

A finite automaton is a quintuplet $M=\left(Q, q_{0}, A, \Sigma, \delta\right)$
－Q ：finite set of states
－q_{0} ：initial state
－$A \subset Q$ ：set of final states
－Σ ：finite alphabet
－δ is a function from $Q \times \Sigma$ in Q called the transition function．
The suffix function associated with a pattern $P[1 . . \mathrm{m}]$ ：

$$
\begin{align*}
\sigma: \Sigma^{*} & \longrightarrow\{0,1, \ldots, m\} \tag{1}\\
t & \longrightarrow \sigma(x)=\max \{k \mid P[1 . . k] \text { suffix of } t\}
\end{align*}
$$

The number $\sigma(t)$ is the size of the largest prefix of the pattern being searched for，which is the suffix of the text t
Example ：For $P=a b$ ，one have $\sigma(\epsilon)=0, \sigma(c c a c a)=1, \sigma(c c a b)=2$ ．
If x is suffix of $y, \sigma(x) \leq \sigma(y)$ ．
b is suffix of $a b, \sigma(b) \leq \sigma(a b)$
a is suffix of $a a, \sigma(a) \leq \sigma(a a)$
Automaton associated with a pattern．This is the automaton for which we are in state q if and only if the largest prefix we have just read is $P[1 . . q]$ ．
－$Q=\{0,1, \ldots, m\}$
－$q_{0}=\{0\}$
－$A=\{m\}$
－$\delta(\boldsymbol{q}, a)=\sigma\left(P_{q} a\right)$ maximum suffix of the concatenation of P_{q} withraac 25／112

Computing the transition function

The idea is based on the meaning of the different states of the automaton state i corresponds to the state where the first i letters of the searched pattern have just been read．To build the automaton，we go through all the states of the automaton（from 0 to n ，where n is the length of the word we＇re looking for）and for each state i ，we go through each letter a of the alphabet．We then calculate the longest prefix of the pattern that is a suffix of $P[1 . . i]$ ．a．The length of this suffix gives the arrival state of the transition starting from i via letter a ．

```
def Transition_Function_computation (P, Sigma)
m = len(P);
    or q in range(m)
        k=min(m,q+1)
        while (P[1..k] is not a suffixe of P_q.a)
        delta(q,a) = k;
    return(delta);
```

For this function to be correct，the following convention must be used ：ε is the suffix for all strings．
Complexity analysis ：
－lines 6－7：$O\left(\mathrm{~m}^{2}\right)$
－line 4：$O(|\Sigma|)$
－line 3：$O(m)$
－Global complexity ：$O\left(m^{3}|\Sigma|\right)$
－We can do faster．

Example：Search for pattern ababaca

Once the automaton has been constructed，the text traversal algorithm is as follows
def FiniteAutomatonSearch（T，delta，m）

```
n = 1en(T);
q = = 0 ; ; i; i<=n; i++),
    q= delta (q,T[i])
```

 if \(q=m\) then
 print ('The pattern appears with the offset', i-m);
 Complexity：$O(n)$
Run the automaton on the string ababacaba
\qquad

6．Cote DAZZUR

Algorithmics for Biology
Jean－Paul Comet
Complexity
Pat．Matching
Rabin－Karp
Antomata kMP EM Graphs
Dyn．Prog．
Sequences

