Identifying suspicious values in programs with floating-point numbers

Michel RUEHER

University of Nice Sophia-Antipolis / I3S – CNRS, France

(joined work with Olivier Ponsini, Claude Michel)

Dagstuhl1321 January 2013
Introduction

• **Problem**: verifying programs with floating-point computations

Embedded systems written in C (transportation, nuclear plants,...)

• **Programs use floating-point numbers but**
 ▶ Specifications are written with the **semantics of reals** “in mind”
 ▶ Programs are written with the **semantics of reals** “in mind”
Floating-point arithmetic pitfalls

Rounding \leadsto Counter-intuitive properties

\[(0.1)_{10} = (0.000110011001100\cdots)_2\]

Simple precision $\leadsto 0.100000001490116119384765625$

- Neither associative nor distributive operators
 \[-10000001 + 10^7 + 0.5 \neq -10000001 + (10^7 + 0.5)\]

- Absorption, cancellation phenomena
 Absorption: \[10^7 + 0.5 = 10^7\]
 Cancellation: \[(1 - 10^{-7}) - 1) \times 10^7 = -1.192\cdots(\neq -1)\]

\rightarrow Floats are source of errors in programs
Objectives & Method

Goals: → bounds for variables with real numbers semantics and floating-point numbers semantics
 → bounds for the error due to the use of floating-point numbers instead of real numbers

⇝ to identify suspicious values

Method: combining *abstract interpretation* & *constraint programming*
Outline

Problematic: Verifying Programs with FP computations

AI Approach: Abstraction of program states

Constraint Programming over continuous domains

Motivating example

Combining AI and CP

Experiments

Conclusion
AI Approach: Abstraction of program states

Intervals, zonotopes, polyhedra...

Zonotopes: convex polytopes with a central symmetry
Sets of affine forms
\[
\hat{a} = a_0 + a_1\varepsilon_1 + \cdots + a_n\varepsilon_n \\
\hat{b} = b_0 + b_1\varepsilon_1 + \cdots + b_n\varepsilon_n
\]
with \(\varepsilon_i \in [-1, 1] \)

+ Good trade-off between performance and precision
 - Not very accurate for nonlinear expressions
 - Not accurate on very common program constructs such as conditionals
AI: Static analysis (cont.)

+ **Good scalability** for
 - Showing absence of runtime errors
 - Estimating rounding errors and their propagation
 - Checking properties of programs

– **Lack of precision**
 - Approximations may be very coarse
 - Over-approximation \Rightarrow possible false alarms
AI & False alarm

From Cousot:

[Graph showing possible trajectories and forbidden zones]
CP over continuous domains: overall scheme

CP over continuous domains \equiv a **branch & prune** process
\rightarrow an iteration of two steps:

1. **Pruning the search space**
2. **Making a choice to generate two (or more)**
 sub-problems

Pruning step \rightarrow **reduces an interval** when the upper bound or the lower bound does not satisfy some constraint.

Branching step \rightarrow **splits the domain** of some variable in two or more intervals.
Filtering & Solving process (example)

Courtesy to Gilles Trombettoni
Filtering & Solving process (example)

Courtesy to Gilles Trombettoni
Filtering & Solving process (example)

Courtesy to Gilles Trombettoni
Filtering & Solving process (example)

Courtesy to Gilles Trombettoni
Filtering & Solving process (example)

Courtesy to Gilles Trombettoni
Filtering & Solving process (example)

Courtesy to Gilles Trombettoni
Filtering & Solving process (example)

Courtesy to Gilles Trombettoni
Filtering & Solving process (example)

Courtesy to Gilles Trombettoni
Filtering & Solving process (example)

Courtesy to Gilles Trombettoni
Filtering & Solving process (example)

Courtesy to Gilles Trombettoni
Local consistencies

Working with a single constraint

Consider $D_x = [x, \bar{x}]$ and $c(x, x_1, \ldots, x_n)$
If $c(x, x_1, \ldots, x_n)$ does not hold for any values $a \in [x, x']$, then $D_x \rightarrow [x', \bar{x}]$
2B–consistency

• A constraint c_j is **2B–consistent** if for any variable x_i of c_j, the bounds D_{x_i} and \overline{D}_{x_i} have a support in the domains of all other variables of c_j

→ Variable x is 2B–consistent for $f(x, x_1, \ldots, x_n) = 0$ if the lower (resp. upper) bound of the domain of x is the smallest (resp. largest) solution of $f(x, x_1, \ldots, x_n)$

