
IA symbolique
& réseaux

Biol.

Jean-Paul
Comet

Introduction
to model
checking

Reminder of CTL

Equivalences

Choise : AF, EU, EX

AF, EU, EX

Pseudo-code

9/14

Rationals of Model checking algorithm

1 translate the initial formula with connectors
{§,¦,',AF ,EU,EX}

2 for each subformula ψ of ϕ, we evaluate the states
satisfying ψ :

ϕ = § : no states are labeled with §
ϕ = p : state s is labeled with p if p ∈ L(s)
ϕ = ψ ' ψ′ : s is labeled with ψ ' ψ′ if

it’s already labeled with ψ and with ψ′

ϕ = ¬ψ : s is labeled with ¬ψ if s is not labeled with ψ
ϕ = AFψ :

1 If a state is labeled with ψ, it’s also labeled with AFψ

2 one labels each state with AFψ s.t. all its successors are
already labeled with AFψ

3 redo (2) until no labels do change.

ϕ = E [ψUψ′] :
ϕ = EXψ : one labels with EXψ each state which has one
successor labeled with ψ

3 return the states satisfying ϕ

IA symbolique
& réseaux

Biol.

Jean-Paul
Comet

Introduction
to model
checking

Reminder of CTL

Equivalences

Choise : AF, EU, EX

AF, EU, EX

Pseudo-code

9/14

Rationals of Model checking algorithm

1 translate the initial formula with connectors
{§,¦,',AF ,EU,EX}

2 for each subformula ψ of ϕ, we evaluate the states
satisfying ψ :

ϕ = § : no states are labeled with §
ϕ = p : state s is labeled with p if p ∈ L(s)
ϕ = ψ ' ψ′ : s is labeled with ψ ' ψ′ if

it’s already labeled with ψ and with ψ′

ϕ = ¬ψ : s is labeled with ¬ψ if s is not labeled with ψ
ϕ = AFψ :
ϕ = E [ψUψ′] :

1 If a state is labeled with ψ′, it’s also labeled with E [ψUψ′]
2 one labels with E [ψUψ′] each state which is labeled with
ψ and which has at least one successor already labeled
with E [ψUψ′]

3 redo (2) until no labels do change.

ϕ = EXψ : one labels with EXψ each state which has one
successor labeled with ψ

3 return the states satisfying ϕ

IA symbolique
& réseaux

Biol.

Jean-Paul
Comet

Introduction
to model
checking

Reminder of CTL

Equivalences

Choise : AF, EU, EX

AF, EU, EX

Pseudo-code

10/14

Complexity

Let f be the connector numbers in the formula ; V the number
of states, and E the number of transitions

1 Function translate is linear with the number of connectors
(O(f)).

2 Search of states with label ϕ : in O(V).
3 The labelling of connector § : constant time
4 the labelling of p, ψ ' ψ′,¬ψ : in O(V) because one have

to go through each state
5 AF is in O(V .(V + E)) :

Labeling of state s with AFϕ when ϕ is a label of s, is in
O(V).
For each state s, one has to enumerate all its successors,
and if they are all labeled with AFϕ, one labels s with
AFϕ. =⇒ O(V + E).
One starts again as long as some states are labeled, at
worst V times.

Then, the labeling process for AFϕ is in O(V .(V + E)).
6 E [ϕUϕ′] is in O(V + E) :
7 EFϕ is in O(V + E) :

IA symbolique
& réseaux

Biol.

Jean-Paul
Comet

Introduction
to model
checking

Reminder of CTL

Equivalences

Choise : AF, EU, EX

AF, EU, EX

Pseudo-code

10/14

Complexity

Let f be the connector numbers in the formula ; V the number
of states, and E the number of transitions

1 Function translate is linear with the number of connectors
(O(f)).

2 Search of states with label ϕ : in O(V).

3 The labelling of connector § : constant time

4 the labelling of p, ψ ' ψ′,¬ψ : in O(V) because one have
to go through each state

5 AF is in O(V .(V + E)) :
6 E [ϕUϕ′] is in O(V + E) :

initialisation : Label s with E [ϕUϕ′] if ϕ′ is already a
label : O(V).
Reverse the transitions (in O(E))
Depth-first search in O(V + E). While the current state is
labeled with ϕ, it’s labeled with E [ϕUϕ′].

