2., COTE COTE i
 Dazu [IGN 2% Exact Pattern Matching

Algorithmics
for Biology

Algorithmics
for Biology

@ Introduction to algorithm complexity

SRV @ ECxact Pattern Matching e s
@ Rabin-Karp algorithm

@ Pattern search using finite-state automata
@ Knuth-Morris-Pratt algorithm

@ Boyer-Moore algorithm

Pattern Matching = search for the presence of certain characteristic features
in a sequence of elements.

@ Pattern Matching = when the search is exact

@ Pattern recognition = when the pattern search is an approximate
search (approchimate).

Generally, search for a pattern in a linear or tree-like structure.

© Graph algorithms
@ Dynamic Programming

© Sequence Comparison

Rabin Karp algorithm

iz core U Pattern Matching Exact

Algorithmics
for Biology

Algorithmics

for Biology ‘ Rabin Karp algorithm = integer encoding of substrings

Exact search for a word of length m in a text of length .

@ compare the m letters of the word with the m letters of the text beginning
at position j, for j =1,..n— m+ 1.

@ Worst-case execution time : O((n — m + 1)m)

@ Average execution time good.

° lexity : O Alphabet : Word on X : string of k consecutive characters
Pat. Matching complexity : O(m x n) d= %] Word on ¥ : number written in base d of length k.
n = longl[T] Rabin-Karp Here : ¥ ={0,1,2,...9}

m = long([P]
for (s=0, s<n-m; s++):
if P[0..m-1] = T[s...s+m-1] then
print ~“the pattern is present at position > 83

Pattern P[1..m] : we note p its corresponding decimal value.
Text T[1..n] : we note ts the decimal value of the substring T[s+1...s+mn]

R wWN R

@ Computation of p in O(m) Horner’s scheme :
To improve the algorithm, information from step j or from previous steps must be p = P[m] + 10(P[m — 1] + 10(P[m — 2] + ... + 10(P[2] + 10P[1]))...)

taken into account at step j + 1.

Example :
@ Let us consider the pattern P = ATAAG

@ If the pattern is present in position i, then we can deduce that in position
i+1,i42,i+3 and i+ 4 the pattern cannot appear.

@ Computation of t; in O(m)

@ Computation of tsy1 : tsr1 = 10(ts — 10™~1T[s]) + T[s + m].
Example : text = 134512 m=5
t; = 13451 ty = (13451 — 10* x 1) x 10 + 2 = 34512.
Computation of constant 10™~! in O(logz(m))
= to, t1,...th—m can be theoretically computed in O(n+ m)
= occurrences of P in T[1..n] can be computed in O(n+ m)

@ If the letter of the text at i is an A, but the pattern is not present in
position i, then the pattern cannot be present in position i + 1 (perhaps in
position i + 2).

COTE
- DAZUR

Algorithmics
for Biology

Rabin-Karp

COTE
D'AZUR

Algorithmics
for Biology

Rabin-Karp

COTE
* DAZUR

Rabin Karp algorithm : Problems

Algorithmics
Problem #1 for Biology

If one of the numbers ty, t1, ...t,—m is too large, arithmetic operations
on m digits no longer take a constant time.

Remedy : computing modulo g.

p, to, t1 ... tn—m modulo g can be computed in O(n+ m).

We choose g such that 10 x ¢ (in fact d X q) just fits on a machine
word. The formula for calculating ts.1 becomes :

Rabin-Karp

tsr1 = (10(ts — T[s]10™* mod q) + T[s+ m]) mod g

Problem #2

Even if t; = p implies the equality (s mod g) = (p mod g), the fact
of having calculated the values of t; modulo g, makes the test
insufficient :

® (t; mod g) = (p mod q) does not imply t; = p

Remedy : We then use (t; mod g) = (p mod q) as a quick test,
and when the moduli are equal, we test each letter.

Rabin Karp algorithm : complexity

Worst-case complexity calculation :

@ Choose an example where you spend the whole time comparing letter to

letter.
@ Example : P=a"and T = a"
= O((n—m+1)x m). (quadratic)

Estimated chance of having ts = p mod q : %.
In fact, we have one chance in g of choosing p mod q.

Average complexity calculation :
@ Lines 2-13 (computation of p,t1) : 0(m)
@ Lines 15-19 (without any letter-to-letter test) : O(n)
@ Lines 17-19 (letter-to-letter tests) : O(m(v + g)) = O(mv + g x m) where
v is the number of occurrences of the pattern.

= Average-case complexity : 0(m + n+ m(v + g))

If v is small (O(1) i.e. ~ one occurrence of the pattern) and if ¢ > m :
Average-case complexity : O(m + n).

Rabin

©CO~NOG A WN =

Karp algorithm : pseudocode

function Rabin-Karp(Text,Pattern,base,q):

n
m

len(Text)
len(Pattern)

h base (m-1) % q # modulo

P 0

ts 0

for i in [1, m]: # m included
p = (base * p + Pattern[il) % q;
ts = (base * ts + Text[il) YACH

if (p==ts) : % Test for the first position
if (Pattern[1..m] = Text[1..m]):
print (" "Pattern present at position o

for s in [2..n-(m-1)]: # n-(m-1) included

ts =

(base*(ts - Text[sl*h)+ Textl[s+ml) % q;

if (p==ts):

if

(Pattern[1..m] = Text[s..s+m-1]):
print (" "Pattern present at position

s

s)

