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ABSTRACT 

Small molecule discovery entails the identifying and developing of chemical compounds with 

optimized safety properties in different target species including laboratory animals, human and 

environmental species. Early de-risking supports the identification of candidates with improved 

safety profiles in the development of new chemical compounds. In vivo studies are performed 

in the early assessment of acute oral toxicity, an important endpoint in the development of 

crop protection products. Because in vivo studies are long, costly, and raise ethical concerns, 

non-animal alternatives are needed. Several models were analyzed to classify compounds as 

highly acutely toxic (LD50 ≤ 60 mg/kg) or not. First, the publicly available QSAR model, CATMoS, 

was used to classify 630 Bayer Crop Science compounds. This model did not show good results 

(balanced accuracy of 0.52) as the compounds were in gaps of the model applicability domain. 

Interestingly, training a K nearest neighbor’s model (equivalent to read-across ) using 

specifically the compound structure information, good classifications were obtained (balanced 

accuracy of 0.81). Then, this study explored whether morphological profiles obtained using Cell 

Painting in vitro assay on U2OS cells could assist in the prediction of rat acute oral toxicity and 

how those predictions could complement those made by QSAR models using chemical 

structures. Compounds with known acute oral toxicity were selected and a Cell Painting 

campaign were conducted on 226 compounds at 10 µM, 31.6 µM, and 100 µM. Binary 

classifiers based on K nearest neighbors, were developed to categorize compounds as highly 

acutely toxic (LD50 ≤ 60 mg/kg) or not. These classifiers were built, either using the compound 

chemical structure information (Morgan Fingerprint) or morphological profiles obtained from 

Cell Painting. Our results showed that the classification of compounds, using a read-across 

approach, as very acutely oral toxic or not, was possible using chemical structure information, 

U2OS cell morphological profiles or the combination of both. When classifying compounds 

structurally similar to those used to train the classifier, the chemical structure information was 

more predictive (mean balanced accuracy of 0.82). Conversely, when compounds to classify 

were structurally different from compounds used to train the classifier, the U2OS cell 
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morphological profiles were more predictive (mean balanced accuracy of 0.72). The 

combination of both models allowed, when classifying compounds structurally similar to those 

used to train the classifiers, to slightly enhance the predictions (mean balanced accuracy of 

0.85).   
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Introduction 

Small molecule discovery entails the identifying and developing of chemical compounds with 

optimized safety properties in different target species including laboratory animals, human and 

environmental species. This complex process requires the integration of chemical and biological 

exploration. Chemists design diverse compounds to modulate specific biological targets or 

pathways while biological assays assess efficacy and safety, guiding further optimization. 

Balancing potency with selectivity and minimizing off-target effects presents a challenge. 

Additionally, the complexity of biological systems poses hurdles, as the interplay of various 

factors influences a molecule's properties. Success in small molecule discovery hinges on a 

multidisciplinary approach, where chemists, biologists and data scientists collaborate to 

navigate the intricate landscape of chemical and biological interactions, ultimately advancing 

the development of new active substances. In agrochemical discovery, early de-risking is crucial 

involving systematic assessment of compounds for potential safety issues to be addressed as 

early as possible.  Addressing genotoxicity and acute oral toxicity is essential due to established 

cut-off criteria.    

Traditionally, early genotoxicity evaluations are performed with in vitro test methods (Ames 

and Micronucleus assays) whereas acute oral toxicity profile is assessed using the LD50 which 

represent the single dose at which mortality is induced in at least in 50 % of the tested animals. 

Acute oral toxicity assessment requires in vivo studies to have an early estimation of the LD50 

range. Conducting in vivo studies for acute oral toxicity assessment is time-consuming, 

expensive and does not allow testing large number of chemicals. Animal studies also raise 

ethical concerns and must be reduced or if possible, eliminated. Faster and cheaper alternatives 

are necessary in a higher throughput manner for the de-risking of more chemical compounds 

enabling prioritization of small molecules candidates with acceptable toxicological profiles. 

Non-animal alternatives are available to replace in vivo studies including in vitro approaches 

and in silico models for early estimation of the LD50. For instance, the in vitro 3T3 neutral red 

uptake assay (NRU) (Erhirhie, Ihekwereme and Ilodigwe, 2018) can serve to categorize 
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compounds with LD50 greater or lower than 2000 mg/kg. However, this LD50 threshold is high 

and may not be fully informative for cases where the LD50 can be smaller.  

On the other hand, in silico models, such as quantitative structure activity relationship (QSAR) 

models, rely on machine learning models based on structural information of chemical 

compounds. One notable example is the Collaborative Acute Toxicity Modeling Suite (CATMoS), 

a public QSAR model, built in a collaboration of several research groups. CATMos model was 

trained on more than 10k compounds and demonstrated high performances in the prediction 

of acute oral toxicity in the rat (Mansouri et al., 2021). CATMoS can indeed, as a regression 

model, predict the LD50, along with the classification of chemicals into the five GHS (Global 

Harmonized System) categories.  

Combining structural and in vitro high biologically dense information could help enhancing the 

prediction of acutely toxic compounds, while providing potentially mechanistic insights related 

to adverse outcome pathways (AOP) leading to acute toxicity (Becker et al., 2020; Edwards et 

al., 2022).  

The Carpenter–Singh Lab at the Broad institute has developed an in vitro assay, Cell Painting, 

capturing the morphological information of cells perturbed by chemicals (Bray et al., 2016). The 

main advantage of Cell Painting lies in its untargeted nature, allowing it to capture in theory any 

bioactivity inducing a cell morphological change. This assay has already been used successfully, 

in ‘hit’ discovery and in MoA (Mode of Action) prediction. In toxicology, the US Environmental 

Protection Agency (EPA) explored it to screen bioactive compounds in the context of risk 

assessment (Nyffeler et al., 2020). Moreover, Cell Painting has also been utilized for the 

prediction of mitochondrial toxicity (Seal et al., 2022), and liver toxicity (Lejal et al., 2023). 

Our work explores the use of chemical structure information and morphological profiles 

obtained from Cell Painting to predict rat acute oral toxicity via a simple read-across approach. 

We present the performances of two k nearest neighbor’s models trained to classify chemicals 

as very acute oral toxic (LD50 ≤ 60 mg/kg) or not (LD 50 > 60 mg/kg). Two types of classifiers 

were built utilizing either the compound structure information, or the compound morphological 
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effects on U2OS cells obtained through the Cell Painting assay. Results indicated that classifying 

compounds similar to those in the training set, QSAR models (mean balanced accuracy of 0.82) 

outperformed morphological profile-based models (mean balanced accuracy of 0.75). However, 

for the classifying compounds structurally different from those in the training set, 

morphological profile-based models (mean balanced accuracy of 0.72) outperformed QSAR 

models (mean balanced accuracy of 0.60).  Additionally, we propose a combined approach to 

support decision-making when the two types of classifiers yield contradictory predictions. 

Overall, our results showed that using a read-across approach, the classification of compounds, 

as very acutely oral toxic or not, was possible using chemical structure information, U2OS cell 

morphological profiles or the combination of both. When classifying compounds structurally 

similar to those used to train the classifier, the chemical structure information was more 

predictive. Conversely, when compounds to classify were structurally different from 

compounds used to train the classifier, the U2OS cell morphological profiles were more 

predictive.  
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Materials and methods 

 

Acute oral toxicity compound classes 

 

Compounds were categorized into two classes. The class ‘Very acutely oral toxic’, abbreviated 

VAOT referred to compounds having a LD50 less than or equal to 60 mg/kg. The class ‘Non very 

acutely oral toxic’, abbreviated NVAOT, referred to compounds having a LD50 greater than 60 

mg/kg (Table 1).  

