OFL: An open object model based on class and
link semantics customization

Robert Chignoli, Pierre Crescenzo & Philippe Lahire

13S Laboratory, University of Nice Sophia Antipolis, Les Algorithmes,
batiment Euclide, 2000 Route des Lucioles, Sophia Antipolis 06140 Biot - France
{lahire, chignoli, crescenz}@i3s.unice.fr

Abstract. The need to “open” object langages in order to make them
more able to fit new situations appears as a major issue.More and more,
objects will be persistent and mobile and will have to get adapted to the
evolution of their original pattern. In the context of software engineering
class languages, these ideas mean that the basic mechanisms (classes,
inheritance and client-supplier links) need more flexibility. According to
that, we propose a general model which allows some customization of
class language semantics. This model provides a reflective and struc-
tured framework for the encapsulation of first level object semantics into
three main types of meta-programmable components (“classes”, “links”
and “languages”) which role and potential interest are presented in this
paper.

1 Introduction

The starting point of this project is the integration of persistency in class-
languages [1] and by the way, the necessity to consider a set of situations (version
management, interoperability, etc.) which can be required for writing and main-
taining applications.

The variety of the requirements in these fields has led to the definition of
three main targets : a) to allow the customization of the concept of type in order
to - for instance - arm or disarm the insertion of an object into the persistent
collection of its type; b) to allow the customization of links between classes in
order to - for instance - restrict a general mechanism of inheritance to a specific
use; ¢) to allow the building of new links between classes as - for instance - a
link of «is a version of».

Through these targets, we are in some way addressing the well known idea
of «open language» that we propose to apply to the field of industrial object-
oriented languages in order to make them more flexible !.

In order to reach the targets mentioned above, we have defined the OFL
model which formalizes, in Eiffel3, our approach. This model is currently under-
going implementation as the OFL/VM platform (Virtual Machine) [2].

! Hence the name of the project : Object Flexible Language. This may be also read as
“Open Eiffel” (Eiffel is pronounced FL in French) because most statements proposed
by OFL are derived from Eiffel.

2 Robert Chignoli, Pierre Crescenzo & Philippe Lahire

OFL/VM is designed as an open application which provides two program-
ming levels: a) a meta-level which provides a framework for the concept definition
(classes and links between classes), and the handling of relationships between
those definitions; b) a base-level which allows the programmer to develop his
application using the concepts of classes and links between classes defined at the
meta-level. From another point of view, OFL/VM may be shown as a library of
components which may describe the semantics of classes and links implemented
in languages such as Eiffel, Java, Smalltalk or C++.

The first version of OFL/VM relies on a reflective architecture. This tech-
nology (which current bounds regarding efficiency are well known) provides,
according to our purpose, the flexible framework which is perfect for first exper-
iments.

This paper lays out successively: 2) the outlines of OFL model, through an
example which describes the computation of a remote-call statement; 3) the set
of customization facilities defined within our approach. Finally, /) we position
our approach according to related work and) we conclude with current state
of the project and perspectives.

2 The OFL model through an example

2.1 Description of the example

Figure 1 shows a toy application built with three components: EXAMPLE,
SQUARE and RECTANGLE (where class EXAMPLE acts as the main pro-
gram). Components which are shown in this figure are written using the Eiffel3
language syntax and semantics [3]. Semantic links? are client-supplier relation-
ship and (FEiffel3) inheritance whereas the concept of class is the Fiffels one’s.
In our exemple there are several client-supplier links (is-client-of):

— one from class EXAMPLE to class RECTANGLE (attribute rectangle),
— one from class EXAMPLE to class SQUARE (attribute square).

There are also inheritance links (inherit-from):

— one from class SQUARE to class RECTANGLE,

— three others, implicit within Fiffel? syntax, which have class ANY as tar-
get and respectively, EXAMPLE, RECTANGLE and SQUARE as source
classes.

2 In the following, the class which declares a link is the source class, whereas the one
which ends the link is the target class.

OFL: An open object model based on class and link semantics customization 3

class RECTANGLE
creation

make
class EXAMPLE feature

origin_x, origin_y: INTEGER
bottom_x, bottom_y: INTEGER

creation
make

feature make is do end

set_origin (x, y: INTEGER) is do end
set_bottom (x, y: INTEGER) is do end
perimeter: INEGER is do end

rectangle: RECTANGLE —~------~ is-client-of

square: SQUARE. - _________ is-client-of

end -- class RECTANGLE

make is
local
x,y: INTEGER inherit-from

do

Il square.make class SQUARE
x:=1; y:=10

square.set_origin (X, y)
x:=100; y: =50 RECTANGLE

square.set_bottom (x, y) redefine make, perimeter

X 1= square.perimeter Statement of example end
- i - —— - —
Described in figure 2 creation

rectangle := square make
X := rectangle.perimeter
end -- make feature
make is do end

inherit

end -- class EXAMPLE

perimeter: INEGER is do end

end -- class SQUARE

Fig. 1. A basic application (Eiffel3 syntax)

