COTE
D'AZUR

Algorithmics
for Biology

Algorithmics for Biology

COTE
D'AZUR

Algorithmics
for Biology

Teaching organization

@ Lectures :

9 sessions of 1 hours 30

@ TDs : 9 sessions of 1 hours 30

@ teachers :
Jean-Paul Comet

Jean-Paul.Comet@univ-cotedazur.fr

; . . . Lisa Guzzi lisa.guzzi@etu.univ-cotedazur.fr
Département Génie Biologique
GB4 - year 2023-2024 Date hours Lecture TDs
1 19/01/2024 | 13h30-16h45 JPC LG
o .:. i3s 2 09/02/2024 | 8h30-11h45 JPC LG
POLYTECH sophia antipolis 3 || 16/02/2024 | 8h30-11h45 JPC LG
4 || 08/03/2024 | 8h30-11h45 JPC LG
5 || 12/03/2024 | 15h15-16h45* | JPC LG
6 29/03/2024 | 8h30-11h45 JPC LG
Jean-Paul Comet 7 || 05/04/2024 | 13h30-16h45 | JPC LG
8 11/04/2024 | 8h30-11h45 JPC LG
Université Cate d'Azur 9 || 19/04/2024 | 8h30-11h45 JPC LG
@ Evaluation : Final exam (3 hours), 23/04/2024 13h30-16h30 70%
19/01/2024 @ 4 TD report, to finish at home 30%
@ course material + TD + annals :
https://www.i3s.unice.fr/~comet/SUPPORTS/ [
“oasue Plan s Generality

An algorithm is a sequence of actions to be performed by a machine or auto-
maton in a finite amount of time, to achieve the desired result.

Algorithmics
for Biology

Algorithmics
for Biology

@ finite sequence of instructions

@ Introduction to algorithm complexity
@ Generality
o Complexity analysis
@ Notations

@ inputs / outputs

Complexity

Generality

sort an array — insertion sort

1 insertion_sort (double A[], int n)
. 2 | {
@ Divide and Conquer 3 for (j=1; j<m; j++) {
4 key = A[jl;
5 /* insertion of A[j] in the sorted sequence A[0...(j-1)]1 x/
. 6 i=j-1;
© Exact Pattern Matching 7 while (i>=0) && (A[il>key) {
8 Ali+1] = A[i];
9 i= i-1;
10 }
i 11 Ali+1] = key;
© Graph algorithms 1 .
13 |}

@ Dynamic Programming

© Sequence Comparison

[S S S S
\IC'\U'I-lleI\JD—‘
e S S
NNNN P OIN
NN WSO D
W WD O~ =
A D OIWWWW
S OOINNDNNN
(S 1V N N NN

COTE
- DAZUR

Algorithmics
for Biology

Complexity analysis

COTE
D'’AZUR

Algorithmics
for Biology

Complexity

Complexity analysis

@ Complexity analysis shows whether one algorithm is more efficient than
another.

@ This analysis must be independent of the physical resources used
(processor, memory access time).

Complexity = number of steps required to solve the problem for an input of a
given size.

What's the point of complexity ?
@ Plan the resources required for an algorithm

@ What are the critical resources ?

the time, the memory, (the bandwidth of a communication)

@ Complexity will depend on the machine model. Generally
- random access memory (RAM)
- a single processor
If this model changes, so does the complexity, since you may have to take
into account communication times between processors and/or the time it
takes to access information in memory.

@ In general, execution time increases with input size.
execution time = f(input size)
@ input size
- for an array : number of elements
- for a graph : (number of vertices, number of arcs) ...

@ To estimate execution time :
- execution time for each elementary instruction

Example : Tri_insertion
1 | def Tri_insertion (array): cost no. of passes
2 n = len(array) (=} 1
3 for j in range(n): c3 n—1
4 key = arrayl[j] [n—1
5 i=j-1 cs n—1
6 while (i>=0) and (A[i]l>key): C6 (j—1)
7 Afi+1] = A[i] c7 (G —1)
8 i= -1 cs s(G—1)
9 A[i+1] = key =) n—1
10 return (array) c10 1

The overall execution time is then given by the formula :

t=c(n—1)+c(n—-1)+ ..

COTE
D’AZUR

Algorithmics
for Biology

Complexity analysis

Algorithmics
for Biology

analysis

Complexity analysis

1976 1 Mhz 8 Ko 1 core

1984 8 Mhz 512 Ko 1 core

1992 33 Mhz 4 Mo 1 core

1998 | 400 Mhz | 64 Mo 1 core o]

2000 1 Ghz 512 Mo 1 core
2007 3 Ghz 4 Go 1/2 cores

2012 | 3.5 Ghz 8 Go | 1/2/4 cores ul=

2014 | 35Ghz | 8 Go | 2/4/8 cores N

2018 3.6 Ghz 16 Go 8 cores

2021 | 3.7 Ghz | 32 Go 10 cores i

1950 1990 2000 210 2620

Insertion sort execution time depends on the input :
@ on the number of elements to be sorted

@ on the nature of the array :
- if the elements are already sorted, very quickly
the shifting is no longer necessary, and the # of comparisons is very low.
- if sorted in reverse : much longer

Remarks :

@ If the array is already sorted : complexity linear.
This is the most favorable case.