Then, the labeling process for E [ϕUϕ′] is in O(V + E).

7 EFϕ is in O(V + E) :

IA symbolique
& réseaux

Biol.

Jean-Paul
Comet

Introduction
to model
checking

Reminder of CTL

Equivalences

Choise : AF, EU, EX

AF, EU, EX

Pseudo-code

10/14

Complexity

Let f be the connector numbers in the formula ; V the number
of states, and E the number of transitions

1 Function translate is linear with the number of connectors
(O(f)).

2 Search of states with label ϕ : in O(V).

3 The labelling of connector § : constant time

4 the labelling of p, ψ ' ψ′,¬ψ : in O(V) because one have
to go through each state

5 AF is in O(V .(V + E)) :

6 E [ϕUϕ′] is in O(V + E) :

7 EFϕ is in O(V + E) : By a similar method, one can show
that the labeling process for EFϕ is in O(V + E).

IA symbolique
& réseaux

Biol.

Jean-Paul
Comet

Introduction
to model
checking

Reminder of CTL

Equivalences

Choise : AF, EU, EX

AF, EU, EX

Pseudo-code

11/14

Pseudo-Code SAT

function SAT(KS = (S,→, L), φ) :
Switch(ϕ) :
ϕ = True : return S
ϕ = False : return ∅
ϕ is atomic : return {s ∈ S|ϕ ∈ L(s)}
ϕ is ¬ϕ1 : return S \ SAT (ϕ1)
ϕ is ϕ1 ' ϕ2 : return SAT(ϕ1) ∩ SAT(ϕ2)
ϕ is ϕ1 (ϕ2 : return SAT(ϕ1) ∪ SAT (ϕ2)
ϕ is ϕ1 → ϕ2 : return SAT (¬ϕ1 (ϕ2)
ϕ is AX ϕ1 : return SAT (¬EX¬ϕ1)
ϕ is EX ϕ1 : return SATEX(ϕ1)
ϕ is A(ϕ1Uϕ2) : return SAT(¬(E[¬ϕ2U(¬ϕ1 ' ¬ϕ2)] (EG(¬ϕ2)))
ϕ is E(ϕ1Uϕ2) : return SATEU(ϕ1;ϕ2)
ϕ is EF ϕ1 : return SAT(E(¦Uϕ1))
ϕ is EG ϕ1 : return SAT(¬AF¬ϕ1)
ϕ is AF ϕ1 : return SATAF(ϕ1)
ϕ is AG ϕ1 : return SAT (¬EF¬ϕ1)

IA symbolique
& réseaux

Biol.

Jean-Paul
Comet

Introduction
to model
checking

Reminder of CTL

Equivalences

Choise : AF, EU, EX

AF, EU, EX

Pseudo-code

12/14

Pseudo-Code SATEX

function SATEX(ϕ)
””” determines the set of states satisfying EX(ϕ) ”””
local var X, Y

begin

X = SAT (ϕ) ;
Y = {s0 ∈ S | s0 → s1 for some s1 ∈ X} ;
return Y

end

IA symbolique
& réseaux

Biol.

Jean-Paul
Comet

Introduction
to model
checking

Reminder of CTL

Equivalences

Choise : AF, EU, EX

AF, EU, EX

Pseudo-code

13/14

Pseudo-Code SATAF

function SATAF(ϕ)
””” determines the set of states satisfying AF(ϕ)”””
local var X, Y

begin

X = S ;
Y = SAT(ϕ) ;
repeat until X = Y
begin

X = Y ;
Y = Y ∪{s | for all s ′

with s → s ′
we have s ′ ∈ Y }

end

return Y

end

IA symbolique
& réseaux

Biol.

Jean-Paul
Comet

Introduction
to model
checking

Reminder of CTL

Equivalences

Choise : AF, EU, EX

AF, EU, EX

Pseudo-code

14/14

Pseudo-Code SATEU

function SATEU(ϕ,ψ)
””” determines the set of states satisfying E[ϕ U ψ] ”””
local var W, X, Y

begin

W = SAT (ϕ)
X = S
Y = SAT (ψ)
repeat until X = Y
begin

X = Y
Y = Y ∪(W ∩ {s | existss ′

such that s → s ′
and s ′ ∈ Y })

end

return Y

end

