
Algorithmics
for Biology

Jean-Paul
Comet

Complexity

Pat. Matching

Graphs

Dyn.Prog.

Sequences

1/112

Algorithmics for Biology
Département Génie Biologique

GB4 – year 2023–2024

Jean-Paul Comet

Université Côte d’Azur

19/01/2024

Algorithmics
for Biology

Jean-Paul
Comet

Complexity

Pat. Matching

Graphs

Dyn.Prog.

Sequences

2/112

Teaching organization

Lectures : 9 sessions of 1 hours 30
TDs : 9 sessions of 1 hours 30
teachers :
Jean-Paul Comet Jean-Paul.Comet@univ-cotedazur.fr
Lisa Guzzi lisa.guzzi@etu.univ-cotedazur.fr

Date hours Lecture TDs
1 19/01/2024 13h30-16h45 JPC LG
2 09/02/2024 8h30-11h45 JPC LG
3 16/02/2024 8h30-11h45 JPC LG
4 08/03/2024 8h30-11h45 JPC LG
5 12/03/2024 15h15-16h45∗ JPC LG
6 29/03/2024 8h30-11h45 JPC LG
7 05/04/2024 13h30-16h45 JPC LG
8 11/04/2024 8h30-11h45 JPC LG
9 19/04/2024 8h30-11h45 JPC LG

Evaluation : Final exam (3 hours), 23/04/2024 13h30-16h30 70%
4 TD report, to finish at home 30%
course material + TD + annals :

https://www.i3s.unice.fr/∼comet/SUPPORTS/ □

Algorithmics
for Biology

Jean-Paul
Comet

Complexity
Generality
Complexity analysis
Notations
Divide and Conquer

Pat. Matching

Graphs

Dyn.Prog.

Sequences

4/112

Plan

1 Introduction to algorithm complexity
Generality
Complexity analysis
Notations
Divide and Conquer

2 Exact Pattern Matching

3 Graph algorithms

4 Dynamic Programming

5 Sequence Comparison

Algorithmics
for Biology

Jean-Paul
Comet

Complexity
Generality
Complexity analysis
Notations
Divide and Conquer

Pat. Matching

Graphs

Dyn.Prog.

Sequences

5/112

Generality
An algorithm is a sequence of actions to be performed by a machine or auto-
maton in a finite amount of time, to achieve the desired result.

finite sequence of instructions
inputs / outputs

sort an array – insertion sort
1 insertion_sort (double A[], int n)
2 {
3 for (j=1; j<n; j++) {
4 key = A[j];
5 /* insertion of A[j] in the sorted sequence A [0...(j-1)] */
6 i=j-1;
7 while (i>=0) && (A[i]>key) {
8 A[i+1] = A[i];
9 i = i-1;

10 }
11 A[i+1] = key;
12 }
13 }

j=1 : 5 2 4 1 3 2 4
j=2 : 2 5 4 1 3 2 4
j=3 : 2 4 5 1 3 2 4
j=4 : 1 2 4 5 3 2 4
j=5 : 1 2 3 4 5 2 4
j=6 : 1 2 2 3 4 5 4
j=7 : 1 2 2 3 4 4 5

Algorithmics
for Biology

Jean-Paul
Comet

Complexity
Generality
Complexity analysis
Notations
Divide and Conquer

Pat. Matching

Graphs

Dyn.Prog.

Sequences

6/112

Complexity analysis

Complexity analysis shows whether one algorithm is more efficient than
another.
This analysis must be independent of the physical resources used
(processor, memory access time).

Complexity ≡ number of steps required to solve the problem for an input of a
given size.

What’s the point of complexity ?
Plan the resources required for an algorithm
What are the critical resources ?
the time, the memory, (the bandwidth of a communication)
Complexity will depend on the machine model. Generally
- random access memory (RAM)
- a single processor
If this model changes, so does the complexity, since you may have to take
into account communication times between processors and/or the time it
takes to access information in memory.

Algorithmics
for Biology

Jean-Paul
Comet

Complexity
Generality
Complexity analysis
Notations
Divide and Conquer

Pat. Matching

Graphs

Dyn.Prog.