Example ：building the automaton for pattern AAB

q	a	k	P_{k}	P_{q}. a	suffix	δ
$\mathrm{q}=0$	A	$\begin{aligned} & \min (m, q+1)=\min (3,1)=1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \varepsilon \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { no } \\ & \text { yes } \\ & \hline \end{aligned}$	1 0
$\mathrm{q}=1$	A	$\begin{aligned} & \min (m, q+1)=\min (3,2)=2 \\ & 2 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { AA } \\ & \text { AA } \\ & \text { A } \\ & \varepsilon \end{aligned}$	$\begin{aligned} & \hline A A \\ & A B \\ & A B \\ & A B \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { no } \\ & \text { no } \\ & \text { yes } \\ & \hline \end{aligned}$	2 0
$\mathrm{q}=2$	A B	$\begin{aligned} & \min (m, q+1)=\min (3,3)=3 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { AAB } \\ & \text { AA } \\ & \text { AAB } \end{aligned}$	AAA AAA AAB	$\begin{aligned} & \hline \text { no } \\ & \text { yes } \\ & \text { yes } \\ & \hline \end{aligned}$	2 3
$\mathrm{q}=3$	A B	$\begin{aligned} & \min (m, q+1)=\min (3,4)=3 \\ & 2 \\ & 1 \\ & 3 \\ & 2 \\ & 1 \\ & 0 \end{aligned}$	AAB AA A AAB AA A ε	$\begin{aligned} & \text { AABA } \\ & \text { AABA } \\ & \text { AABA } \\ & \text { AABB } \end{aligned}$	no no yes no no no yes	1 0

This algorithm achieves complexity in $\Theta(n+m)$ by avoiding the transition unction δ. It computes an auxiliar function $\pi[1 . . \mathrm{m}]$ precomputed from the pattern in $O(m)$. The array π allows the transition function δ to be computed on the fly if necessary.
Pattern prefix function : Correspondence between the motif and its own shifts.

Question : how to calculate s^{\prime} so that the offset is not invalid?
Answer: Find a suffix P_{k} of P_{q} that is a prefix of P
The prefix function for the P pattern
$\Pi:\{1,2 \ldots m\} \longrightarrow\{0,1 \ldots m-1\}$ $\Pi[q]$ is in fact the size of the longest prefix of P which is a proper suffix of P_{q}.

Algorithmics
for Biology

- We construct the array Π starting from index 0 . The initialisation is simple: $\Pi[1]=0$
- Now let's assume that we have calculated $\Pi[i]$ from $i=1$ to $q-1$. To calculate $\Pi[q]$ we have the following situation :

- Since k is the longest prefix that is a suffix of P_{q-1}, the longest prefix that is also a suffix of P_{q} cannot be longer than P_{k+1}. Furthermore, we have

$$
P[k+1]=P[q] \Longleftrightarrow \Pi[q]=k+1
$$

- If $P[k+1] \neq P[q]$, look for the largest prefix-suffix of P_{q}. If we don't look at the last letter, the largest prefix-suffix of P_{q} is also a suffix of P_{k}. Now we know the largest prefix-suffix of P_{k}, which is $\Pi[k]$, already constructed Once we have $P_{\Pi[k]}$, we need to check if it can be extended to the next letter.

Algorithm for calculating the prefix function

Algorithmics for
 Complexity
 omplexity Pat. Matching

Compute prefix Function (P)
$\mathrm{m}=\operatorname{long}(\mathrm{P})$
$\mathrm{m}=10 \mathrm{ng}$
$\mathrm{pi}[1]=0$
$\mathrm{k}=0$
$\mathrm{p}=0$
$\mathrm{k}=\mathrm{o}$
for
for ($\mathrm{q}=2 ; \mathrm{q}<=\mathrm{m}$; $\mathrm{q}+\mathrm{+}$) \{
(1 le $(k>0)$ and $P[k+1] \quad!=P[q]$
$\mathrm{k}=\mathrm{pi}[\mathrm{k}]$;
\} $\mathrm{k}=\mathrm{pi}[\mathrm{k}]$;
if $P[k+1]==P[q]$ then $k++$
$\left.{ }_{f} \mathrm{pi}^{[\mathrm{L}} \mathrm{q}\right]=\mathrm{k}$
return(pi);

:: COTTE

Example 1

$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
$\begin{array}{ccccccccccccccc}\text { a } & \mathrm{b} & \mathrm{a} & \mathrm{b} & \mathrm{a} & \mathrm{b} & \mathrm{a} & \mathrm{b} & \mathrm{c} & \mathrm{a} & & & & & \\ \text { Let's build } \Pi: & \Pi: & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$

