Objects and Classification: a Natural Convergence Workshop of ECOOP’2000 May 24, 2000

TOWARDS A MORE SUITABLE CLASS
HIERARCHY FOR PERSISTENT OBJECT
MANAGEMENT

Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and
Philippe Lahire!

1 Introduction

The aim of our study is to improve the description power of the class hierarchy. Thus,
we want to facilitate the reusability of persistent objects in the context of several
applications which share persistent data. To this end, we intend to specify more
precisely the relationships between classes. The new information provides a more
accurate and flexible class hierarchy. So we could load and update the persistent
objects which have not got the exactly adequate structure for the transient schema.
This can happen when applications evolve regardless of the persistent schema of
classes.

The fact that several applications, at different evolution steps, access the same
persistent objects implies two possibilities:

Partial schema of classes Some applications may only have a partial knowledge
of the persistent schema of classes. The instances of known classes are of course
directly accessible. However we may also want to load other persistent objects
that can be seen as instances of known classes.

Evolution of classes The classes of an application can evolve. The persistent
instances stored by the former versions of these classes should be able to be
loaded, used, and even translated in order to be adapted to the new versions.

The second situation, the evolution of classes, will be dealt with with the manage-
ment of specialized version relationships such as those of the Presage system [Tal94].
In this paper, we shall only present elements of a solution to the first situation.

In section 2 we will first present the context of our work, then we shall show
the contributions of the relationship information thanks to the example of a gener-
alization relationship in section 3. We may have chosen a specialization relationship
but generalization is a little more original. For this example, we shall present the
conditions needed to establish the relationship. Then we shall study the loading
and updating phases and we shall detail the different resulting situations. For these
situations, we shall give arising constraints and operations to perform. We want
thus to demonstrate the interest of the relationships between classes associated to
more accurate semantics in order to improve the quality of the schema of classes and
to share persistent objects. We will conclude with an overview of possible future
works.

'For all Authors: Laboratoire I3S (UNSA/CNRS), Team OCL, 2000 route des lucioles, Les

Algorithmes batiment Euclide B, BP 121, F-06903 Sophia Antipolis CEDEX, France. E-Mails:
{Adeline.Capouillez | Robert.Chignoli | Pierre.Crescenzo | Philippe.Lahire}@unice.fr

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 1/9

Objects and Classification: a Natural Convergence Workshop of ECOOP’2000 May 24, 2000

2 Framework of the study

To improve the class hierarchy power, we have defined a meta-object model called
OFL [CCL99a, CCCL00a]. To facilitate your understanding of the rest of this paper,
we need to present some elements of this model and the context of this study.

2.1 The OFL model

The OFL model, which is the basis of this work, is defined to bring out the notion of
relationship between classes in the object-oriented languages (such as Java [GJS96],
Eiffel [Mey92|, or C++ [Str97]). OFL is designed in the software engineering context
[Ous99]. Tt describes for each language one language-concept entity which manages
one or several description-concepts. These description-concepts represent the dif-
ferent kinds of classes (for example, in Java, we can find classes, interfaces, arrays,
...). Each of them can be considered as the source or as the target of a relationship
(described by a relationship-concept) such as inheritance or aggregation.

Hereafter, we present the few elements of OFL that are essential for the under-
standing of this paper.

e The system is fully reified: the classes (such as in CLOS [Kee89| or Smalltalk
[GR83]) and the relationships are also described as instances.

e The feature definition (functions, procedures and attributes) and the invariant
(of class), described under the form of a conjunction of conditions, are stored
within classes.

e The values of the attributes are stored within instances.
e When we speak about the type of a feature, we mean:

— for an attribute: its type,
— for a procedure: the set of types of its parameters,

— for a function: the set of types of its returned result and its parame-
ters (the returned result is considered as a result-parameter which only
provides a syntactic simplification).

e FEach class defines a default value for each of its attributes. This default value
must respect the invariant of the class.

The main original aspect of our approach is to focus on the properties of the
relationship-concepts (relationships between classes) in order to exploit these data.
The first interest of this rich description is that we can use this new information
to improve the quality of the developed software. Therefore we can provide better
documentation, maintainability, reusability, ... Another interest is to be able to
make a better specification of the relationships between classes in object-oriented
languages. For example, we can set a real specialization or generalization (or ...)
relationship, as in the modelling stage (UML |[RJB98|), between two classes rather
than just using inheritance as a roundabout way.