Sequences

7/112

Complexity analysis

1976 1 Mhz 8 Ko 1 core
1984 8 Mhz 512 Ko 1 core
1992 33 Mhz 4 Mo 1 core
1998 400 Mhz 64 Mo 1 core
2000 1 Ghz 512 Mo 1 core
2007 3 Ghz 4 Go 1/2 cores
2012 3.5 Ghz 8 Go 1/2/4 cores
2014 3.5 Ghz 8 Go 2/4/8 cores
2018 3.6 Ghz 16 Go 8 cores
2021 3.7 Ghz 32 Go 10 cores

Insertion sort execution time depends on the input :
on the number of elements to be sorted
on the nature of the array :
- if the elements are already sorted, very quickly

the shifting is no longer necessary, and the # of comparisons is very low.
- if sorted in reverse : much longer

Algorithmics
for Biology

Jean-Paul
Comet

Complexity
Generality
Complexity analysis
Notations
Divide and Conquer

Pat. Matching

Graphs

Dyn.Prog.

Sequences

8/112

In general, execution time increases with input size.
execution time = f (input size)

input size
- for an array : number of elements
- for a graph : (number of vertices, number of arcs) ...
To estimate execution time :
- execution time for each elementary instruction

Example : Tri insertion

1 def Tri_insertion (array):
2 n = len(array)
3 for j in range (n):
4 key = array [j]
5 i=j-1
6 while (i>=0) and (A[i]>key):
7 A[i+1] = A[i]
8 i = i-1
9 A[i+1] = key

10 return (array)

cost no. of passes
c2 1
c3 n − 1
c4 n − 1
c5 n − 1
c6 Σ(j − 1)
c7 Σ(j − 1)
c8 Σ(j − 1)
c9 n − 1
c10 1

The overall execution time is then given by the formula :

t = c1(n − 1) + c2(n − 1) + ...

Algorithmics
for Biology

Jean-Paul
Comet

Complexity
Generality
Complexity analysis
Notations
Divide and Conquer

Pat. Matching

Graphs

Dyn.Prog.

Sequences

9/112

Remarks :
If the array is already sorted : complexity linear.
This is the most favorable case.
If the array is sorted in reverse : exact complexity calculable.
- time proportional to the square of n.
- The algorithm is said to be quadratic.

As execution time depends
{

on the size of the input
on the nature of the input ,

it is difficult to give a complexity independent of the input.
We’re interested in execution time in the worst case :

upper bound for any input of the same size,
for certain algorithms, the worst happens quite often (e.g., if you’re looking
for information in a database that doesn’t contain it),
the average case is often as bad as the worst case (e.g. insertion sorting).

Algorithmics
for Biology

Jean-Paul
Comet

Complexity
Generality
Complexity analysis
Notations
Divide and Conquer

Pat. Matching

Graphs

Dyn.Prog.

Sequences

10/112

Simplification of the expression found :
The real cost of each instruction is neglected,
We neglect the abstract cost (ci) of each instruction,
We’re interested in the order of magnitude of the execution time. We retain
only the dominant term when n is very large.
Finally, we neglect the coefficient in front of this term.

Algorithmics
for Biology

Jean-Paul
Comet

Complexity
Generality
Complexity analysis
Notations
Divide and Conquer

Pat. Matching

Graphs

Dyn.Prog.

Sequences

11/112

Notations

Θ(g(n))

1 Notation Θ(g(n)) : Asymptotic Approximate Bound

Θ(g(n)) =

{
f (n) |

∃c1 > 0
∃c2 > 0
∃n0 > 0

, s.t. 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n),
∀n ≥ n0

}

Note that f (n) = Θ(g(n)) for f ∈ Θ(g(n)).
« f (n) is equal to g(n) to within one constant factor. »
g(n) is an approximate asymptotic bound for f .

Algorithmics
for Biology

Jean-Paul
Comet

Complexity
Generality
Complexity analysis
Notations
Divide and Conquer

Pat. Matching

Graphs

Dyn.Prog.