- $q=2, k=0 \quad$ no while $(k=0)$
if $P[1]=P[2] \quad(\mathrm{a}=\mathrm{b}) ? \quad$ no, $k=0 \Longrightarrow \Pi[2]=0$
- $q=3, k=0$ no while $(k=0)$
if $P[1]=P[3] \quad(a=a) ? \quad$ yes, $k=1 \Longrightarrow \Pi[3]=1$
- $q=4, k=1 \quad$ no while $(P[k+1]=P[q])$
if $P[2]=P[4] \quad(\mathrm{b}=\mathrm{b}) ? \quad$ yes, $k=2 \Longrightarrow \Pi[4]=2$
- $q=5, k=2 \quad$ no while $(P[k+1]=P[q])$
if $P[3]=P[5] \quad(a=a) ? \quad$ yes, $k=3 \xlongequal{\Longrightarrow} \Pi[5]=3$
- $q=6, k=3$ no while $(P[k+1]=P[q])$
if $P[4]=P[6] \quad(\mathrm{b}=\mathrm{b}) ? \quad$ yes, $k=4 \Longrightarrow \Pi[6]=4$
- $q=7, k=4 \quad$ no while $(P[k+1]=P[q])$
if $P[5]=P[7] \quad(\mathrm{a}=\mathrm{a}) ? \quad$ yes, $k=5 \Longrightarrow \square[7]=5$
- $q=8, k=5 \quad$ no while $(P[k+1]=P[q])$
if $P[6]=P[8] \quad(\mathrm{b}=\mathrm{b}) ? \quad$ yes, $k=6 \xlongequal{\Longrightarrow} \Pi[8]=6$
- $q=9, k=6 \quad$ enter into the while
while $P[7] \neq P[9](a \neq c) k=\Pi[6]=4$
while $P[5] \neq P[9](a \neq c) k=\Pi[4]=2$ while $P[3] \neq P[9](a \neq c) k=\Pi[2]=0$ if $P[1]=P[9] \quad(\mathrm{a}=\mathrm{c}) ? \quad$ no, $k=0 \Longrightarrow \Pi[9]=0$
- $q=10, k=0 \quad$ no while $(k=0 \& P[k+1]=P[q])$
if $P[1]=P[10] \quad(a=a) ? \quad$ yes, $k=1 \Rightarrow \Pi[10]=1 \equiv$ 引 \Longrightarrow Эac $32 / 112$

Validity of the prefix function

Consider the following pattern
123
$\begin{array}{llll}\mathrm{S} & \mathrm{N} & \mathrm{N} & \mathrm{S}\end{array}$
Let's build the function Π :
$\Pi:$
\square $\begin{array}{llll}0 & 0 & 0 & 1\end{array}$

- $q=2, k=0 \quad$ no while $(k=0)$
if $P[1]=P[2] \quad(S \neq N) ? \quad$ no $\Longrightarrow \Pi[2]=0$

Let's consider $\pi^{*}[q]=\left\{q, \pi[q], \pi^{2}[q], \ldots \pi^{t}[q]\right\}$ where t is the first natural number such that $\pi^{t}[q]=0$.

Lemma

Let P be a pattern of length m and having the prefix function π. Then, for $q=1,2, \ldots m$, one has $\pi^{*}[q]=\left\{k \mid P_{k}\right.$ suffix of $\left.P_{q}\right\}$

Proof :

(1) First inclusion : $i \in \pi^{*}[q] \Rightarrow P_{i}$ suffixe de P_{q} If $i \in \pi^{*}[q], \exists u \mid \pi^{u}[q]=i$

- for $u=0, i=q$ and thus $P_{i}=P_{q}$ and P_{i} is suffix of P_{q}
- let us suppose $P_{\pi^{u}[q]}$ suffix of P_{q} for each $u<u_{0}$
$P_{\pi^{u_{0}}[q]}=P_{\pi\left[\pi^{u_{0}-1}[q]\right]}$ and one have $P_{\pi^{u_{0}-1}[q]}$ suffix of P_{q} and $P_{\pi^{u_{0}[q]}}$ suffix of $P_{\pi^{u_{0}-1}[q]}$.
Since the suffix relationship is transitive, we have $P_{\pi^{u_{0}}[q]}$ suffix of P_{q}
- Conclusion : $i \in \pi^{*}[q] \Rightarrow P_{i}$ suffix of P_{q}.
\square