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 2/9

Objects and Classification: a Natural Convergence Workshop of ECOOP’2000 May 24, 2000

Unlike Java, C+-+, FEiffel, ..., each of which offers an inheritance relationship
with fixed semantics, our approach is to propose a more flexible way to design more
adequate relationships. Like CLOS and Smalltalk, we can redefine the operational
semantics of inheritance or even define new relationships. But unlike them, we want
to offer the programmer a simple way to do that [CCL99b)].

This paper neither presents the OFL model nor the way to construct new rela-
tionships. We only want to show here some possible improvement, that we may get
for the management of persistent object thanks to a better classification.

2.2 Context

We are first in the context of a persistent programming language which does not rely
on a database management system. So some problems may appear. For example,
when you load an object, in an object-oriented database management system, you
automatically load its class. We assume a persistent programming language which
would not proceed this way. Indeed, as said in the introduction, an application may
have evolved regardless of the persistent schema, but we think that we can even so
provide the loading of the object.

Thus we want to point out that we are in the framework of a programming
language where the loading of a class from the persistent schema is not performed
implicitly?. Therefore, loading an instance does not imply loading its class. Our
approach is indeed to load this instance by adapting it to the transient schema (the
application one). We admit that it is also possible to load a flattened view® of the
class. We do not assume that the loading operation is more or less static or dynamic.

We have chosen to use the ROOPS service [Cap99| which provides a persistent
modelling of OFL entities. ROOPS is designed in order to allow the storage of both
instances and classes but also of all the information dealing with the relationships
between classes®.

To explain our approach, we shall now give a definition of the following terms:
migration, loading and updating.

What is meant by migration is the process which allows to change the class
of an object. It is not polymorphism which allows to consider an object as an
instance of a compatible class. It is an irreversible transformation (unless we make
an opposite migration which is not a cancellation but another transformation which
cannot guarantee that the object will come back to its original state). Therefore
the migration allows to break the instantiation relationship which exists between an
instance and its class.

Loading is the operation which makes an object go from the persistent world to
the transient one. The updating process is the reverse operation.

In the framework of our approach, we did not allow to perform the following
operations during the updating process:

2The explicit loading of classes is obviously feasible.

3For a class, flattened means a transitive closure is made on this class. So all its features are
seen as local.

4The relationships between classes and objects, such as that of the instantiation one, or between
objects are also designed in OFL and ROOPS. But this paper does not intend to deal with these
kinds of relationships.

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 3/9

Objects and Classification: a Natural Convergence Workshop of ECOOP’2000 May 24, 2000

e Migration. We consider that the change of class for an object is too impor-
tant an operation and it cannot be made implicitly by an application when
updating. Indeed, an application could lose the track of an instance that it
created if another application makes this instance migrate.

e Modifying the value of persistent attributes which are not loaded
in the transient world. Those attributes, which are not loaded by the
application, must not be modified, in order to keep the integrity of persistent
instances at the updating time.

e Representating an object of the real world by several persistent in-
stances. In order to keep the integrity of the persistent world (each persistent
object has a unique identity) at the updating time, if the transient image of the
persistent instance is incompatible with this persistent instance, the creation
of a new persistent instance corresponding to the same object is prohibited.

2.3 Caption

Finally, figure 1 gives the common caption of all the other figures of this document,
therefore they will only show the specific part of their caption.

CAPTION

I:l Class O Occurrence

7™ Instance adapter i --->j jisanimageofi
i ---= X iisanoccurrenceof X X > i Xwantstousei

X —Y Xisagenerdlizationof Y X <Oo—~>Y XisthesameclassasY

Figure 1: A common caption

7 s an image of © means that j describes the same object as i but with another
type. X is the same class as Y means that X, from the persistent world, is faithfully
represented by Y in the transient world.

3 Generalization relationship

We choose to present a generalization relationship rather than a specialization one
[CCCLOOb] because it is more relevant to improve a class power hierarchy. This kind
of link is useful in some situation. For example, we want to add a class in the middle
of a library class hierarchy. And we do not want or cannot modify this library by re-
engineering it with a top-down approach. Here, it is possible to use a generalization
relationship to insert the new class with accurate links into the existing ones.

3.1 Definition of the relationship

A generalization relationship is the reverse of a specialization relationship. For lack
of anything better, the inheritance implemented in the object-oriented languages

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 4/9

Objects and Classification: a Natural Convergence Workshop of ECOOP’2000 May 24, 2000

is sometimes used to implement generalization [Mey97|. In order to be able to
establish a generalization relationship between a S source-class and a C target-class,
it is necessary to satisfy the following conditions:

1. S cannot define new features.
2. S can remove some features from C.

3. S can redefine the features of C if and only if the type of redefined attributes,
redefined feature parameters and redefined function results are generalized
according to the type defined in C.