Sequences

11/112

Notations

O(g(n))Θ(g(n))

2 Notation O(g(n)) : Asymptotic Upper Bound

O(g(n)) =
{

f (n) | ∃c > 0
∃n0 > 0 , s.t. 0 ≤ f (n) ≤ cg(n),

∀n ≥ n0

}

This is an upper bound to within one constant.
Θ(g(n)) ⊂ O(g(n))
Θ(n) ⊂ O(n2). Be careful.

Algorithmics
for Biology

Jean-Paul
Comet

Complexity
Generality
Complexity analysis
Notations
Divide and Conquer

Pat. Matching

Graphs

Dyn.Prog.

Sequences

11/112

Notations

O(g(n))Θ(g(n)) Ω(g(n))

3 Notation Ω(g(n)) : Asymptotic Lower Bound

Ω(g(n)) =
{

f (n) | ∃c > 0
∃n0 > 0 , s.t. 0 ≤ cg(n) ≤ f (n),

∀n ≥ n0

}

This is an lower bound to within one constant.

Algorithmics
for Biology

Jean-Paul
Comet

Complexity
Generality
Complexity analysis
Notations
Divide and Conquer

Pat. Matching

Graphs

Dyn.Prog.

Sequences

11/112

Notations

O(g(n))Θ(g(n)) Ω(g(n)) o(g(n))
ω(g(n))

4 Notation o(g(n)) : non-asymptotically approximated upper bound

o(g(n)) =
{

f (n) | ∀c > 0
∃n0 > 0 s.t. 0 ≤ f (n) < cg(n),

∀n ≥ n0

}

f (n) becomes negligible in front of g(n) as n tends to +∞. Examples :
For example, 2n = o(n2) and 2n = O(n2).
On the other hand, 2n2 ̸= o(n2) and 2n2 = O(n2).

5 Notation ω(g(n)) : non-asymptotically approximated lower bound
f (n) ∈ ω(g(n)) ⇐⇒ g(n) ∈ o(f (n))

Algorithmics
for Biology

Jean-Paul
Comet

Complexity
Generality
Complexity analysis
Notations
Divide and Conquer

Pat. Matching

Graphs

Dyn.Prog.

Sequences

12/112

Divide and Conquer

Many algorithms have a recursive structure :
recursive calls to very similar sub-problems,
these calls separate the problem into several similar subproblems of smaller
size.
they solve the sub-problems recursively
then combine the solutions of the sub-problems to calculate the solution to
the problem.

There are three steps to each level :
Divide the problem,
Reign in the sub-problems by solving them recursively,
Combine sub-problem solutions.

Algorithmics
for Biology

Jean-Paul
Comet

Complexity
Generality
Complexity analysis
Notations
Divide and Conquer

Pat. Matching

Graphs

Dyn.Prog.

Sequences

13/112

Divide and conquer : Merge sorting.

Divide : divide the array into 2 sub-arrays of approximately same size.
Reign : sort each of the sub-arrays.
Combine : merge the two previously sorted sub-arrays.

Remark :
a- If size(table) ≤ 1 : it’s sorted, nothing to do. (basic case)
b- Main stage : the fusion.

MERGE(A,p,q,r) where A is an array, p,q,r are s.t. p ≤ q < r .
A[p..q] and A[q+1..r] are supposed to be sorted.
it merges them to form A[p..r] sorted.

It’s easy to write an algorithm in Θ(r − p + 1) that performs this fusion
(leave as an exercise).

1 def Merge_sort (A, p, r):
2 if (p<r) :
3 q = (int) (q+p)/2
4 Merge_sort (A,p,q)
5 Merge_sort (A,q+1,r)
6 MERGE (A,p,q,r)

Algorithmics
for Biology

Jean-Paul
Comet

Complexity
Generality
Complexity analysis
Notations
Divide and Conquer

Pat. Matching

Graphs

Dyn.Prog.

Sequences

14/112

Divide and conquer : Merge sorting.

5 2 4 6 1 3 2 6

5 2 4 6 1 3 2 6

5 4 6 1 62 3 2

1 2 2 3 4 5 6 6

2 4 5 6 1 2 63

2 6316452

5 2 4 6 1 3 2 6

mergemerge

mergemerge

merge

mergemerge

divide

divide

divide

divide divide divide divide

Algorithmics
for Biology

Jean-Paul
Comet

Complexity
Generality
Complexity analysis
Notations
Divide and Conquer

Pat. Matching

Graphs

Dyn.Prog.