Validity of the prefix function

\section*{| Algorithics |
| :---: |
| for Biology |}

Jean-Paul
Comet

Lemma

Let P be a pattern of length m and prefix function π. For $q=1,2, \ldots, m$
if $\pi[q]>0 \quad$ then $\quad \pi[q]-1 \in \pi^{*}[q-1]$.

Proof

If $k=\pi[q]>0$ then P_{k} suffix of P_{q}
Thus P_{k-1} suffix of P_{q-1} (by deleting the last character of P_{k} and P_{q})
According to the previous lemma : $k-1 \in \pi^{*}[q-1]$. \square

For $q=2,3, \ldots, m$, we define the subset $E_{q-1} \subseteq \pi^{*}[q-1]$ by :

$$
E_{q-1}=\left\{k \mid k \in \pi^{*}[q-1] \text { by } P[k+1]=P[q]\right\}
$$

Intuitively, E_{q-1} is made up of values $k \in \pi^{*}[q-1]$ such that it is possible to extend P_{k} to P_{k+1} and obtain a suffix of P_{q}.

corrolary

Let P be a pattern of length m and prefix function pi. For $q=2,3, \ldots, m$,

$$
\pi[q]=0 \text { if } E_{q-1}=\{ \}
$$

$$
\pi[q]=1+\max \left\{k \in E_{q-1}\right\} \text { if } E_{q-1} \neq\{ \}
$$

Proof

If $r=\pi[q]>0$ then P_{r} suffix of P_{q}.
And $r \geq 1 \Rightarrow P[r]=P[q]$
According to the previous lemma, if $r \geq 1$, we have

$$
r=1+\max \{\underbrace{\left.k \in \pi^{*}[q-1] \mid P[k+1]=P_{q}\right]}_{E_{q-1}}\}
$$

Algorithm validity :

(1) $\pi[1]=0$ correct because $\pi[q]<q$ for all q
(2) At the start of each loop iteration, we have $k=\pi[q-1]$

- for the first loop : imposed by $\pi[1]=0$ and $k=0$
- for the others: imposed by $\pi[q]=k$
(3) while loop : we run through all the values of $\pi^{*}[q-1]$ until we find one for which $P[k+1]=P[q]$.
At this point, we know that k is the largest value of E_{q-1}; and from the corollary, we can give to $\pi[q]$ the value $k+1$
If no such k is found, $k=0$
\square
If $r=0$, there is no $k \in \pi^{*}[q-1]$ for which we can extend P_{k} to P_{k+1} to obtain suffix of P_{q}, since we would then have $\pi[q]>0$
Thus $E_{q-1}=\{ \}$

Global procedure

Algorithmics for Biology

```
1 KMP1(T,P)
    n = long[T];
    PI = Calcul_fonct_prefixe(P);
    q = 0;
    Pour i=1 à n faire
        tant que q>0 & P[q+1]!=T[i]
            q=PI[q];
            si P[q+1]=T[i]
            q=q+1
            si q}=\textrm{q}=\textrm{m}\mathrm{ alors
            q=m alors
            q = PI[q];
                    KMP2(T,P)
                        n = long[T];
            m = long[P];
            PI = Compute prefix_Function(P)
            i = q ; = 0
            while (i<n)
            while (i<n):
                if T[i] == P[q]
            i++;
                if q==0
                        i++;
            else:
            if q==m
            print(
                    q= Print('hit at '', i-m);
```

The first version is based on the same idea as the prefix function.
The second version manages two indices in a single loop : one to indicate progress
in the text and another to indicate progress in the pattern.

Complexity analysis : requires amortized analysis..