 

Acute oral toxicity classes 

  

Very acutely oral toxic – VAOT 

Non very acutely oral toxic - NVAOT 

Rat oral LD50 ≤ 60 mg/kg 

Rat oral LD50 > 60 mg/kg 
 

 

 
 

Compound selection 

 

Compounds with acute oral toxicity results in rats 

To select compounds, Bayer internal databases were queried. A total of 765 compounds with 

rat acute oral toxicity results were found for two doses: 60 mg/kg and 300 mg/kg. Out of them, 

109 compounds were acute toxic at the dose of 60 mg/kg, meaning compounds belonging to 

the VAOT class, and 521 compounds were not toxic at 300 mg/kg, meaning compounds 

belonging to the NVAOT class. Compounds being acute toxic at 300 mg/kg and not acute toxic 

at 60 mg/kg were voluntary excluded, hoping to have a good contrast of morphological profiles 

between the VAOT and NVAOT classes.  

Table 1. Definition of the two oral acute toxicity classes VAOT and NVAOT 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2024. ; https://doi.org/10.1101/2024.04.25.591123doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.25.591123
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

This made the first dataset of 630 compounds that were used to test the acute toxicity 

prediction of the collaborative Acute Toxicity Modeling Suite (CATMoS) (Mansouri et al., 2021) 

and to train a bespoke chemical structure based classifier.  

For the Cell Painting campaign, we checked which of the previous dataset compounds were 

available in Bayer compound logistics. 81 VAOT compounds were found. To complete the list of 

VAOT compounds, we queried the chemIDplus public database (‘ChemIDplus’, 2023), and 

selected 29 compounds that were available in Bayer compound logistics, making a total of 110 

VAOT compounds. To have a balanced dataset, 116 NVAOT compounds were selected. To have 

a good chemical structure diversity among them, the Butina algorithm (Butina, 1999) was used 

to cluster the 521 compounds of the previous dataset, based on the Tanimoto similarity of their 

Morgan fingerprint: a maximum of clusters was selected and the number of compounds coming 

from the same cluster were minimized. This selection resulted in having a total of 116 NVAOT 

compounds and 110 VAOT.  

To summarize, two sets of compounds were defined. The first one, called ‘QSAR only compound 

set’, was a set of 630 compounds; 109 were VAOT and 521 were NVAOT. The second one, 

called ‘Cell Painting compound set’, was a set of 226 compounds; 110 were VAOT, and 116 

were NVAOT (Figure 1).  

 

 

Figure 1. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2024. ; https://doi.org/10.1101/2024.04.25.591123doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.25.591123
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

Composition of the two datasets by compound class: VAOT (Very Acutely Oral Toxic) and NVAOT 
(Non Very Acutely Oral Toxic); and by source: Bayer and ChemIDplus. 
a: QSAR only compound set. Set used for QSAR models only.  
b: Cell Painting compound set, Set used for QSAR and morphological profile models. 

 

Negative and positive controls 

For the Cell Painting assay, DMSO (dimethyl sulfoxide) only (0.1%) were used as the negative 

control.  

To monitor the Cell Painting assay’s performance and assess the quality of experiment’s 

replicates, a set of positive controls was used – compounds inducing reproducible and distinct 

morphological profiles in U2OS cells. The selection was based on published literature and pilot 

tests in our lab (Supplementary information). 

 

 

CATMoS QSAR model 

As a first attempt, the acute oral toxicity class of the compounds were predicted with the 

collaborative Acute Toxicity Modeling Suite (CATMoS) QSAR model, implemented in the OPERA 

(version 2.9) (Mansouri et al., 2018, 2021) QSAR suite. To match the two classes of this paper 

(VAOT and NVAOT), 3 CATMoS predictions were needed: the EPA classification, the GHS 

classification and the LD50 range prediction. All compounds being classified by CATMoS as EPA 

category 1 (LD50 ≤50 mg/kg), or GHS category 1 (LD50 ≤ 5 mg/kg), or GHS category 2 (5 mg/kg < 

LD50 ≤ 50 mg/kg) were assigned as VAOT. For compounds being classified as EPA category 2 (50 

mg/kg < LD50 ≤ 500 mg/kg), or GHS category 3 (50 mg/kg < LD50 ≤ 300 mg/kg), the inferior limit 

of the LD50 range predictions were considered: if the inferior limits were smaller than 60, the 

compounds were classified as VAOT. For all other predictions, we classified the compounds as 

NVOAT.  

The Opera implementation of CATMoS provides three prediction reliability metrics (Mansouri et 

al., 2018) that were used to understand the predictions made by the model.  A global 

Applicability Domain Boolean value is calculated, indicating if a compound falls within the 
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training set chemical space. Additionally, an Applicability Domain index is calculated, ranging 

from zero to one, revealing the close (high value) or distant (low value) vicinity of the queried 

compound. Finally, a confidence index is computed, informing on the accuracy of the prediction 

of the neighbors of the queried compound.  

Cell painting campaign 

A Cell Painting campaign was performed in our laboratory to obtain the morphological profiles 

of our ‘Cell Painting compound set’ (set of 226 compounds). We used the Cell Painting Protocol 

v3 of the Broad institute on U2OS human osteosarcoma cells with 4 biological replicates (Cimini 

et al., 2023).  

A previous Cell Painting pilot done at the unique dose of 10 µM showed that few agrochemical 

compounds had morphological changes compared to the negative control, for this reason, in 

this campaign, to increase the chance of capturing a morphological response, the compounds 

were screened at 3 concentrations: 10µM, 31.6µM and 100µM. 

Cell Culture and Seeding  

Human osteosarcoma cells U2OS have been purchased from ATCC (ref.: HTB-96, lot: 70025046). 

The McCoy's 5A Modified Medium with GlutaMAX™ Supplement (Thermo Fisher, ref: 

36600021) supplemented with 10% Fetal Bovine Serum (Gibco, ref.: 16000044) and 

penicillin/streptomycin mix (Sigma Aldrich, ref: P4458) was used for culturing cells in T75 or 

T175 flasks in a standard humidified incubator (37°C, 5% CO2). The passages were performed 

when the culture achieved about 80% confluency. Trypsin (Thermo Fisher, ref. 25200056) was 

used to detach the cells during passage and the number of live cells was calculated with an 

automatic cell counter (Countess II, Thermo Fisher) after staining the cells with trypan blue 

(Sigma, ref.: T8154). For the creation of a cell bank, the vial with frozen cells received from the 

supplier was thawed and expanded until internal passage no. 3 (P3). At this stage the cells were 

cryopreserved in complete media supplemented with 10% DMSO in an ultra-low temperature 

freezer (-150°C) creating a master bank. One vial of master bank was then thawed, expanded 

until internal passage no. 6 (P6), and cryopreserved as before to create a working bank. Vials of 
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the working bank were then directly used for seeding the microplates. One vial of cells 

(containing 4 million cells) was removed from -150°C freezer and thawed in the water bath. The 

contents of the vial were immediately added to 10 ml of pre-heated complete media and 

centrifuged (5 min, 120xg). After removing the supernatant, the cell pellet was resuspended in 

10 ml of complete medium through thorough pipetting. The cell suspension was then added to 

150 ml of medium in a round bottle with a magnetic stirrer and immediately used for seeding 

the 384-well microplates (Greiner BioONE CELLSTAR µCLEAR®; ref: 781091). Multidrop (Thermo 

Fisher) was used to automatically distribute 36 µl of cell suspension per well, resulting in a 

seeding density of around 900 cells/well. The cells were then incubated at 37°C, in an 

atmosphere of 5% CO2 in an automatised incubator (Cytomat 2, Thermo Fisher). All 

experimental replicates were performed on a different day, using a separate cell vial originating 

from the same working bank (P6). 

