Exact Pattern Matching

Introduction to algorithm complexity(2) Exact Pattern Matching

- Rabin-Karp algorithm
- Pattern search using finite-state automata
- Knuth-Morris-Pratt algorithm
- Boyer-Moore algorithmGraph algorithms
4 Dynamic Programming
(5) Sequence Comparison

Pattern Matching $=$ search for the presence of certain characteristic features in a sequence of elements.

- Pattern Matching $=$ when the search is exact
- Pattern recognition $=$ when the pattern search is an approximate search (approchimate)

Generally, search for a pattern in a linear or tree-like structure.

Pattern Matching Exact

Algorithmics
for Biology
Jean-Paul
Comet
Complexity
Pat. Matching
Rati-Karp
Antomata
Exact search for a word of length m in a text of length $n \gg m$ at position j, for $j=1, \ldots n-m+1$.

- complexity: $O(m \times n)$

1	$\mathrm{n}=1 \mathrm{ng}[\mathrm{T}]$
2	$\mathrm{~m}=10 n \mathrm{P}]$

- compare the m letters of the word with the m letters of the text beginning

To improve the algorithm, information from step j or from previous steps must be taken into account at step $j+1$.

Example :

- Let us consider the pattern $P=A T A A G$
- If the pattern is present in position i, then we can deduce that in position $i+1, i+2, i+3$ and $i+4$ the pattern cannot appear.
- If the letter of the text at i is an A, but the pattern is not present in position i, then the pattern cannot be present in position $i+1$ (perhaps in position $i+2$).

Rabin Karp algorithm

- Worst-case execution time : $O((n-m+1) m)$
- Average execution time good.

Here: $\Sigma=\{0,1,2, \ldots 9\}$

- Computation of t_{1} in $O(m)$ Example : text $\equiv 134512 \quad m=5$

Rabin Karp algorithm $=$ integer encoding of substrings

Alphabet: $\Sigma \quad$ Word on Σ : string of k consecutive characters
$d=|\Sigma| \quad$ Word on Σ : number written in base d of length k.

Pattern $\mathrm{P}[1 . . \mathrm{m}]$: we note p its corresponding decimal value.
Text $\mathrm{T}[1 . . \mathrm{n}]$: we note t_{s} the decimal value of the substring $\mathrm{T}[\mathrm{s}+1 \ldots \mathrm{~s}+\mathrm{m}]$

- Computation of p in $O(m) \quad$ Horner's scheme
$p=P[m]+10(P[m-1]+10(P[m-2]+\ldots+10(P[2]+10 P[1])) \ldots)$
- Computation of $t_{s+1}: \quad t_{s+1}=10\left(t_{s}-10^{m-1} T[s]\right)+T[s+m]$. $\begin{array}{lll}t_{1}=13451 & t_{2}=\left(13451-10^{4} \times 1\right) \times 10+2=34512 . \\ \text { Computation } .\end{array}$ Computation of constant 10^{m-1} in $O\left(\log _{2}(m)\right)$ $\Longrightarrow t_{0}, t_{1}, \ldots t_{n-m}$ can be theoretically computed in $O(n+m)$ \Longrightarrow occurrences of P in $T[1 . . n]$ can be computed in $O(n+m)$

Problem \#1
If one of the numbers $t_{0}, t_{1}, \ldots t_{n-m}$ is too large, arithmetic operations on m digits no longer take a constant time.
Remedy: computing modulo q.
$\overline{p, t_{0}, t_{1} \ldots} t_{n-m}$ modulo q can be computed in $O(n+m)$.
We choose q such that $10 \times q$ (in fact $d \times q$) just fits on a machine word. The formula for calculating t_{s+1} becomes

$$
t_{s+1}=\left(10\left(t_{s}-T[s] 10^{m-1} \bmod q\right)+T[s+m]\right) \bmod q
$$


```
function Rabin-Karp(Text,Pattern, base,q):
    n = len(Text)
    h = base^(m-1) % q # modulo
    p = 0
    for = i in [1, m]: # m included
        lorin [1,m]: # m included 
        f (p==ts):% Test for the first positio
            (Pattern[1..m] = Text[1..m]).
                print(`PPattern present at position '', 1);
    or s in [2\ldotsn-(m-1)]: #n-(m-1) included
        ts =(base*(ts - Text[s]*h)+ Text[s+m]) % q;
            if (p=ts):
            print(`Pattern present at position '', s)
```

Problem \#2
Even if $t_{s}=p$ implies the equality $\left(t_{s} \bmod q\right)=(p \bmod q)$, the fact of having calculated the values of t_{s} modulo q, makes the test insufficient:

- $\left(t_{s} \bmod q\right)=(p \bmod q)$ does not imply $t_{s}=p$

Remedy: We then use $\left(t_{s} \bmod q\right)=(p \bmod q)$ as a quick test, and when the moduli are equal, we test each letter.

Rabin Karp algorithm : complexity

Worst-case complexity calculation

- Choose an example where you spend the whole time comparing letter to letter.
- Example : $P=a^{m}$ and $T=a^{n}$
$\Rightarrow \Theta((n-m+1) \times m)$. (quadratic)
Estimated chance of having $t_{s}=p \bmod q: \frac{1}{q}$.
In fact, we have one chance in q of choosing $p \bmod q$.
Average complexity calculation
- Lines 2-13 (computation of $\left.p, t_{1}\right): 0(m)$
- Lines 15-19 (without any letter-to-letter test) : $O(n)$
- Lines 17-19 (letter-to-letter tests) : $O\left(m\left(v+\frac{n}{q}\right)\right)=O\left(m v+\frac{n}{q} \times m\right)$ where v is the number of occurrences of the pattern
\Rightarrow Average-case complexity : $0\left(m+n+m\left(v+\frac{n}{q}\right)\right)$

If v is small $(O(1)$ i.e. \sim one occurrence of the pattern $)$ and if $q>m$ Average-case complexity: $O(m+n)$.