Sequences

15/112

Complexity of divide-and-conquer algorithms

Execution time can often be written as a recurrence equation that describes
the overall execution time for a problem of size n as a function of the execution
time for smaller inputs.

Let T (n) be the execution time for an input of size n.
If the size is reduced (n ≤ n0) : direct solution, calculable in Theta(1).
Assume that :
- we divide the problem into a ss-pb each of size n/b.
- we need D(n) to divide the problem, and
- we need C(n) to construct the final solution.

The recurrence is then :

T (n) =
{ Θ(1) if n ≤ n0

aT (n/b) + D(n) + C(n) otherwise

Merge sort :
Divide : center index calculation : D(n) = Θ(1)
Reign : 2 × T (n/2)
Combine : C(n) = Θ(n)

Algorithmics
for Biology

Jean-Paul
Comet

Complexity
Generality
Complexity analysis
Notations
Divide and Conquer

Pat. Matching

Graphs

Dyn.Prog.

Sequences

16/112

3 methods for solving recurrence equations
1 Substitution method : Only if we have an idea of the solution.

We replace one of the terms in the equation by the solution presented.

T (n
2) ≤ c(n

2)log2(n
2)

T (n) ≤ 2T (n
2) + C(n) = 2(c(n

2)log2(n
2)) + kn

≤ cnlog2(n
2) + kn

≤ cnlog2(n) − cnlog2(2) + kn on a : log2(2) = 1
≤ cnlog2(n) − cn + kn
≤ cnlog2(n) + n(k − c)

(1)

We find the solution for n (only if c > k).
We must also check that this property is also valid at the limits, i.e. that
we can can choose c such that T (n) ≤ cnlog2(n) also holds at the limit.
There may be a few problems. For n = 1 we have :

{ T (1) = 1
T (1) ≤ c × 1 × log2(1) = 0

The property must therefore be verified for n ≥ n0. From the recurrence, we
have T (2) = 5 and T (3) = 9 and we must choose c such that, :

{ 5 = T (2) ≤ c × 2 × logn(2)
9 = T (3) ≤ c × 3 × log2(3)︸ ︷︷ ︸

=1.58

c ≥ 2 is a sufficient condition.

Algorithmics
for Biology

Jean-Paul
Comet

Complexity
Generality
Complexity analysis
Notations
Divide and Conquer

Pat. Matching

Graphs

Dyn.Prog.

Sequences

16/112

3 methods for solving recurrence equations
2 Iterative method : we iterate the recurrence until we obtain the solution.

To simplify : n is assumed to be a power of 2.
T (n) = 2T (n/2) + n︸︷︷︸

fusion

+ 1︸︷︷︸
diviser

= 2


2T (n/4) + n/2︸︷︷︸+ 1︸︷︷︸


+ n︸︷︷︸+ 1︸︷︷︸

= 4T (n/4) + 2/2n + n︸ ︷︷ ︸+ 1 + 2︸︷︷︸

= 2


4T (n/8) + n/4︸︷︷︸+ 1︸︷︷︸


+ 2/2n + n︸ ︷︷ ︸+ 1 + 2︸︷︷︸

= 8T (n/8) + 4/4n + 2/2n + n︸ ︷︷ ︸+ 1 + 2 + 4︸ ︷︷ ︸

(1)

Iteration leads to T(1) when n/2i = 1, i.e. when i ⩾ log2(n).

T (n) = 2i T (1) + n + 2/2n + 4/4n + ... + 2i /2i n︸ ︷︷ ︸+
k=log2(n)−1∑

i=0

2i

︸ ︷︷ ︸= nT (1) + nlog2(n)︸ ︷︷ ︸+ 2log2(n)−1+1 − 1︸ ︷︷ ︸
= nT (1) + nlog2(n)︸ ︷︷ ︸+ n − 1︸︷︷︸
= O(n.log2(n))

(2)

Algorithmics
for Biology

Jean-Paul
Comet

Complexity
Generality
Complexity analysis
Notations
Divide and Conquer

Pat. Matching

Graphs

Dyn.Prog.