A CSP is 2B–consistent iff all its constraints are 2B–consistent
3B–Consistency (1)

3B–Consistency, a shaving process

→

cchecks whether 2B–Consistency can be enforced when the domain of a variable is reduced to the value of one of its bounds in the whole system
3B–Consistency (2)

Let \((\mathcal{X}, \mathcal{D}, \mathcal{C})\) be a CSP and \(D_x = [a, b]\), if \(\Phi_{2B}(P_{D_x} \leftarrow [a, \frac{a+b}{2}]) = \emptyset\) then the part \([a, \frac{a+b}{2}]\) of \(D_x\) will be removed and the filtering process continues on the interval \([\frac{a+b}{2}, b]\)

- otherwise, the filtering process continues on the interval \([a, \frac{3a+b}{4}]\).
Constraint Programming framework: sum up

+ Good **refutation** capabilities
 Flexibility: handling of integers, floats, non-linear expressions,...

− **Scalability**
 Pruning may be costly for **large domains**
 A CSP is a conjunction of constraints \(\sim \) a **different constraint system** is required for each path of the CFG
Motivating example

float x = [0,10];
float y = x*x - x;
if (y >= 0)
 y = x/10;
else
 y = x*x + 2;
Example 1: Abstract Interpretation (zonotopes)

```plaintext
float x = [0,10];
float y = x*x - x;
if (y >= 0)
    y = x/10;
else
    y = x*x + 2;
```

```
P_0: \hat{x}^0 = 5 + 5\varepsilon_1 \quad \varepsilon_1 \in [-1, 1]
D_x^0 = [0, 10]
```

```
P_1: \hat{y}^1 = 32.5 + 45\varepsilon_1 + 12.5\eta_1
\eta_1 \in [-1, 1]
D_x^1 = [0, 10] \quad D_y^1 = [-10, 90]
```

```
P_2: \hat{y}^2 = \hat{y}^1 \quad D_x^2 = [0, 10]
D_y^2 = [0, 90]
```

```
P_3: \hat{y}^3 = 0.5 + 0.5\varepsilon_1
D_y^3 = [0, 1]
```

```
P_4: y = x/10
```

```
P_5: y = x*x + 2
```

```
P_6: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```

```
P_5: y = x/10 \cup y = x*x + 2
```
Example 1: Abstract Interpretation (zonotopes)

float x = [0,10];
float y = x*x - x;
if (y >= 0)
 y = x/10;
else
 y = x*x + 2;

\[y = x \times x - x \]

\[P_0: \hat{x}^0 = 5 + 5\varepsilon_1 \quad \varepsilon_1 \in [-1, 1] \]
\[D_x^0 = [0, 10] \]

\[P_1: \hat{y}^1 = 32.5 + 45\varepsilon_1 + 12.5\eta_1 \]
\[\eta_1 \in [-1, 1] \]
\[D_x^1 = [0, 10] \quad D_y^1 = [-10, 90] \]

\[P_2: \hat{y}^2 = \hat{y}^1 \quad D_x^2 = [0, 10] \]
\[D_y^2 = [0, 90] \]

\[P_3: \hat{y}^3 = 0.5 + 0.5\varepsilon_1 \]
\[D_y^3 = [0, 1] \]

\[P_4: \hat{y}^4 = \hat{y}^1 \quad D_x^4 = [0, 10] \]
\[D_y^4 = [-10, 0] \]

\[P_5 \]

\[P_6 \]
Example 1: Abstract Interpretation (zonotopes)

```plaintext
float x = [0,10];
float y = x*x - x;
if (y >= 0)
    y = x/10;
else
    y = x*x + 2;

P₀: \hat{x}^0 = 5 + 5\varepsilon_1 \quad \varepsilon_1 \in [-1, 1] 
D_x^0 = [0, 10]

P₁: \hat{y}^1 = 32.5 + 45\varepsilon_1 + 12.5\eta_1 
\eta_1 \in [-1, 1] 
D_x^1 = [0, 10] \quad D_y^1 = [-10, 90]

P₂: \hat{y}^2 = \hat{y}^1 \quad D_x^2 = [0, 10] 
D_y^2 = [0, 90]

P₃: \hat{y}^3 = 0.5 + 0.5\varepsilon_1 
D_y^3 = [0, 1]

P₄: \hat{y}^4 = \hat{y}^1 \quad D_x^4 = [0, 10] 
D_y^4 = [-10, 0]

P₅: \hat{y}^5 = 39.5 + 50\varepsilon_1 + 12.5\eta_1 
\eta_2 \in [-1, 1] 
D_y^5 = [2, 102]

