log _{2}(3)}_{=1.58}\end{array}\right.$

2 is a sufficient condition.

## 3 methods for solving recurrence equations


(2) Iterative method: we iterate the recurrence until we obtain the solution. To simplify : $n$ is assumed to be a power of 2 .

$$
T(n)
$$

$$
\begin{aligned}
& =2 T(n / 2)+\underbrace{n}_{\text {fusion }}+\underbrace{1}_{\text {diviser }} \\
& =2(2 T(n / 4)+\underbrace{n / 2}+\underbrace{1})+\underbrace{n}+\underbrace{1}
\end{aligned}
$$

Iteration leads to $\mathrm{T}(1)$ when $n / 2^{i}=1$, i.e. when $i \geqslant \log _{2}(n)$

$$
\begin{aligned}
T(n) & =2^{i} T(1)+\underbrace{n+2 / 2 n+4 / 4 n+\ldots+2^{i} / 2^{i} n}+\underbrace{\sum_{i=0}^{k=\log _{2}(n)-1} 2^{i}} \\
& =n T(1)+\underbrace{n \log _{2}(n)}+\underbrace{2^{\log _{2}(n)-1+1}-1} \\
& =n T(1)+\underbrace{n \log _{2}(n)}+\underbrace{n-1} \\
& =O\left(n \cdot \log _{2}(n)\right)
\end{aligned}
$$

## 3 methods for solving recurrence equations



Iterative method

$$
=4 T(n / 4)+\underbrace{2 / 2 n+n}+\underbrace{1}
$$



$$
\begin{align*}
& =2(4 T(n / 8)+\underbrace{n / 4}+\underbrace{1})+\underbrace{2 / 2 n+n}+\underbrace{1+2}  \tag{1}\\
& =8 T(n / 8)+4 / 4 n+2 / 2 n+n+1+2+4
\end{align*}
$$

A reminder of a remarkable identity

- $\left(A^{n}-B^{n}\right)=(A-B)\left(A^{n-1}+A^{n-2} B+A^{n-3} B^{2}+\ldots+A B^{n-2}+B^{n-1}\right)$

$$
=8 T(n / 8)+\underbrace{4 / 4 n+2 / 2 n+n}+\underbrace{1+2+4}
$$

- $A^{n}-1=(A-1)\left(A^{n-1}+A^{n-2}+A^{n-3}+\ldots+A+1\right)$
- $2^{n}-1=(2-1)\left(2^{n-1}+2^{n-2}+2^{n-3}+\ldots+2+1\right)$

A reminder of logarithms

- $\log _{a}(A)$ is the number $x$ such that $a^{x}=A$
- $\log$ neperian, $: \ln =\log _{e}$ where $e=2.718$.
- $\log$ decimal : $\log (x)=\log _{10}(x)=\ln (x) / \ln (10)$
- Properties
$\ln (a b)=\ln (a)+\ln (b) \quad \ln (a / b)=\ln (a)-\ln (b)$
$\ln \left(a^{b}\right)=b \ln (a)$
$\log _{b}(a)=\ln (a) / \ln (b)$ because $b^{x}=e^{x \ln (b)}$
In fact, I'm looking for $x$ such that $b^{x}=a$, i.e. such that
$e^{x \ln (b)}=a$. Taking the logarithm, we have $x \ln (b)=\ln (a)$.

General method

## Theorem

Let $a \geq 1, b>1, f(n)$ be a positive function and let $T(n)$ be defined by the recurrence :

$$
T(n)=a T(n / b)+f(n)
$$

Then $T(n)$ can be asymptotically bounded as follows
(1) if $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for a constant $\epsilon>0$ then

$$
T(n)=\Theta\left(n^{\log _{b} a}\right)
$$

(2) if $f(n)=\Theta\left(n^{\log _{b} a}\right)$ then

$$
T(n)=\Theta\left(n^{\log _{b} a} \ln (n)\right)
$$

(3) if $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for a constant $\epsilon>0$ and if $a f(n / b) \leq c f(n)$ for $c<1$ and for any $n$ large enough, then $T(n)=\Theta(f(n))$

Please note that some possible situations are not covered.

## An atypical sorting algorithm

A sorting algorithm NOT based on the comparison of its elements

- Assumption : the array to be sorted is composed only of integers $\in[0,63]$.
(1) An array of size 64 is created (initialized to 0 )
(2) We browse the initial array, and when we find the value $k$, we update the array $C: C[k]++$.
(3) The sorted array is then reconstructed.

Complexity: $O(n)$.

(3) General method: Example of using the theorem
(1) $T(n)=9 T(n / 3)+n$$T(n)=T\left(\frac{2}{3} n\right)+1$
(3) $T(n)=3 T\left(\frac{n}{4}\right)+n \cdot \ln (n)$
(4) $T(n)=2 T(n / 2)+n \cdot \ln (n)$