Chemical treatment 

The test compounds were received in powder form in 96-well deep well plates. They were then 

dissolved in DMSO (dimethyl sulfoxide) to create 100 mM stock solutions, aliquoted in 96-well 

V-bottom plates (V96 PP Plate, Thermo Fisher) and frozen at -20°C until the day of the 

treatment. Every biological replicate of the experiment originates from a separate aliquot of the 

stock solution plate, so that the compounds undergo only 1 freeze-thaw cycle. On the day of 

the treatment (24 h post-seeding), the plates containing stock solutions were thawed and the 

compounds were diluted in DMSO to create dose plates containing 3 concentrations per 

compound: 100 mM, 31.6 mM, and 10 mM. The dilutions were performed with the use of Viper 

liquid handler (Synchron). The compound solutions form the dose plates were then 

administered to the cell plates in a two-step process. Firstly, an intermediate dilution was 

prepared: 1 µl of the compound solution was diluted in 100 µl of complete cell medium (1:100 

dilution), next 4 µl of the resulting intermediate solution was administered to the cell plate (4 µl 

of the diluted compound into 36 µl of cell media, 1:10 dilution). The final concentrations of 

compounds that the cells were exposed to were therefore: 10 µM, 31.6 µM and 100 µM, the 
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final vehicle (DMSO) concentration was 0.1%. The treated cell plates were subsequently 

incubated with the compounds for 48 h. 

Staining 

The staining and fixation were performed following the published protocol (Cimini et al., 2023) 

with the use of PhenoVue JUMP kit (Perkin Elmer, ref.: PING23). Briefly, 20 µl/well of the 

Mitotracker solution were distributed to the cell plates with Multidrop (final concentration: 500 

nM). After 30 minutes of incubation at 37°C, 20 µl/well of 16% PFA solution (Thermo Fisher, 

ref.: 28908) were added. The fixation was performed at room temperature (25°C). Two washes 

with HBSS buffer (Gibco, ref.: 14065-056) were performed with the aid of Mutlifo washer 

(BioTek). 20 µl/well of the staining solution (HBSS, 1% BSA, 0.1% Triton X-100, 43.7 nM 

PhenoVue Fluor 555 – WGA; 48 nM PhenoVue Fluor 488 - Concanavalin A; 8.25 nM PhenoVue 

Fluor 568 – Phalloidin; 1.62 µM PhenoVue Hoechst 33342 Nuclear Stain; 6 µM PhenoVue 512 

Nucleic Acid Stain) were added and the plates were incubated for 30 min at room temperature 

before being washed again three times with HBSS. The plates were then sealed with aluminium 

foil and images were recorded directly. 

 

Morphological profile generation 

Image acquisition 

ImageXpress Micro 4 epifluorescent microscope (Molecular Devices) with 20x air objective was 

used for recording the fluorescent images (16-bit). The camera binning was set to 2x2. The total 

imaged area per well spanned 2163 µm x 2163 µm and consisted of 3 by 3 adjacent fields of 

view placed in the centre of the well. For each field of view images were recorded in 5 channels. 

The following filter sets were used: DAPI, GFP, Cy3, Texas Red, Cy5. The Z-offset and exposure 

times were set separately for each channel. A total of 207,360 images were acquired in this 

campaign. 
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Feature extraction 

Morphological features were extracted using CellProfiler (version 4.2.1), the cell analysis 

software developed by the Broad Institute (Stirling et al., 2021). Two CellProfiler pipelines were 

used: one pipeline for image illumination correction, and one pipeline for the image analysis. 

The image illumination correction works at plate level and averages the intensity of the images 

of each channel. With the image analysis pipeline, objects were segmented on each image, the 

objects were labelled using the channel they were segmented on, and thousands of 

measurements were made on those objects at cell levels. Measures were also taken at image 

level.  A total of 4761 features were measured and formed the morphological profile of a given 

cell.  

Aggregation and normalization 

After the extraction of the cell morphological profiles with CellProfiler, features were 

aggregated at well levels, by taking the means of each feature.  

The features were then normalized using the “mad robustized” method of the Python 

pycytominer package provided by the Broad Institute (Serrano et al., 2023). The normalization 

was made relative to all wells of a plate; for each feature, the median of the wells of a plate was 

subtracted, divided by the median absolute deviation (MAD) of the wells of a plate and 

multiplied by 1.4826 to have an unbiased estimator (Park, Kim and Wang, 2022). A value of 1e-

18 was added to the MAD to avoid having a null denominator when the MAD was null.  

 

Quality check 

To check the quality of the Cell Painting experiment, several metrics were computed. First, the 

number of cells of the negative control treatment (DMSO) were monitored, which was an 

output of the CellProfiler segmentation: the cell numbers should lay within the range of [1800; 

3000] cells per well. The coefficient of variation of the number of cells for the negative control 

treatment should not be above 15% per plate. All plates passed this initial quality control.  
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To identify other potential technical issues with the experiment, the Pearson correlations of 

positive controls across plates were calculated. These positive controls were selected to elicit 

very distinct and reproducible morphological profiles and were included in each plate. In an 

experiment of good quality, the correlation between replicates of these treatments should be 

above 0.8. No outlier plates were identified at this stage, all plates passed this quality control 

step. 

In the morphological profiles, at well level, 10 values were missing. Most of them were coming 

from the feature ‘Cells_AreaShape_FormFactor’. This feature was removed, along with 2 wells, 

to remove all missing values.  

Additional outliers were detected based on the number of cells within a group of replicates. 

Some wells had an extreme difference of cell counts, more than 1800 cells, compared to other 

replicates of the same treatment. 22 wells were identified as outliers and removed.  

 

Unsupervised feature selection 

To reduce the dimensionality of the normalized morphological profiles, an unsupervised feature 

selection was performed with the “feature_select” function of the pycytominer Python package 

(Serrano et al., 2023).  

This function performed several steps to select the features. First, highly correlated features 

were removed: for a pair of features having a Pearson correlation greater or equal to 0.9, the 

feature having the smallest sum of correlations with other features were removed. Second, 

features with low variances were taken out; for a given feature, if the count of the second most 

common feature value divided by the count of the most common feature value was lower than 

0.05, the feature was removed. Moreover, features having the ratio defined as the number of 

unique feature values divided by the number of samples, less than 0.01, were excluded. Third, a 

list of features (contained in the package), that are known to be noisy and generally unreliable 

have been removed. Fourth, features with at least one absolute value greater than 500, values 
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considered as outliers, were not kept. Fifth and finally, within one treatment group, noisy 

features were removed; they are features with a standard deviation within the same group of 

replicates greater than 1.2. 

Eventually, a total of 644 features were kept, and were used for downstream analysis.   

 

Consensus profiles 

For a given treatment, in our case a chemical compound at a given concentration, the 

consensus profiles were obtained by aggregating the replicates, taking for each of the 

remaining features after the unsupervised feature selection, the median values of the 

replicates.  

 

Morphological change signal measure 

We used the grit score (Serrano et al., 2023), a metric developed by the Broad Institute, to 

measure the morphological changes, with regards to the negative control treatment (DMSO), of 

a treatment replicate. To calculate this metric, different Pearson correlation coefficients were 

calculated. First, the correlations between the morphological profiles of a given treatment 

replicate and each of the negative control treatments were calculated. The distribution of those 

correlations was defined by its mean and its standard deviation. Then, the correlations between 

the morphological profiles of a given treatment replicate and other replicates of this treatment 

were computed. Each of the previous correlation coefficients were z-transformed using the 

distribution of the correlations with the negative controls: the mean was subtracted, and the 

results were divided by the standard deviation. The grit scores were then obtained by taking 

the mean of the transformed values.  

Thus, the grit score informed on how much a given replicate profile deviated from the negative 

control profiles. A negative grit score indicated a problem of correlations between the 
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replicates. A high grit score indicated a high deviation of the profile from the negative control 

profiles.  