P₆: \hat{y}^6 = \hat{y}^3 \cup \hat{y}^5 = 39.5 + 0.5\varepsilon_1 + 62\eta_2 
D_y^6 = D_y^3 \cup D_y^5 = [0, 102]
```
Example 1: Constraint Programming

\[P_0: D_{x_0} = [0, 10] \quad D_{y_0} = [-10, 90] \quad D_{y_1} = [0, 102] \]

\[y_0 = x_0 \times x_0 - x_0 \]
\[y_0 \geq 0 \]
\[y_1 = x_0 / 10 \]

Filtering:
\[D_{x_0}^1 = [0, 10] \]
\[D_{y_0}^1 = [0, 90] \]
\[D_{y_1}^1 = [0, 1] \]

\[y_0 = x_0 \times x_0 - x_0 \]
\[y_0 \geq 0 \]
\[y_0 < 0 \]
\[y_1 = x_0 / 10 \]
\[y_1 = x_0 \times x_0 + 2 \]

P_6
Example 1: Constraint Programming

\[P_0: D_{x_0} = [0, 10] \quad D_{y_0} = [-10, 90] \quad D_{y_1} = [0, 102] \]

\[y_0 = x_0 \cdot x_0 - x_0 \]
\[y_0 \geq 0 \]
\[y_1 = x_0 / 10 \]

filtering

\[D_{x_0}^1 = [0, 10] \]
\[D_{y_0}^1 = [0, 90] \]
\[D_{y_1}^1 = [0, 1] \]
Example 1: Constraint Programming

\[P_0 : D_{x_0} = [0, 10] \quad D_{y_0} = [-10, 90] \quad D_{y_1} = [0, 102] \]

\(y_0 = x_0 \times x_0 - x_0 \)
\(y_0 \geq 0 \)
\(y_1 = x_0 / 10 \)

filtering

\[D^1_{x_0} = [0, 10] \quad D^1_{y_0} = [0, 90] \quad D^1_{y_1} = [0, 1] \]

\[P_6 : D^3_{y_1} = D^1_{y_1} \cup D^2_{y_1} = [0, 3.027] \]

\[y_0 = x_0 \times x_0 - x_0 \]
\(y_0 < 0 \)
\(y_1 = x_0 \times x_0 + 2 \)

filtering

\[D^2_{x_0} = [0, 1.026] \quad D^2_{y_0} = [-0.257, 0] \quad D^2_{y_1} = [2, 3.027] \]
Proposed approach: Combining AI and CP

Successive exploration and merging steps

- Use of AI to compute a *first approximation* of the values of variables at a program node where two branches join

- Building a constraint system for each branch between two join nodes in the CFG of the program and use of CP local consistencies *to shrink the domains* computed by AI
Filtering techniques

- **FPCS**: 3B(w)-consistency over the floats
 - Projection functions for floats
 - Handling of rounding modes
 - Handling of x86 architecture specifics

- **RealPaver**: 2B(w)-consistency & Box-consistency over the reals
 - Reliable approximations of continuous solution sets
 - Correctly rounded interval methods and constraint satisfaction techniques
Experiments: benchmarks

• Illustrative programs
 ▶ quadratic → real roots of a quadratic equation (GNU scientific library); contains many conditionals
 ▶ sinus7 → the 7th-order Taylor series of function sinus
 ▶ sqrt → an approximate value (error of 10^{-2}) of the square root of a number greater than 4 (Babylonian method)
 ▶ bigLoop: contains non-linear expressions followed by a loop that iterates one million times
 ▶ rump: a very particular polynomial designed to outline a catastrophic cancellation phenomenon

• 55 benchs from CDFL, a program analyzer for proving the absence of runtime errors in programs with floating-point computations based on Conflict-Driven Learning
Experiments: Results over the floating-point numbers

<table>
<thead>
<tr>
<th></th>
<th>Fluctuat (AI)</th>
<th></th>
<th>RAICP (AI + CP)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Domain</td>
<td>Time</td>
<td>Domain</td>
<td>Time</td>
</tr>
<tr>
<td>quadratic₁ x₀</td>
<td>[−∞, ∞]</td>
<td>0.13 s</td>
<td>[−∞, 0]</td>
<td>0.39 s</td>