2.2 Overview of OFL model entities

Each class of the application (EXAMPLE, SQUARE, RECTANGLE) is repre-
sented by an instance of the meta-class M_ CLASS. It corresponds on the first
hand to the reification of a class (attribute, procedure, function, inheritance link,
etc), and on the other hand, to the semantics of the class concept within the lan-
guage (in this example, the semantics of an Fiffeld class). In Eiffel3, every class
inherits from class ANY. Within our model we propose the ROOT M _CLASS,
a predefined class which implements the basic services that any object should be
equipped with; it will provide all necessary features for an easy implementation
of the class ANY as it is implemented in Eiffel3 (for making the figure 2 more
readable we do not draw it).

The is-client-of use link and the (Fiffel?) inheritance importation link,
are represented by instances of the meta-classes USE LINK M CLASS and
IMPORTATION LINK M CLASS. Those meta-classes are specialization of
class M_CLASS so that, their instances are described by predefined classes:
USE_LINK and IMPORTATION_ LINK (see section 3.1).

Instances of class EXAMPLE and SQUARE are described by class M OBJEC'T.
Each object contains the fields that match the attributes described within its
class (e.g.: att_square for class EXAMPLE). Each object® may become persis-

? Within our model, routines and classes are also objects.

4 Robert Chignoli, Pierre Crescenzo & Philippe Lahire

tent and can access to its type through an instantiation link (is-an-instance-of).
Class instances do not contain any customizable semantic operators.

An instantiation link is a link of type object to class, and is represented
by an instance of meta-class OBJECT TO CLASS LINK M CLASS, (see
section 3.1). These links are customizable, they provide a support for the mod-
eling of complex treatment allowing the delegation of an object request to
a class. For any language, it is possible to define an instantiation link with its
own semantics, so that it allows the integration of a customized handling of per-
sistency, and additional controls or actions for the object contents conversion or
adaptation.

A job request corresponds to a statement which does not have a univer-
sal semantics but a semantics which depends on the language which defines it.
For instance, a conditional schema (if condition then code-then else code-else)
relies on a well known semantics, whereas, for instance, a dot expression (at-
tribute.procedure(...) or attribute.function(...)), depends on the semantics of the
language. Section 2.3 gives more details about a job request with the FEiffel3
semantics (att_ square.perimeter).

2.3 Modeling of a statement execution

Each meta-class (M CLASS, USE_LINK M CLASS, IMPORTATION LINK-
_M_CLASS), provides a set of customizable semantical operators (object at-
tachment, routine invocation, etc), which are activated according to needs, all
along the application execution (tables shown in section 3.3 provide a full list of
these operators). Our computational model is based on two principles: the dele-
gation of semantical actions and controls (SAC) between meta-class instances,
and the submission of job request between class instances. The concept of
delegation implies that the whole semantics is not centralized but distributed
within the different meta-classes and that coordinating actions are mandatory.
The concept of submission means that each object which receives a job request
is up to choose whether it handles it now, never, for some objects only, later, etc.

The statement which is shown in this example is att_square.perimeter. Its
definition is located in routine “make” of class EXAMPLE which is the root class
of the toys application (see figure 1). In Fiffel8, when the program is launched,
one instance of class EXAMPLE is created; this is on this instance that the
statement should be applied*; it becomes the first current object®. Figure 2
describes main steps (numbered from 0 to 11), of job request processing®.

The instance of class EXAMPLE receives the submission of this job re-
quest (steps 0 and 1) which handling is delegated to the class EXAMPLE

* The reader may note that all prior operations are not defined within the figure.
® The object which is currently running the routine which holds the statement.
6 Operator names mentioned in this section are described in section 3.3.

OFL: An open object model based on class and link semantics customization 5

M _cLass M _cCLASS
RECTANGLE [[} . —frooT_m crasq |
Search feawre |V !
“perimeter”
S e
inherit-of e
features features
permeer wreseg)——) 7 oo
4
‘
1 is-client-of
IMPORT_LINK !
inherit-of T to class INTEGER

Delegation of job request to class

Delegation of feature search to class

u cipss (Gmer_To_ciAss i) |
LSLass | OBJECT_TO_CLASS_LINK wm_ossecT |
[T souare ‘ [S ‘
execution of "perimeter [<7777 7777777 SQUARE |
2 features ! e
= perimeter: INTEGER T ;
e
= i i
5 i !
2 j USE_LINK !
D —— v s ! T is-client-of !
= | ! i
search feature g | v i
& receiver-object = i
- = _ (Use_ink) -...o.. to class INTEGER !
e N = - . i
A is-client-of i
features " i
at_square: SQUAREL H— ;
i El Ra— Job request submission to receiver object
I T !
OBJECT_TO_CLASS_LINK