Median grit score for a given treatment were also calculated, taking the median of the 

treatment replicate grit scores. This median grit score value allowed measuring how much a 

treatment impacts the morphology of U2OS cells, compared to the negative controls (DMSO).  

We set a threshold of 1 from which a treatment is considered to induce a morphological change 

compared to the negative control. Indeed, a grit score of 1 means that the correlation of the 

morphological profile of a treatment to its replicates, is one standard deviation away from the 

mean of its correlation with the negative control profiles.  

 

Molecular fingerprints 

The compound structures were extracted from Bayer database as SMILES (Simplified molecular-

input line-entry system). We used the Morgan fingerprints on 1024 bits in this analysis(Morgan, 

1965; Rogers and Hahn, 2010). To obtain them from the SMILES, we performed the following 

steps using the RDKIT Python package (Landrum et al., 2023). 

First, the SMILES were cleaned using the MolStandardize module of RDKIT: hydrogens were 

removed, metal atoms were disconnected, the molecule were normalized and ionized again. 

When several fragments of a compound existed, the parent fragments were kept. The molecule 

was then neutralized and, the canonical tautomer was returned. Finally, the cleaned smiles 

were used to compute the Morgan fingerprints on 1024 bits, with a radius of three.  

 

Chemical compounds clustering with Butina 

The Butina clustering algorithm groups molecules based on their structural similarity (Butina, 

1999). The RDKit implementation of the Butina algorithm was used to cluster the chemical 
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compounds (Landrum et al., 2023). The clustering was based on the Tanimoto similarity of the 

Morgan fingerprints of the molecules, with a cut-off value of 0.7.  

 

Dataset splits 

To assess the performances of the binary classifiers, the dataset was split several times into 

training and testing sets. Two kinds of split were performed: a random one, without considering 

the chemical similarities of the compounds, and another split trying to create sets of 

structurally different chemicals, to produce cases where compounds to classify were outside 

the Applicability Domain of the chemical space (Figure 2).  

For the random split, called ‘easy case’, a stratified 10 cross validation was performed to split 

the dataset into 10 different training and testing sets. The scikit-learn python package 

(Pedregosa et al., 2011) was used to perform those splits with the StratifiedKFold function. The 

dataset was split 10 times with a 10-fold cross-validation having for each cross-validation a 

different random state, making a total of 100 different splits.  Each testing set contained 22 or 

23 compounds.  

For the splits based on the chemical structures of the molecules, called ‘difficult case’, the 

compound structures were clustered using the Butina clustering algorithm (Butina, 1999). A 

cluster number was then assigned to each compound. The StratifiedGroupK-Fold function of 

scikit-learn was used to make a 10-fold cross-validation based on the cluster number 

(Pedregosa et al., 2011). Indeed, this function assigned in the testing sets cluster numbers 

different from the cluster numbers in the training set and tried to keep in each set the same 

class (VAOT and NVAOT) ratio. The dataset was split in this manner 10 times, with different 

random state, making a total of 100 different splits. If some of those splits would not have 

compounds from the two classes in the test sets, they would be discarded. 
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Figure 2. 

Two data holdout strategies are used to train and test models: the easy case and the difficult 
case.  
 

Binary classification model 

To classify compounds as VAOT or NVOAT, several algorithms were tested. For this analysis, we 

decided to use a K Nearest Neighbors (KNN) algorithm (Kowalski and Bender, 1972), as it 

showed good performances (supplementary data). The KNN algorithm has also the advantage 

of being explainable and functions like a read-across, technique commonly used for toxicity 

prediction (Escher and Bitsch, 2021). 

We used the scikit-learn (Pedregosa et al., 2011) implementation of the K Nearest Neighbors 

(KNN) classification algorithm. Several models were built depending on the data that were used 

as input. When using the chemical Morgan fingerprints, the Tanimoto (Jaccard) distance was 

used and when using the morphological profiles, the correlation distance was used. For all 
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models, we set the number of neighbors to one. The choice of the distances and the number of 

neighbors were the results of benchmarking done on both datasets (supplementary data). 

 

Decision support model 

To aid the decision when the two types of classifiers (Morgan fingerprint and Cell Painting 

morphological profile models) did not predict the same class, a model was built, similar to the 

Similarity‑based merger model (Seal et al., 2023). This ensemble model takes as input the 

predictions of the two KNN classifiers, along with the distances of the nearest neighbors of each 

prediction. A classifier was trained in each training set, for the cases where the two KNN models 

did not agree on the predicted class. In the test sets, we used this model only when the two 

KNNs did not predict the same classes, otherwise the consensual predicted classes of the two 

model were set as the final class (Figure 3). 

For this decision support model we used a SVM classifier (Cristianini and Ricci, 2008) 

implementation of Scikit learn (Pedregosa et al., 2011). 

 

Figure 3. 

Decision support model 
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Model performance evaluation 

To evaluate the performance of the classifiers, we used different metrics. They were all based 

on the number of true positive (TP), true negative (TN), false positive (FP) and false negative 

(FN), which were the results of the model classification of a given testing set in a confusion 

matrix. 

Sensitivity: SN =  𝑇
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

Specificity: SP = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

Balanced accuracy: BA = 
𝑆𝑁+𝑆𝑃

2
 

Matthews Correlation Coefficient: MCC = 
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 

Accuracy: ACC =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
 

 

When using cross validation, those metrics were averaged over all testing sets, and their 

standard deviations calculated.  

We performed a corrected t-test (Nadeau and Bengio, 2003) to compare the balanced accuracy 

values over the splits of classification models. 

Visualization of the chemical and biological spaces 

To visualize on two-dimensional scatter plots the chemical and the biological spaces, UMAP 

embeddings were generated using the Umap Python package (Sainburg, McInnes and Gentner, 

2021). For the chemical space, the chemical compound structure similarities embeddings were 

calculated with the Tanimoto distances of the compound Morgan fingerprints. As for the 

biological space, the morphological profile similarities embeddings were computed using their 

correlation distances. The plots were visualized in TIBCO Spotfire software.  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2024. ; https://doi.org/10.1101/2024.04.25.591123doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.25.591123
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

Results 
The goal of our analysis was to compare the predictive efficacy or read-across approaches for 

acute oral toxicity in rats between chemical structural information, in vitro biological data 

derived from the Cell Painting profiling assay on U2OS cells or the combination of both. Two 

distinct types of inputs were utilized to construct KNN models classifying compounds as VAOT 

or NVAOT.  

Initially, we categorized 630 Bayer Crop Science (BCS) agrochemical compounds with known 

acute rat toxicity results using the public QSAR model CATMoS (Mansouri et al., 2021). 

Additionally, we present the results of custom QSAR model, trained on this specific unbalanced 

set of 630 compounds.  Subsequently, KNN models were trained on a reduced but balanced set 

of 226 compounds using either the chemical structures or their morphological profiles in U2OS 

cells. A comprehensive analysis of both chemical space (made by the chemical structures) and 

biological space (revealed by the U2OS morphological profiles) was conducted to enhance our 

comprehension of the classifier results. Finally, we explored if combining the predictions of the 

two models could enhance the accuracy of the predictions.  