@ If the array is sorted in reverse : exact complexity calculable.
- time proportional to the square of n.
- The algorithm is said to be quadratic.

on the size of the input
on the nature of the input
it is difficult to give a complexity independent of the input.
We're interested in execution time in the worst case :

As execution time depends {

@ upper bound for any input of the same size,

@ for certain algorithms, the worst happens quite often (e.g., if you're looking
for information in a database that doesn’t contain it),

@ the average case is often as bad as the worst case (e.g. insertion sorting).

COTE

COTE :
DAZUR son Notations

Algorithmics
for Biology

Algorithmics
for Biology

Jean-Paul

Comet

Jean-Paul

Comet

Complexity analysis

Simplification of the expression found : Notations
@ The real cost of each instruction is neglected, @ Notation ©(g(n)) : Asymptotic Approximate Bound

@ We neglect the abstract cost (¢;) of each instruction,

dc; >0
@ We're interested in the order of magnitude of the execution time. We retain O(g(n) = { f(n)| 3o >0 st 0% cg(n) < f(n) < cg(n),
only the dominant term when n is very large. Jnp > 0 Vn > ng

@ Finally, lect th fficient in front of this term.
inally, we neglect the coefficient in front of this term Note that £(n) = ©(g(n)) for f € O(g(n)).

« f(n) is equal to g(n) to within one constant factor. »
g(n) is an approximate asymptotic bound for f.

. COTE | 2 iy, COTE 2
- D’AZUR NOtatlons <o+’ DAZUR NOtatlonS

Algorithmics / / Algorithmics

or Biolo / or Biolo
o Bty o(g(n) / 0lg(n) / for Biolosy
. Jean-Paul

Q(g(n)

Comet

/ .
Notations Notations
@ Notation O(g(n)) : Asymptotic Upper Bound © Notation Q(g(n)) : Asymptotic Lower Bound
_ Jc>0 . 0 < f(n) < cg(n), Jc>0 0 < cg(n) < f(n),
O(g(n)) = {f(n) | I >0 s.t. vn'> no Q(g(n)) = {f(n) | Ing >0 s.t. Vn > mo }

This is an upper bound to within one constant.

e O(g(n)) c O(g(n))
e ©(n) C O(n?). Be careful.

This is an lower bound to within one constant.

COTE
D'AZUR

Algorithmics
for Biology

Jean-Paul

Comet

Notations

Algorithmics
for Biology

Divide and Conquer

Notations

non-asymptotically approximated upper bound

@ Notation o(g(n)) :
oleln) = {f(”) | gzo>>oo st S fv(:);ngg(n)’ }

f(n) becomes negligible in front of g(n) as n tends to +o0.
For example, 2n = o(n?) and 2n = O(n?).
On the other hand, 2n? # o(n?) and 2n?> = O(n?).

Examples :

non-asymptotically approximated lower bound

g(n) € o(f(n))

@ Notation w(g(n)) :
f(n) € w(g(n)) =

Divide and conquer : Merge sorting.

@ Divide :
@ Reign :

@ Combine : merge the two previously sorted sub-arrays.

divide the array into 2 sub-arrays of approximately same size.

sort each of the sub-arrays.

Remark :
a- If size(table) <1:
b- Main stage : the fusion.

it's sorted, nothing to do. (basic case)

MERGE(A,p,q,r) where A is an array, p,q,r ares.t. p<qg<r.
@ Alp..q] and A[g+1..r] are supposed to be sorted.
@ it merges them to form Al[p.

It's easy to write an algorithm in ©(r — p 4 1) that performs this fusion
(leave as an exercise).

.r] sorted.

def Merge_sort (A, p, r):
if (p<r) :
q = (int) (q+p)/2
Merge_sort (A,p,q)
Merge_sort (A,q+1,r)
MERGE (A,p,q,T)

U AWN R

COTE
D’AZUR

Algorithmics
for Biology

Jean-Paul

Comet

Divide and Conquer

Algorithmics
for Biology

Jean-Paul

Comet

Divide and Conquer

Divide and Conquer

Many algorithms have a recursive structure :
@ recursive calls to very similar sub-problems,

@ these calls separate the problem into several similar subproblems of smaller
size.

@ they solve the sub-problems recursively

@ then combine the solutions of the sub-problems to calculate the solution to
the problem.

There are three steps to each level :
@ Divide the problem,
@ Reign in the sub-problems by solving them recursively,

@ Combine sub-problem solutions.

Divide and conquer : Merge sorting.

