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Exact Pattern Matching

Pattern Matching = search for the presence of certain characteristic features
in a sequence of elements.

Pattern Matching = when the search is exact
Pattern recognition = when the pattern search is an approximate
search (approchimate).

Generally, search for a pattern in a linear or tree-like structure.
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Pattern Matching Exact

Exact search for a word of length m in a text of length n >> m .
compare the m letters of the word with the m letters of the text beginning
at position j, for j = 1, ...n − m + 1.
complexity : O(m × n)

1 n = long[T]
2 m = long[P]
3 for (s=0 , s<n-m; s++):
4 if P [0.. m-1] = T[ s...s +m-1] then
5 print ``the pattern is present at position '', s;

To improve the algorithm, information from step j or from previous steps must be
taken into account at step j + 1.

Example :
Let us consider the pattern P = ATAAG
If the pattern is present in position i , then we can deduce that in position
i + 1, i + 2, i + 3 and i + 4 the pattern cannot appear.
If the letter of the text at i is an A, but the pattern is not present in
position i , then the pattern cannot be present in position i + 1 (perhaps in
position i + 2).
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Rabin Karp algorithm
Rabin Karp algorithm = integer encoding of substrings

Worst-case execution time : O((n − m + 1)m)
Average execution time good.

Alphabet : Σ Word on Σ : string of k consecutive characters
d = |Σ| Word on Σ : number written in base d of length k.

Here : Σ = {0, 1, 2, ...9}
Pattern P[1..m] : we note p its corresponding decimal value.
Text T[1..n] : we note ts the decimal value of the substring T[s+1...s+m]

Computation of p in O(m) Horner’s scheme :
p = P[m] + 10(P[m − 1] + 10(P[m − 2] + ... + 10(P[2] + 10P[1]))...)

1234 = 1 × 103 + 2 × 102 + 3 × 101 + 4 × 100

1234 = 10 × (1 × 102 + 2 × 101 + 3) + 4
1234 = 10 × (10 × (1 × 101 + 2) + 3) + 4
1234 = 10 × (10 × (10 × (1) + 2) + 3) + 4

Computation of t1 in O(m)
Computation of ts+1 : ts+1 = 10(ts − 10m−1T [s]) + T [s + m].
Example : text ≡ 134512 m = 5
t1 = 13451 t2 = (13451 − 104 × 1) × 10 + 2 = 34512.
Computation of constant 10m−1 in O(log2(m))
=⇒ t0, t1, ...tn−m can be theoretically computed in O(n + m)
=⇒ occurrences of P in T [1..n] can be computed in O(n + m)
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Rabin Karp algorithm : Problems

Problem #1
If one of the numbers t0, t1, ...tn−m is too large, arithmetic operations
on m digits no longer take a constant time.
Remedy : computing modulo q.
p, t0, t1 ... tn−m modulo q can be computed in O(n + m).
We choose q such that 10×q (in fact d ×q) just fits on a machine
word. The formula for calculating ts+1 becomes :

ts+1 = (10(ts − T [s]10m−1 mod q) + T [s + m]) mod q

Problem #2
Even if ts = p implies the equality (ts mod q) = (p mod q), the fact
of having calculated the values of ts modulo q, makes the test
insufficient :

(ts mod q) = (p mod q) does not imply ts = p

Remedy : We then use (ts mod q) = (p mod q) as a quick test,
and when the moduli are equal, we test each letter.
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Rabin Karp algorithm : pseudocode

1 function Rabin -Karp(Text ,Pattern ,base ,q):
2 n = len(Text)
3 m = len( Pattern )
4 h = base ˆ(m -1) % q # modulo
5 p = 0
6 ts = 0
7 for i in [1, m]: # m included
8 p = (base * p + Pattern [i]) % q;
9 ts = (base * ts + Text[i]) % q;

10
11 if (p== ts) : % Test for the first position
12 if ( Pattern [1..m] = Text [1..m]):
13 print (`` Pattern present at position '', 1);
14
15 for s in [2..n -(m -1) ]: # n -(m -1) included
16 ts = (base *( ts - Text[s]*h)+ Text[s+m]) % q;
17 if (p== ts):
18 if ( Pattern [1..m] = Text[s..s+m -1]):
19 print (`` Pattern present at position '', s)
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Rabin Karp algorithm : complexity

Worst-case complexity calculation :
Choose an example where you spend the whole time comparing letter to
letter.
Example : P = am and T = an

⇒ Θ((n − m + 1) × m). (quadratic)

Estimated chance of having ts = p mod q : 1
q .

In fact, we have one chance in q of choosing p mod q.

Average complexity calculation :
Lines 2-13 (computation of p,t1) : 0(m)
Lines 15-19 (without any letter-to-letter test) : O(n)
Lines 17-19 (letter-to-letter tests) : O(m(v + n

q )) = O(mv + n
q × m) where

v is the number of occurrences of the pattern.
⇒ Average-case complexity : 0(m + n + m(v + n

q ))

If v is small (O(1) i.e. ∼ one occurrence of the pattern) and if q > m :
Average-case complexity : O(m + n).