 

Results of the QSAR models 
Initially, CATMoS was employed to classify BCS compounds as either VAOT or NVAOT. We used 

the Opera CATMoS implementation of the model on the ‘QSAR only compounds set’ (Figure 

1a), with 630 compounds as external test set. Predictions were mapped to the two classes, 

resulting in most compounds being classified as NVAOT. Specifically, 5 of the 109 VAOT 

compounds, and 514 of the 521 NVAOT compounds were correctly predicted, resulting in a low 

sensitivity of 0.05, a high specificity of 0.99, a balanced accuracy of 0.52 and a MCC of 0.09 

(table 2a, table S5). This outcome could be due to the fact that CATMoS QSAR model was not 

trained on Bayer chemistry, but on mostly publicly available industrial chemical compounds, 

indicating a possible mismatch in the Applicability Domain of the model for BCS chemistry.  
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or the predictions of our set of 630 compounds, we could figure out that most compounds, 628 

(99,6%) were inside the CATMoS Applicability Domain (Table 2c). Most of them, 448 (71%), had 

an Applicability Domain index below 0.6, suggesting that the predictions should be considered 

with caution (Table 2c). The remaining predictions, 180 (29%) having an Applicability Domain 

index above 0.6, displayed an average confidence level of 0.57, suggesting a relatively low level 

of confidence in the predictions (Table 2c). 

 

 

 

Subsequently, we developed a model, based on our 630 compound set, using a KNN classifier 

on Morgan fingerprints of chemical compounds. The model’s performance was assessed 

through cross-validation with two data holdout strategies: the "easy case”, where compounds 

from the test sets resemble those from the training sets, and the "difficult case", where 

compounds from the test sets differ structurally from those in the training sets 

For the “easy case”, the classifiers exhibited an average balanced accuracy of 0.81, a sensitivity 

of 0.70, a specificity of 0.92 and a MCC of 0.61 (table 2b).  

In the “difficult case”, out of 100 theoretical cross-validation splits, only 44 included the two 

classes (VAOT and NVAOT) in both training and testing sets and hence were valid. On average, 

the model demonstrated a balanced accuracy of 0.60, a sensitivity of 0.33, a specificity of 0.87 

and a MCC of 0.19 (table 2b).  

The “difficult case” reiterated the diminished performance of chemical structure-based models 

when tasked with classifying compounds structurally distant from those used to train the 

model. In summary, the QSAR models demonstrated good performance in handling known 

chemistry but as expected by the design of the “difficult case”, exhibited a decrease of 

performance when confronted with unfamiliar chemical structures. This limitation becomes 

apparent when exploring new areas of chemical space. To address this constraint, we leveraged 
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the biological effects of chemical compounds for predictions. The subsequent section details 

our approach, employing Cell Painting assay on U2OS cells to capture the biological effects of 

the chemical compounds. 

QSAR only compounds set (set of 630 compounds) 

a. Classification using CATMoS 

 

Predicted class 

VAOT NVAOT 

True 
class 

VAOT 5 104 

NVAOT 7 514 

 

Balanced 
accuracy 

MCC Sensitivity Specificity 

0.52 0.09 0.05 0.99 

 

b. Prediction reliabilities 

Within 
Applicability 
Domain 

Applicability 
Domain Index 

Number of 
compounds 
(percentage) 

Average 
confidence index 

No all 2 (0.3%) NA 

Yes < 0.6 448 (71.1%) 0.5 

Yes ≥ 0.6 180 (28.6%) 0.57 
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c. Performance of the KNN classifiers trained on 630  

Holdout 
strategy 

Balanced 
accuracy 

MCC Sensitivity Specificity 

Easy case 0.81 0.61 0.70 0.92 

Difficult case 0.60 0.19 0.33 0.87 

 

 

Table 2. 

a. Confusion matrix and metrics for the classification of CATMoS over 630 compounds 
from Bayer Crop Science. 

b.  Reliability of the predictions: Number of compounds outside the CATMoS applicability 
domain, number of compounds and average confidence index for compounds within the 
CATMoS applicability domain and having an Applicability Domain index below or above 0.6.  

c. Mean of 4 metrics assessing the performance of the KNN binary classifiers built out 630 
Bayer CropScience agrochemical candidates, over the 100 splits of the “easy case” where 
training and testing sets are split randomly, not taking into account chemical structure 
similarities, and over the 44 valid splits of the “difficult case” where training and testing sets are 
split in order to have structurally different compounds over the two sets. 

Comparison of QSAR and Cell Painting morphological based models 
Our study aimed at comparing two inputs for predicting acute oral toxicity, utilizing a dataset 

called ‘Cell Painting set’, a subset of the ‘QSAR only compound set’, augmented with additional 

public chemical compounds. This set had a total of 226 compounds (Figure 1b). KNN classifiers 

were trained using both types of input and employing two data holdout strategies: easy and 

difficult cases.  

Similar to the previous QSAR model on the QSAR only compound set (630 compounds), KNN 

models were trained on the Morgan fingerprint of the molecules.  
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For models based on the morphological profiles obtained from Cell Painting, consensus profiles 

were utilized after normalization, unsupervised features selection, and replicate profile 

aggregation at treatment level. As for the QSAR models, we used KNN algorithm. Models were 

built for each tested concentration (10 µM, 31.6 µM, 100 µM).  

 

Results in the Easy Case  
In the easy case, the QSAR model outperformed other models, achieving a mean balanced 

accuracy of 0.82, followed by the 31.6µM morphological profile model, with a mean balanced 

accuracy of 0.75 (Table 3a). The two other morphological profile models at 10 and 100 µM had 

lower performances.  (Table 3a).  

The distribution of the balance accuracy values over the 100 splits for each input type of input 

showed a narrow range (Figure 4a) confirmed by low standard deviations ranging from 0.08 to 

0.09 (Table 3a).  

Statistical analysis using the Nadeau and Bengio’s corrected t-test to compare the balance 

accuracy values over the 100 splits of the two top models, indicated the QSAR model 

significantly outperformed the 31.6 µM morphological profile model (p-value= 0.05).  

Results in the Difficult Case  
In the difficult case, the 31.6 µM morphological profile model exhibited superior performance 

achieving a mean balanced accuracy of 0.72, followed by the QSAR model, with a mean 

balanced accuracy of 0.60 (Table 3b). The two other models had lower performances (Table 

3b). 

The distributions of the balanced accuracies for each model showed that for some splits, the 

QSAR model had difficulties making good predictions (Figure 4b). This was also the case, to a 

lesser extend for the 31.6 µM morphological profile-based models (Figure 4b).  

We used The Nadeau and Bengio’s corrected t-test suggested the 31.6 µM morphological 

profile model significantly outperformed the QSAR model (pvalue=0.045). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2024. ; https://doi.org/10.1101/2024.04.25.591123doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.25.591123
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

Summarizing the results, for the QSAR models, we reproduced the pattern of the previous 

QSAR model that was trained on almost three times more compounds (630 compounds) with 

good performances in the easy case, and a decrease in performance in the difficult case (the 

balanced accuracy dropped from 0.82 to 0.60).  

Overall, our findings emphasize the superior performance of QSAR model in the easy case while 

morphological profile-based model remain valuable particularly in the difficult case, where the 

classifiers based on the 31.6 µM morphological profile demonstrated the highest performance 

(balanced accuracy of 0.72). 
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Performances of the classifiers 

Types of 
models 

a. Easy case b. Difficult case 

 ACC BA MCC SN SP ACC BA MCC SN SP 

Morgan FP 0.82 ± 
0.08 

0.82 ± 
0.08 

0.65 ± 
0.16 

0.82 ± 
0.11 

0.82 ± 
0.12 

0.61 ± 
0.15 

0.60 ± 
0.16 

0.20 ± 
0.29 

0.49 ± 
0.28 

0.71 ± 
0.18 

CP     10 
µM 

0.57 ± 
0.08 

0.57 ± 
0.08 

0.14 ± 
0.16 

0.55 ± 
0.14 

0.58 ± 
0.14 

0.50 ± 
0.13 

0.50 ± 
0.14 

0.00 ± 
0.26 

0.46 ± 
0.24 

0.54 ± 
0.15 

CP 31.6 
µM 

0.75 ± 
0.09 

0.75 ± 
0.09 

0.51 ± 
0.18 

0.72 ± 
0.13 

0.79 ± 
0.12 

0.71 ± 
0.13 

0.72 ± 
0.13 

0.42 ± 
0.24 

0.68 ± 
0.23 

0.76 ± 
0.13 

CP  100 
µM 

0.63 ± 
0.09 

0.63 ± 
0.09 

0.27 ± 
0.19 

0.61 ± 
0.13 

0.65 ± 
0.14 

0.52 ± 
0.13 

0.53 ± 
0.13 

0.07 ± 
0.25 

0.47 ± 
0.23 

0.60 ± 
0.18 

DS 0.85 ± 
0.07 

0.85 ± 
0.07 

0.71 ± 
0.14 

0.86 ± 
0.11 

0.84 ± 
0.11 

0.71 ± 
0.13 

0.72 ± 
0.13 

0.42 ± 
0.26 

0.67 ± 
0.23 

0.77 ± 
0.16 

 

Table 3.  