4. The invariant of S is equivalent to or less strict than the C one.
5. The set of the instances (extension) of S includes all the instances of C.
The three following examples present typical cases of generalization relationships:

1. The RECTANGLE and LOZENGE classes (source-classes) are generalizations of the
SQUARE class (target-class).

2. The CAR class is a generalization of the PORSCHE class.

3. The ATRCRAFT class is a generalization of both HELICOPTER and PLANE classes.

3.2 Illustration: influences and contributions

To illustrate the influence of the generalization relationship in the management of
persistent objects, we give the example described in figure 2. In the persistent world,
the CAR class (which has a direct al instance) is a generalization of the DIESEL_CAR
class.

PERSISTENT WORLD APPLICATION
DIESEL CAR|— |~ JpIESEL CAR
CAR [Neo_ .

Figure 2: A generalization relationship

Here are some elements of the two class definitions (considering that DIESEL_OIL
is a specialization of FUEL). It is not a source code but rather a flattened description
of these classes.

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 5/9

Objects and Classification: a Natural Convergence Workshop of ECOOP’2000 May 24, 2000

Class DIESEL_CAR

Class CAR Features
Features owner: PERSON
owner: PERSON fuel: DIESEL_QOIL
fuel: FUEL consumption: INTEGER
consumption: INTEGER preheating_time: INTEGER
Invariant Invariant
consumption > 0 (consumption > 0) A
End_Class CAR (preheating_time > 0)

End_Class DIESEL_CAR

The DIESEL_CAR class is loaded by an application A from the transient world.
This class is stemming from the persistent world which also contains the CAR class.
A has no knowledge of CAR. There is a persistent al instance of CAR. We can admit
that the application A wants to handle all the persistent instances of DIESEL_CAR
but also those of CAR which are compatible with the description of a DIESEL_CAR.

3.2.1 Loading

We can see that the DIESEL_CAR class has no instance, the CAR class has one. How-
ever, this instance can be viewed under some conditions as a DIESEL_CAR.

An al instance of CAR in the persistent world can become a di instance of
DIESEL_CAR in the transient world, following the next chronological steps:

1. a1 is loaded in transient memory (let us call it al-aux).

2. Each missing attribute from al-aux according to DIESEL_CAR is added to
al-aux with its default value defined in DIESEL_CAR.

3. If and only if al-aux satisfies the invariant of DIESEL_CAR, then it is viewed
in the transient world as an instance of DIESEL_CAR called d1 (cf. figure 3).

PERSISTENT WORLD APPLICATION

DIESEL_CAR N S DIESEL_CAR

/ A

CAR .

»

Figure 3: Loading of a generalized object

If the condition mentioned in the last step is not satisfied then al-aux is removed
from the transient world. Therefore loading a1l is impossible.

During the adaptation from al to d1, we neither deal with the invariants nor the
routines because they are described at the class level and not at the instance level.

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 6/9

Objects and Classification: a Natural Convergence Workshop of ECOOP’2000 May 24, 2000

3.2.2 Updating

When all the operations are finished in the transient world, we deal with the updating
phase in the persistent world. Several situations can occur:

No updating is wanted. All the modifications made in the transient world are
lost.

An updating is wanted. Here we face two alternatives:

e No value of an attribute added to d1 has been modified®. In this case,
it is useless to keep the value of these attributes. al from the persistent world
is therefore updated according to the attributes of d1 defined in CAR (cf. figure
4). Moreover this is directly possible because the invariant of DIESEL_CAR is
compatible with the CAR invariant. Indeed, this compatibility is ensured by
the semantics of the generalization relationship.

PERSISTENT WORLD APPLICATION

DIESEL_CAR - ! DIESEL_CAR

/ A

CAR .

77777

Figure 4: Updating of a generalized object (particular case)

e The value of at least one attribute added to d1 has been modified.
We want to keep al from the persistent world as a direct instance of CAR. We
also want to keep the new information brought by A which considers al as a
DIESEL_CAR. To this purpose, we add an adapter to al in the persistent world.
It allows to consider al as a direct instance of DIESEL_CAR. This adapter called
d1-al contains all the values of the direct attributes of DIESEL_CAR. In our
example, we keep all the values of the attributes of d1 that are not in a1® (cf.
figure 5). The values of the attributes of d1 contained by CAR are updated in
al, those specific to DIESEL_CAR are updated in di-al1. An adapter can be the
interface of only one instance. An instance can have several adapters, each of
them being attached to a different type’.