Sequences

16/112

3 methods for solving recurrence equations
2 Iterative method :

n/2

n

n/2

n/4n/4 n/4 n/4

n

n

n

n
n ln(n)

ln(n)

A reminder of a remarkable identity :
(An −Bn) = (A−B)(An−1 +An−2B +An−3B2 + . . .+ABn−2 +Bn−1)
An − 1 = (A − 1)(An−1 + An−2 + An−3 + . . . + A + 1)
2n − 1 = (2 − 1)(2n−1 + 2n−2 + 2n−3 + . . . + 2 + 1)

A reminder of logarithms
loga(A) is the number x such that ax = A
log neperian, : ln = loge where e = 2.718...
log decimal : Log(x) = log10(x) = ln(x)/ ln(10)
Properties :

ln(ab) = ln(a) + ln(b) ln(a/b) = ln(a) − ln(b)
ln(ab) = b ln(a) logb(a) = ln(a)/ ln(b) because bx = ex ln(b)

In fact, I’m looking for x such that bx = a, i.e. such that
exln(b) = a. Taking the logarithm, we have xln(b) = ln(a).

Algorithmics
for Biology

Jean-Paul
Comet

Complexity
Generality
Complexity analysis
Notations
Divide and Conquer

Pat. Matching

Graphs

Dyn.Prog.

Sequences

16/112

3 methods for solving recurrence equations

3 General method :

Theorem
Let a ≥ 1, b > 1, f (n) be a positive function and let T (n) be defined by the
recurrence :

T (n) = aT (n/b) + f (n)
Then T (n) can be asymptotically bounded as follows :

1 if f (n) = O(nlogb a−ϵ) for a constant ϵ > 0 then
T (n) = Θ(nlogb a)

2 if f (n) = Θ(nlogb a) then
T (n) = Θ(nlogb a ln(n))

3 if f (n) = Ω(nlogb a+ϵ) for a constant ϵ > 0 and
if af (n/b) ≤ cf (n) for c < 1 and for any n large enough, then

T (n) = Θ(f (n))

Please note that some possible situations are not covered.

Algorithmics
for Biology

Jean-Paul
Comet

Complexity
Generality
Complexity analysis
Notations
Divide and Conquer

Pat. Matching

Graphs

Dyn.Prog.

Sequences

16/112

3 methods for solving recurrence equations

3 General method : Example of using the theorem
1 T (n) = 9T (n/3) + n

a = 9, b = 3, nlogb a = nlog3 9 = Θ(n2)
f (n) = O(nlog3 9−ϵ) for ϵ = 1

Case #1 =⇒ T (n) = Θ(n2)

2 T (n) = T (2
3 n) + 1

a = 1, b = 3
2 , f (n) = 1, nlogb a = n

log 3
2

1
= n0 = 1

f (n) = Θ(nlogb a)
Case #2 =⇒ T (n) = Θ(ln(n))

3 T (n) = 3T (n
4) + n.ln(n)

a = 3, b = 4, f (n) = n.ln(n), nlogb a = nlog4 3 = 0(n0.793)
Since f (n) = Ω(nlogb a+ϵ) with ϵ = 0.2 and that
af (n

b) = 3
4 n.ln(n

4) ≤ 3
4 n.ln(n) = cf (n)

Case #3 =⇒ T (n) = Θ(n.ln(n))

4 T (n) = 2T (n/2) + n.ln(n)

a = 2, b = 2, f (n) = n.ln(n), nlogb a = nlog2 2 = n
f (n) = n.ln(n) is asymptotically larger than than n but is not
polynomially larger (for ϵ > 0),

=⇒ we can’t conclude.

Algorithmics
for Biology

Jean-Paul
Comet

Complexity
Generality
Complexity analysis
Notations
Divide and Conquer

Pat. Matching

Graphs

Dyn.Prog.

Sequences

17/112

An atypical sorting algorithm

A sorting algorithm NOT based on the comparison of its elements :
Assumption : the array to be sorted is composed only of integers ∈ [0, 63].

1 An array of size 64 is created (initialized to 0).
2 We browse the initial array, and when we find the value k, we update the

array C : C[k]++;.
3 The sorted array is then reconstructed.

Complexity : O(n).