Mean and standard deviations of 5 metrics: Accuracy (ACC), Balanced Accuracy (BA), Matthew's 
correlation coefficient (MCC), Sensitivity (SN), Specificity ‘SP). Four different input data were 
used to classify compounds as VAOT and NVAOT: chemical structural data (Morgan FP) and Cell 
Painting (CP) morphological profiles of U2OS cells put in presence of the chemical compounds 
at 3 concentrations (MP 10 µM, MP 31.6 µM and MP 100 µM). Are highlighted in orange the 
best average metric. The performances of the decision support (DS) model combining the 
Morgan Fingerprint and the morphological profile 31.6 µM model predictions are shown in the 
last row.  

a. Assessing the performance of the binary classifiers, over the 100 splits of the easy case 
where training and testing sets are split randomly, not considering chemical structure 
similarities.  

b. Assessing the performance of the KNN classifiers, over the 99 valid splits of the difficult 
case where training and testing sets are split to have structurally different compounds over the 
two sets.  
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Figure 4. 

a. Violin plot representing the balanced accuracies of the binary classifier for the 10 x 10-
fold cross validation splits not considering the structure similarities.  

b. Violin plot of the balanced accuracies of the KNN binary classifier for 99 valid splits of 
the 10 x 10-fold cross validation that put in the testing set chemical structurally different 
from the training set. 

Legend: In red, the classifier using the Morgan Fingerprint, in light green the classifier using the 
morphological profiles at 10 µM, in green the classifier using the morphological profiles at 31.6 
µM and in dark green, the classifier using the morphological profiles at 100 µM, in blue, the 
decision support (DS) model. Inside each violin plot the quartiles are indicated as dash lines.  
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Comparison of the chemical and biological spaces 
To understand the results of the classifiers based on the chemical structures and the 

morphological profiles, we investigated the chemical and biological spaces, for the Cell painting 

set of compounds.  

Chemical space 
Our dataset comprises 226 compounds primarily originating from Bayer Crop Science chemistry 

and supplemented with 29 public compounds. Employing the Butina algorithm, using the 

Tanimoto distance and a threshold of 0.7, we identified 91 clusters, 61 of them were 

represented by a unique compound indicating structural diversity.  

Visualizing the similarity of the structures on a UMAP plot (Figure 5), using Morgan fingerprints 

and Tanimoto distance revealed distinct clusters. Notably, certain clusters exclusively 

comprised VAOT compounds (e.g., cluster A), others exclusively comprised NVAOT compounds 

(e.g., cluster B) while several contained a mixture of both (e.g., clusters C and D) 

In summary, the chemical space exhibited diversity made of different clusters. Specific areas 

demonstrated a prevalence of either VAOT or NVAOT compounds, while others presented a 

combination of both classes.  
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Figure 5. 

Scatter plot of the 2-dimensional UMAP embedding of the chemical compound morgan 
fingerprints. In blue, the chemical compounds that are NVAOT. In red, chemical compounds 
that are VAOT. Four clusters of compounds are designated by the letter A, B, C and D. Cluster A 
is an example of a cluster with only VAOT compound. The cluster B is an example of a cluster 
with only NVAOT compounds. B and C are two examples of clusters with a mix of VAOT and 
NVAOT compounds. 

 

Biological space 
In Figure 6, we depicted the similarity of the biological response of compounds on a UMAP plot, 

utilizing morphological profiles for the three concentrations and the correlation distance. Unlike 

the chemical space, a limited number of clusters emerged with only two notable clusters 

observed. An isolated small cluster (cluster A) was clearly separated from other profiles, and 

upon inspection these profiles corresponded to instances with notably low cell count.  

The second cluster exhibited diverse areas: including regions with a high number of VAOT (e.g., 

grouping B), NVAOT compounds (e.g., grouping C), and areas with a mix of both classes (e.g., 

grouping D).  
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In Figure 7, we focused on the 31.6µM concentration, the concentration yielding optimal 

performances for the classification model using morphological profiles. Similar observations 

were made, with an isolated cluster corresponding to profiles with a very low number of cells. 

Additional distinct areas emerged, showcasing regions with high number of VAOT or NVAOT 

compounds, as well as areas with a mixed representation of both classes. 

 

 

 

 

Figure 6. 

Two-dimensional representation of the consensus morphological profile similarities for all 
treatments and all concentrations, using Uniform Manifold Approximation (UMAP) embedding 
on 2 components with the Pearson correlation distances. In red, the morphological profiles of 
U2OS cells perturbated by VAOT compounds. In blue, the morphological profiles of U2OS cells 
perturbated by NVAOT compounds. Four groups of compounds are designated by the letter A, 
B, C and D. The group A of compounds corresponds to treatment with very low cell counts. The 
group B of compounds is an example of grouping with a high number of VAOT compounds. The 
group C of compounds is an example of grouping with a high number of NVAOT compounds. 
The group D of compounds is an example of grouping with a mix of VAOT and NVAOT 
compounds. 
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Figure 7. 

Two-dimensional representation of the consensus morphological profile similarities for all 
treatments at 31.6 µM, using Uniform Manifold Approximation (UMAP) embedding on 2 
components with the Pearson correlation distances. In red, the morphological profiles of U2OS 
cells perturbated by VAOT compounds. In blue, the morphological profiles of U2OS cells 
perturbated by NVAOT compounds. 

 

Comparison of the chemical and biological spaces 
We compared different groups of compound structures and groups of morphological profiles to 

better understand the chemical and biological space interrelationship. Notably, we observed 

that chemicals clustering together in the chemical space could elicit a diversity of biological 

responses in the biological space, emphasizing that structurally similar compounds may 

manifest distinct biological responses (Figure 8, top row). We illustrate a specific case involving 

a group of chemicals, the carbamates, inducing similar morphologies in U2OS cells (Figure 8, 

middle row). Interestingly, similar morphological profiles induced by structurally different 

compounds could also be observed (Figure 8, bottom row). This illustrates that biological 
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effects of structurally similar molecules may not necessarily be alike. Structurally similar 

compounds could trigger different biological effects. Conversely, compounds with different 

structures could cause comparable biological responses. 
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Figure 8. 

(left) Chemical space. Scatter plot of the 2-dimensional UMAP embedding of the chemical 
compound morgan fingerprints.  

(right) Biological space. Scatter plot of the 2-dimensional UMAP embedding of the Cell Painting 
morphological profiles of the chemical compounds at 31.6 µM.  

In red, the morphological profiles of U2OS cells perturbated by VAOT compounds.  

In blue, the morphological profiles of U2OS cells perturbated by NVAOT compounds.  

On each row, the chemical profiles and morphological profiles of the same compounds are 
selected. 

(top) Example of structurally similar compounds, inducing different morphological profiles. 

(middle) Example of structurally similar compounds, inducing similar morphological profiles. 