</tr>
<tr>
<td>quadratic₁ x₁</td>
<td>[−∞, ∞]</td>
<td>0.13 s</td>
<td>[−8.125, ∞]</td>
<td>0.39 s</td>
</tr>
<tr>
<td>quadratic₂ x₀</td>
<td>[−2e6, 0]</td>
<td>0.13 s</td>
<td>[−1e6, 0]</td>
<td>0.39 s</td>
</tr>
<tr>
<td>quadratic₂ x₁</td>
<td>[−1e6, 0]</td>
<td>0.13 s</td>
<td>[−3906, 0]</td>
<td>0.39 s</td>
</tr>
<tr>
<td>sinus7</td>
<td>[−1.009, 1.009]</td>
<td>0.12 s</td>
<td>[−0.853, 0.852]</td>
<td>0.22 s</td>
</tr>
<tr>
<td>rump</td>
<td>[−1.2e37, 2e37]</td>
<td>0.13 s</td>
<td>[−1.2e37, 2e37]</td>
<td>0.22 s</td>
</tr>
<tr>
<td>sqrt₁</td>
<td>[2.116, 2.354]</td>
<td>0.13 s</td>
<td>[2.121, 2.347]</td>
<td>0.81 s</td>
</tr>
<tr>
<td>sqrt₂</td>
<td>[−∞, ∞]</td>
<td>0.2 s</td>
<td>[2.232, 3.168]</td>
<td>1.59 s</td>
</tr>
<tr>
<td>bigLoop</td>
<td>[−∞, ∞]</td>
<td>0.15 s</td>
<td>[0, 10]</td>
<td>0.7 s</td>
</tr>
<tr>
<td>Total</td>
<td>1.25 s</td>
<td></td>
<td>5.1 s</td>
<td></td>
</tr>
</tbody>
</table>

Fluctuat: state-of-the-art AI analyzer for estimating rounding errors and their propagation using zonotopes
Experiments: Results over the real numbers

<table>
<thead>
<tr>
<th></th>
<th>Fluctuat (AI)</th>
<th>RAICP (AI + CP)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Domain</td>
<td>Time</td>
<td>Domain</td>
</tr>
<tr>
<td>quadratic(_1) (x_0)</td>
<td>([-\infty, \infty])</td>
<td>0.14 s</td>
<td>([-\infty, 0])</td>
</tr>
<tr>
<td>quadratic(_1) (x_1)</td>
<td>([-\infty, \infty])</td>
<td>0.14 s</td>
<td>([-8.006, \infty])</td>
</tr>
<tr>
<td>quadratic(_2) (x_0)</td>
<td>([-2e6, 0])</td>
<td>0.14 s</td>
<td>([-1e6, 0])</td>
</tr>
<tr>
<td>quadratic(_2) (x_1)</td>
<td>([-1e6, 0])</td>
<td>0.14 s</td>
<td>([-5.186e5, 0])</td>
</tr>
<tr>
<td>sinus(_7)</td>
<td>([-1.009, 1.009])</td>
<td>0.12 s</td>
<td>([-0.842, 0.843])</td>
</tr>
<tr>
<td>rump</td>
<td>([-1.2e37, 2e37])</td>
<td>0.13 s</td>
<td>([-1.2e37, 1.7e37])</td>
</tr>
<tr>
<td>sqrt(_1)</td>
<td>([2.116, 2.354])</td>
<td>0.13 s</td>
<td>([2.121, 2.346])</td>
</tr>
<tr>
<td>sqrt(_2)</td>
<td>([2.098, 3.435])</td>
<td>0.2 s</td>
<td>([2.232, 3.165])</td>
</tr>
<tr>
<td>bigLoop</td>
<td>([-\infty, \infty])</td>
<td>0.15 s</td>
<td>([0, 10])</td>
</tr>
<tr>
<td>Total</td>
<td>1.29 s</td>
<td></td>
<td>7.58 s</td>
</tr>
</tbody>
</table>
Experiments: eliminating false alarms

CDFL: Program analyzer for proving the absence of runtime errors in program with floating-point computations based on *Conflict-Driven Learning*

<table>
<thead>
<tr>
<th></th>
<th>RAiCP</th>
<th>Fluctuat</th>
<th>CDFL</th>
</tr>
</thead>
<tbody>
<tr>
<td>False alarms</td>
<td>0</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Total time</td>
<td>40.55 s</td>
<td>18.37 s</td>
<td>208.99 s</td>
</tr>
</tbody>
</table>

Computed on the 55 benches from CDFL paper (TACAS’12, D’Silva, Leopold Haller, Daniel Kroening, Michael Tautschnig)
Conclusion

AI + CP framework: Efficient computation and sharp good domain approximations

Further works: interact with AI at the abstract domain level
 • Better approximations
 • Keep statement contribution to rounding errors