5They still have their default value.
6Hence the notation di-al: d1 minus at.
"It means an object can have several instantiation relationships to different classes.

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 7/9

Objects and Classification: a Natural Convergence Workshop of ECOOP’2000 May 24, 2000

PERSISTENT WORLD APPLICATION

DIESEL_CAR | DIESEL_CAR

Figure 5: Updating of a generalized object

4 Prospects and conclusion

Thanks to the studied example, this paper has presented our first works on the use
of information associated to the relationship between classes in order to improve the
class hierarchy quality and to reuse persistent objects.

In this example, the use of a specific relationship (generalization) shows that it
is more pertinent than a simple inheritance relationship. Indeed, inheritance can
be used for numerous uses (such as specialization, generalization, views, versions,
code reuse, ...). It is therefore impossible for the system to attach some strong
semantics to the edges (inheritance relationship) of the schema of classes. It is even
more difficult to use these semantics when the instances are loaded by applications
which only know a part of this schema. We have not shown it here, but the use of
a specialization relationship improves the persistent object reuse too.

We have also shown that a better knowledge of the relationships between classes
— at the persistent level as well as in transient applications — allows to handle
instances which, otherwise, would not be loadable by applications.

These are our development prospects:

e the generalization of this approach to version relationships to handle the ap-
plication evolution,

e an extension of this approach removing some of the constraints set in the
context section (for example, we could accept migration in some situations in
order to re-classify objects), and

e the programming of a prototype handling a subset of the OFL model, for
example by extending Java with one or several new relationships.
References
[Cap99] A. Capouillez. ROOPS : un service paramétrable de persistance pour OFL.

Technical Report 99-15, Laboratoire d’Informatique, Signaux et Systémes de
Sophia-Antipolis, septembre 1999.

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 8/9

Objects and Classification: a Natural Convergence Workshop of ECOOP’2000 May 24, 2000

[CCCLO0]

[CCCLO0b)

[CCL99a]

[CCLY9D)

[GJS96]

[GR83]

[Kee89]

[Mey92]

[Mey97]|

[Ous99]

[RIBIS]

[Str97]

[Tal94]

A. Capouillez, R. Chignoli, P. Crescenzo, and P. Lahire. Gestion des objets
persistants grace aux liens entre classes. In Conférence OCM’2000 (Objets,
Composants, Modéles 2000), mai 2000.

A. Capouillez, R. Chignoli, P. Crescenzo, and P. Lahire. How to Improve
Persistent Object Management using Relationship Information? (to appear).
In Conference WOON’2000 (4 International Conference "The White Object
Oriented Nights" 2000), June 2000.

R. Chignoli, P. Crescenzo, and P. Lahire. An Open Object Model based on
Class and Link Semantics Customization. Technical Report 99-08, Laboratoire
d’Informatique, Signaux et Systémes de Sophia-Antipolis, March 1999.

R. Chignoli, P. Crescenzo, and P. Lahire. Customization of Links between
Classes. Technical Report 99-18, Laboratoire d’Informatique, Signaux et Sys-
témes de Sophia-Antipolis, November 1999.

J. Gosling, B Joy, and G Steele. The Java Language Specification. The Sun
Microsystems Press Java Series. Sun Microsystems, 1996.

A. Goldberg and D. Robson. Smalltalk-80 — The Language and its Imple-
mentation. Computer Science. Addison-Wesley Publishing Co., 1983.

S. Keene. Object-Oriented Programming in Common Lisp — A Programmer’s

Guide to CLOS. Addison-Wesley Publishing Co., 1989.
B. Meyer. FEiffel: The Language. Object-Oriented Series. Prentice Hall, 1992.

B. Meyer. Object-Oriented Software Construction. Professional Technical Ref-
erence. Prentice Hall, 1997.

C. Oussalah, editor. Génie objet : analyse et conception de ’évolution. Hermes,
septembre 1999.

J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. The Object Technology Series. Addison-Wesley Publishing
Co., December 1998.

B. Stroustrup. The C++ Programming Language. Addison-Wesley Publishing
Co., 3 edition, 1997.

G. Talens. Gestion des objets simples et composites. Thése de Doctorat en
Génie Informatique, Automatique et Traitement du Signal, Université Mont-
pellier II, février 1994.

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 9/9