(bottom) Example of structurally different compounds, inducing similar morphological profiles. 

 

 

Biological response 
To analyze the biological response of U2OS cells to chemical compound perturbations, we 

employed morphological profiles, using two metrics: the Grit score (Serrano et al., 2023),  and 

the number of cells. We analyzed how strong the biological response of a given treatment was 

to better understand how U2OS cells reacted to our set of compounds, hence also helping in 

understanding the results of the classifiers.  

Grit score 
The Grit score was an indication of how much the average morphology of U2OS cells perturbed 

by a treatment deviated from the average negative control morphology of non-perturbed U2OS 

cells. A high Grit score signifies a more distinct cell morphology from the negative controls. For 

example, the average grit score of the positive controls was 4.8.  

A Mann-Whitney U rank test on the grit scores, for the two compounds groups , VAOT and 

NVAOT, demonstrated that VAOT compounds elicited a marginal though significant stronger 
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biological response compared to NVAOT (Grit score respectively 3 and 2.5, p-value of 0.004).  

(Table 4).  

Regarding concentrations, on average, the 10 µM treatments had a grit score of 1.9, the 31.6 

µM had a grit score of 2.6 and the 100 µM treatment had a grit score of 3.7. This aligns with our 

assumption that higher concentrations lead to increased biological responses, a consideration 

made when designing the Cell painting campaign with 3 concentrations (Table 4).  

Identifying compounds with no induced morphological changes, we set a Grit score threshold of 

1. Below this threshold, we considered a treatment not inducing any morphological change. Of 

the 23 compounds falling below this threshold 6 were VAOT.  

Number of cells 
An additional output of our image analysis was the number of cells per well. For this analysis 

the number of cells were not normalized, and the median number of cells per well for a given 

treatment were computed. The average number of cells for the negative controls was 2231. We 

arbitrary set the number of cells that defines cytotoxicity as a cell count below 50% of the 

average negative control cell count, meaning a cell count below 1115 defined a cytotoxic 

treatment.  

In total 44 compounds exhibited cytotoxicity: 12 compounds, at 10 µM, 23 compounds, at 31.6 

µM and 44 compounds, at 100 µM (Table 4).  

Categorizing by class, 28 VAOT compounds (25%) and 16 NVAOT compounds (14%) displayed 

cytotoxicity for at least one concentration. A chi-square test of independence of variables, with 

the null hypothesis that the number of cytotoxic compounds is independent of the class (VAOT 

and NVAOT) gave a p-value of 0.1. We could not conclude that there were a higher percentage 

of cytotoxicity for VAOT compounds (Table 4).  
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profiles Average 
Grit score 

Number of cytotoxic 
treatments 

Negative control NA 0 

VAOT  3 28 

NVAOT 2.5 16 

10 µM 1.9 12 

31.6 µM 2.6 23 

100 µM 3.7 44 

 

Table 4.  

Average grit score and number of cytotoxic treatments for different groups of profiles: VAOT 
(very acutely oral toxic compounds), NVAOT (non very acutely oral toxic compounds), 10 µM 
treatment profiles, 31.6 µM treatment profiles and 100 µM treatment profiles. 

 

Results of the decision-support model 
The decision-support model aided the decision when the two KNN classifiers did not predict the 

same class. The model combined four pieces of information: predictions from the KNN model 

based on the chemical structure information, predictions from the KNN model based on the 

morphological profiles and distances to the nearest neighbor in each model.  

In the easy case, the model had an average balanced accuracy of 0.84, slightly above the QSAR 

model’s average balanced accuracy of 0.82. In the difficult case, the model had on average a 

balanced accuracy of 0.65, below the 31.6µM morphological profile model’s average balanced 

accuracy of 0.72.  
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To understand why in the difficult case, this model did not yield better performances, we 

computed the mean Morgan fingerprint Tanimoto distances between each chemical compound 

of the training set and its nearest neighbor in the training set, and the mean distances between 

each chemical compound of the testing set and its nearest neighbor in the training set.  

For the easy case, on average, in the training set, each compound has a distance to its nearest 

neighbor of 0.50 and in the testing set 0.48. For the difficult case, on average, in the training 

set, each compound has a distance to its nearest neighbor of 0.49, and in the testing set 0.73.  

We could notice that the training set did not have enough examples of distant chemical 

structures. To help the model, we added synthetic examples of distant chemical structures. To 

do so, we subset in each training set the cases where the predictions of the QSAR did not match 

the real class, and we updated the distances of the nearest neighbors with a random number 

between 0.7 and 0.9 and added those synthetic examples in the dataset used to train the 

model.   

By doing so, in the easy case the model had an average balanced accuracy of 0.85. In the 

difficult case, the model had an average balanced accuracy of 0.72 (Table 3). 
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Discussion 
Our results showed that the classification of compounds, using a read-across approach, as very 

acutely oral toxic or not, was possible using chemical structure information, U2OS cell 

morphological profiles or the combination of both. When classifying compounds structurally 

similar to those used to train the classifier, the chemical structure information was more 

predictive. Conversely, when compounds to classify were structurally different from 

compounds used to train the classifier, the U2OS cell morphological profiles were more 

predictive.  

Initial attempts with the publicly available QSAR model, CATMoS , for the prediction of acute 

oral toxicity on a set of 630 Bayer compounds did not yield good predictions (Mansouri et al., 

2021). CATMoS performance is hindered as Bayer Crop Science chemistry could be considered 

as locally outside its applicability domain (Table 2b). Although nearly all compounds were 

globally within the CATMoS applicability domain, most resided in gaps in that applicability 

domain. It is known that QSAR models excel when compounds being classified fall within their 

applicability domain of the models, and perform poorly when they do not (Kar, Roy and 

Leszczynski, 2018). In summary, CATMoS, which is a QSAR model trained on more than 10,000 

compounds has very good performances for the prediction of acute oral toxicity but fails to 

work effectively with Bayer Crop Science chemistry.  

To confirm our hypothesis, we trained a simple KNN classifier, resembling a read-acrross 

approach, on this set of 630 compounds, using their chemical structure information. Working 

with two data holdout strategy to simulate scenarios within and outside the applicability 

domain of a QSAR model, we evaluated our models under two conditions: the easy case, 

simulating scenarios within applicability domain case, and the difficult case, attempting to 

simulate outside applicability domain case. In the easy case, our model exhibited strong 

performance, comparable to CATMoS. For example, CATMoS achieved a balanced accuracy of 

0. 84, in classifying compounds as very toxic (VT) (LD50 < 50 mg/kg) (Mansouri et al., 2021) 

whereas our model had a balanced accuracy of 0.82 for the classification of compounds as 

VAOT (LD50 < 60 mg/kg). 
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As designed, the performances of the classifier dropped in the difficult case due to the data 

holdout strategy, which placed Butina compound clusters not present in the training sets into 

the testing sets . This effectively simulated scenarios outside applicability domain, although the 

decrease in balanced accuracy (from 0.82 to 0.60) was not as drastic as observed with Bayer 

CropScience chemistry using CATMoS (from 0.84 to 0.52). 

To overcome this chemical applicability domain limitation, we explored whether using the 

compound biological effects could mitigate this issue. Compound-induced biological effects 

characterized with transcriptomics has already been used to predict target activities, in 

association and in comparison, with QSAR models (Baillif et al., 2020; Moshkov et al., 2023). 

Here we utilized Cell Painting to generate morphological profiles at a more reasonable cost 

compared to transcriptomics.  

Using a smaller but balanced set of 226 compounds (49 % of compounds selected known to 

have LD50<60 mg/kg), we trained KNN classifiers based on either chemical structure 

information or U2OS morphological profiles at 3 concentrations.  