\52461326

divide
5 2 4 6 1 3 2 6
divide divide

¢d1v1de¢ ¢d1v1de¢ ¢d1v1de¢ ¢d1v1de¢

C1 (1 O] [0 00 [J][]
g ey

f merge i \ merge
merge

12234566

Complexity of divide-and-conquer algorithms 3 methods for solving recurrence equations

Algorithmics Algorithmics e Substitution method : Only if we have an idea of the solution.

for Biology for Biology We replace one of the terms in the equation by the solution presented.
Execution time can often be written as a recurrence equation that describes n n n
the overall execution time for a problem of size n as a function of the execution T(E) C(i)lOgZ(E) R n
time for smaller inputs. T(n) 2T(§) +C(n) = 2(C(§)I0g2(§)) + kn

cnloga(5) + kn 1)
cnloga(n) — cnloga(2) + kn on a: logp(2)=1
cnlogs(n) — cn + kn

cnloga(n) + n(k — ¢)

Let T(n) be the execution time for an input of size n.
@ If the size is reduced (n < ng) : direct solution, calculable in Theta(1).
@ Assume that :
- we divide the problem into a ss-pb each of size n/b.
- we need D(n) to divide the problem, and
- we need C(n) to construct the final solution.

INIANIANINININA

Divide and Conquer Divide and Conquer

We find the solution for n (only if ¢ > k).

We must also check that this property is also valid at the limits, i.e. that
we can can choose ¢ such that T(n) < cnlogx(n) also holds at the limit.
There may be a few problems. For n =1 we have

{ T(1)=1

T(1)<cx1xlog(l)=0

The recurrence is then :

— e(l) if n S n
Tn) = { aT(n/b)+ D(n)+ C(n) otherwise ’

The property must therefore be verified for n > ng. From the recurrence, we

@ Divide : center index calculation : D(n) = ©(1) have T(2) =5 and T(3) =9 and we must choose c such that, :
Merge sort : @ Reign : 2 x T(n/2)

@ Combine : C(n) = ©(n) so TSz x e

9=T(3) <cx3xlog(3)
——
=1.58

c > 2 is a sufficient condition.

3 methods for solving recurrence equations 3 methods for solving recurrence equations

Algorithmics @ Iterative method : we iterate the recurrence until we obtain the solution. Algorithmics @ lIterative method :
for Biology To simplify : n is assumed to be a power of 2. for Biology . .
T(n) = 2T(n/2)+_n +_1 \
() (/) ~~ ~~ n/2/ n/2 n
fusion diviser In(n)
= 2|2T(n/4)+ n/2 +_ 1 + n + 1 w4 w4 n/4 /4
(n/a)+ /2 + 1 A "
Divide and Conquer = 4T(n/4) + 2/2” +n+ \1 + 2, (1) Divide and Conquer n In(n)

A reminder of a remarkable identity :
o (A"—B") = (A-B)(A" 14+ A" 2BL AP3B2 1 L AB"24 B 1)
0 A —1=(A-1)A" 1+ A2 A3 4 L A+1)
02" —1=(2-1)2" 14224234 1241)

21 4T(n/8)+ n/4 + 1 +2/2n4+n+1+2
(n/8)+ /g + 1| +2/ L+2

8T(n/8)+4/4n+2/2n+n+1+2+4
—_—— —

A reminder of logarithms

@ log,(A) is the number x such that a* = A
@ log neperian, : In = log, where e = 2.718...

Iteration leads to T(1) when n/2/ = 1, i.e. when i > loga(n).

el i : Log(x) =lo x) =In(x)/In
T(n) = 2'TA)+n+2/2n+4/4n+...4+2/2n+ Z 2 : Efos:tl:;]:[+Logl) = logio(x) = in)/In(10)
oo (1 =0 In(ab) = In(a) + In(b) In(a/b) = In(a) — In(b)
= nT(1)+ nloga(n) + 22111 —1 — @ In(a?) = bin(a) logy(a) = In(a)/In(b) because b* = exn(b)

——
= nT(1)+ nloga(n) +n—1
—~—

In fact, I'm looking for x such that b* = a, i.e. such that
= O(n.logx(n))

en(b) = 4. Taking the logarithm, we have xIn(b).= In(a).

3 methods for solving recurrence equations 3 methods for solving recurrence equations

Algorithmics

Algorithmics
for Biology

for Biology

Jean-Paul © General method : IeePaull © General method : Example of using the theorem

QT =9T(n/3
Theorem (") (n/3)

Let a>1, b > 1, f(n) be a positive function and let T(n) be defined by the
recurrence :

Divide and Conquer T(I‘l) = aT(n/b) + f(n)
Then T(n) can be asymptotically bounded as follows :

Divide and Conquer

@ if f(n) = O(n'°%b2¢) for a constant ¢ > O then
T (n) = O(n'°8s2)
@ if f(n) = ©(n'°®b?) then
T(n) = ©(n'°8s 2In(n))
@ if f(n) = Q(n'°8s3+€) for a constant € > 0 and
if af (n/b) < cf(n) for ¢ < 1 and for any n large enough, then
T(n) = ©(f(n))

Please note that some possible situations are not covered.

@ T(n)=2T(n/2)+ n.In(n)

ﬁ An atypical sorting algorithm

Algorithmics
for Biology

A sorting algorithm NOT based on the comparison of its elements :
e — @ Assumption : the array to be sorted is composed only of integers € [0, 63].
@ An array of size 64 is created (initialized to 0).

e We browse the initial array, and when we find the value k, we update the
array C : C[k]++;.

© The sorted array is then reconstructed.

Complexity : O(n).