Similar to the larger set of 630 compounds, we observed similar trends for the classifiers based 

on the chemical structure information: good performances in the easy case but decreased 

performances in the difficult case. Morphological profiles at 31.6 µM concentration 

demonstrated better performances in comparison to the other concentrations, in both the easy 

and difficult cases. With a balanced accuracy of 0.75 in the easy case and 0.72 in the difficult 

case, Cell Painting U2OS profiles demonstrated the capability to predict acute oral toxicity 

classes, interestingly, independently of the structural similarity of the tested compounds.  

Cell Painting can indeed identify morphological patterns associated with specific mode of action 

(MOA) and molecular initiation event (MIE) of compounds (Ljosa et al., 2013; Way et al., 2022). 

Typically, acute toxicity involves a limited number of MIE (Prieto, 2019). such as narcosis 

(activity on the lipid bilayer of membrane), acetylcholinesterase inhibition, ion channel 

modulators and inhibitors of cellular respiration (A. Leblanc, 2004). Cell Painting experiment 

revealed morphological profiles (initiated by MIE) associated with acute oral toxicity, as 
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evidenced by the grouping of morphological profiles associated with VAOT compounds. For 

example, four carbamates (Promecarb, Methiocarb, Propoxur, m-Cumenyl methylcarbamate)  

known as acetylcholinesterase inhibitors  produced similar morphological profiles in U2OS cells 

(Figure 8, middle row).  

This partially explains why morphological profile-based models were capable, of correctly 

classifying compounds. In the easy case, the performances of the classifiers based on the 31.6 

µM morphological profile did not surpass the classifiers based on the chemical structure 

information but did outperform them classifiers in the difficult case. 

Capturing the biological effects of compounds brought limitations: limitation of the cell system 

to reveal the effects causally associated with acute toxicity, together with technical limitations 

of the lab experiment itself.  

For the limitation of the cell system, we observed, through grit score analysis, that not all the 

compounds induced a biological response in U2OS cells (10%), regardless of the concentration 

used. Six VAOT compounds did not elicit any morphological change in U2OS cells compared to 

the negative controls. Among these compounds, 5 were public compounds and some of them 

with information on their possible mode of action. The Warfarin, a Vitamin K Antagonist, the 

Methamidophos, a potent acetylcholinesterase inhibitor, did not produce any biological 

response in U2OS cells. This suggests that U2OS cells have their own biological applicability 

domain and may not capture all the bioactivities associated with oral acute toxicity observed in 

a whole organism like a rat in our case study. Nonetheless, for our set of compounds, Cell 

Painting on U2OS managed to capture bioactivities for most of the VAOT compounds.  

On the contrary, analyzing the number of cells, we could also identify a limitation due to the 

cytotoxicity of compounds: 44 compounds showed cytotoxicity at least at one concentration, 

and 12 exhibiting cytotoxicity even at the lowest concentration. Morphological profiles of 

cytotoxic treatments were not informative as they predominantly consisted of debris and dying 

cells. It appears that the concentration of 31.6 µM represented a good tradeoff between 

inducing bioactivity and avoiding cytotoxicity.  
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For the limitation of the experiments, several quality issues may arise when running an 

experiment in a laboratory. Experiments are technically demanding and prone to variability and 

errors. The seeding variability can impact the cell morphologies, hence the morphological 

profiles.  There are other usual problems that could occur in laboratory experiments, such as 

treatment errors, compounds with low purity and precipitation at high concentration. Those 

issues could affect the quality of the morphological profiles and hence the performance of a 

classifier based on morphological profile similarities.  

The chemical structural information did not suffer from those limitations, because this 

information was not subject to quality issue, was not cell system dependent, and not assay 

design dependent. This information was intrinsic of the description of a given compound. This 

could explain partly why QSAR models, in the easy case, performed better than biological based 

models: the full structural information is available, whereas the biological information is partly 

available and subject to quality issues in particular reproducibility.  

In the “difficult case”, morphological profiles-based models did not experience performance 

drop as much as the QSAR models, suggesting that the biological space did not cluster the same 

way as the chemical space. This indicates that similar compounds did not consistently induce 

the same response in U2OS cells (due for example to activity cliffs), and vice versa. The 

presence of different Butina clusters in the training and test sets, did not necessarily result in 

different morphological profiles explaining why the morphological profile-based model 

performances did not drastically drop in the difficult case.  

Using biological responses of compounds could be also an advantage with regards to 

enantiomers. The Morgan fingerprint used in this analysis does not consider chirality. 

Enantiomers can have different acute oral toxicity, and our QSAR model will not make the 

difference between them, where morphological profiles could be different.  

The decision support model combined both predictions along with the distances of the nearest 

neighbor to make final predictions, slightly improving the classification performance in the easy 

case while decreasing in the difficult case. By adding a few artificial examples in each training 
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set of higher distances in the chemical spaces allowed increasing the classification accuracy in 

the easy case not in the difficult case, where the model performed like for the 31.6µM 

morphological based model. Notably, in the difficult case the classifier favored predictions from 

the 31.6µM morphological based model predictions over QSAR model predictions.  

Further results could expand and refine these findings by employing a broader compound set 

covering all the molecular initiating event (MIE) linked to acute oral toxicity. Additionally, a 

wider set of compounds could facilitate the identification of more morphological profiles 

associated with acute oral toxicity. A larger dataset would also allow isolating a set of 

compounds as an external dataset to further assess the performance of the model.  

The choice of the KNN algorithm in this analysis was deliberate due to its simplicity and 

resemblance to read-across approach commonly used in toxicology. The quantity of in vivo data 

being often limited, the read-across approach is often the only analysis that can be performed. 

For QSAR models, other algorithms yielded similar performances (Supplementary information).  

For both types of input data, the optimal number of neighbors was 1 for the KNN algorithm, 

indicating that few examples of identified profiles leading to high acute oral toxicity or not, 

were present in the dataset. Having a larger set of compounds, like the CATMoS training set, 

would help identifying more examples of Cell Painting profiles linked to acute oral toxicity.  

To help create public QSAR models with a wider applicability domain, representations of 

compound structures and results of acute toxicity studies for early candidates which failed to 

be placed on the markets could be shared by companies and organizations to expand the 

chemical space coverage. 

Additionally, in this analysis, the Morgan fingerprint was the only computed chemical 

descriptor. Using additional descriptors (such as PaDEL) could help to have better QSAR 

performances.   

We have also seen the limitation of the U2OS cell line, not capturing all the bioactivities of the 

compounds. Trying different cell lines could allow capturing more bioactivities linked to MIE 
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leading to acute oral toxicity. Several cell lines have already been used with Cell Painting (Cox et 

al., 2020; Nyffeler, 2020) and could help defining a set of cell lines capable of capturing a 

maximum, if not all, MIE leading to acute oral toxicity.  

Finally, absorption, distribution, metabolism, and excretion (ADME) properties of compounds 

were not taken into consideration in this study but incorporating such data could enhance 

predictive models. We tried to use predicted maximum concentration in plasma and AUC from 

a predictive model (Schneckener et al., 2019), but this information did not improve our results 

(data not shown).  

In addition, preincubation of the compounds with liver S9 fractions (the 9000g supernatant of a 

liver homogenate), containing phase I and II metabolic enzymes,  to work on the possible 

metabolites of a parent compounds, could also help when the toxicity is driven by a metabolite, 

as it is done for example with the Ames assay to test the mutagenic potential of chemical 

compounds  (Hakura et al., 2001; Hopperstad et al., 2022). 

In conclusion, a combined approach utilizing QSAR, and Cell Painting morphological profiles-

based models based on chemical and biological spaces distances holds promise for predicting 

acute oral toxicity.  Those models could be used in the context of early de-risking and in the 

future serve in context of Next Generation Risk Assessment (NGRA) aiming at refining if not 

replacing laboratory animal testing.  
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