Délegation of job request to class (submit)

M_OBJECT
=] exempLe X Job request
/ contents (att_square.perimeter)
-
_k = B L Préparing job equest
i .
fields Ly cquare CZ -~ 4---- is_local (faise)
....... i N is_synchronous (true)
= is, ed t
2 _typ (true)
2 Job request SUbmission io current object (SUBMIT)
=
gi[o]
] APPLICATIONGL @ (D Class instance
kbl = CO metaclass instance
—— instruction a sémantique déportée

——— Volatil reference

____= Persistent or volatile reference

,,,,, Submission or delegation of job requesst

SAT Semantical Actions and Tests
Ensemble d'opérateurs sémantiques

Fig. 2. An example of function-call computation for an FEiffeld application

(step 2) through the is-an-instantiation-of link. Since this link is customizable,
it is possible to use the operator submit of OBJECT TO_CLASS LINK object
in order to activate SAC before (or after) the delegation becomes effective.

When the job request delegation reachs it, class EXAMPLE handles the
submission of this job request. The description of the semantics associated
to the submission (operator submit of M CLASS) depends on the language
attached to the job request. Mostly, the handling of the submission of a job
request is made up following actions:

— To find the kind of job request (also step 2) : a job request may be
internal to the object (object attachment, creation or deletion of object,
routine invocation or access to fields corresponding to attributes defined
within the class”), or may need to be encapsulated within a message in
order to be submitted to another object; this is the case for all access to
attributes or routine call when they are performed thru a use link; this kind
of job request is commonly called dot expression.

— Case of a dot expression (it is the case in 1), it is necessary to:

e search, using name and context of the statement, the attribute or the
function which allows to access after evaluation to the object-receiver

Robert Chignoli, Pierre Crescenzo & Philippe Lahire

(step). These actions are performed thru the operator item of M CLASS
which returns the appropriate feature. This customization allows to im-
plement all types of feature overloading, all possible feature search mech-
anisms, according to the importation links starting from the class; these
links are represented by objects of type IMPORTATION LINK; this
kind of link allows to describe adaptation clauses (as those that may
be found in most object-oriented languages®), and to delegate feature
searches to the classes reached by the link.

e find object-receiver(step 4), thru attribute access or thru function com-
putation (the attribute att_square points out receiver-object), and to
perform controls corresponding to the language semantics (e.g. feature
exportation in Eiffel3). All these actions are encapsulated within the op-
erator execute of M_CLASS which can possibly be implemented, as
it is proposed in section 3.4. This operator (and those it is using) al-
lows to plan and perform all predefined control and actions (loading of
persistent object, updating of class extension, etc), according to the use
link associated to the typed feature and to the semantics of class con-
cept. The reader may note that it is a link between classes and that it
is represented by an object of type USE_LINK.

e encapsulate the submission of job request within a message and for-
ward it to receiver-object (step 6), using actions defined within the op-
erator send (in this example the object pointed out by att_square); the
receiver object becomes the new current object. A message should always
be sent according to the constraints associated to the use link, that is to
say using the semantics attached to this link (for an Eiffel3 application
it is a client-supplier link). Typical actions that should be performed be-
fore forwarding the message deal with the loading of persistent objects,
information recording, controls; for an Eiffel3 application it will be nec-
essary to check®that the feature att_square is visible (exported) to class
EXAMPLE (step 5).

— Case of an internal job request. The job request which is received by the
object attached to att square is perimeter; this object (the new current
object) delegates the job request to its class, in the same way as the object
of type EXAMPLE (see above, step 7). The class finds out that it is an
internal job request. It is necessary to perform following actions:

e To search the feature that should be accessed (same as feature-search
described in the case of a dot expression). In this application, the search
is extended to the class which is imported, that is to say, target of an
importation link (steps 8, 9);

¢ To compute the routine (procedure or function depending on the applica-
tion) or to access the attribute (step 11). Some SAC may be performed
before (see explanations given in the case of a dot expression for the
operator execute, step 10)'°.

OFL: An open object model based on class and link semantics customization 7

We mentioned above several operators of M CLASS, especially those that
deal with the customization of class semantics submit, send, execute, etc. Of
course those operators have twins in order to be able to return the result of a
function or the value of an attribute when it is required (execute with result,
submit_ with_ result), or aresponse when the message needs one (send__ with-
__response).

3 A model for customizing language semantics

In the previous section, we presented the main aspects of the OFL object protocol
at run-time, and some of the possible customization that may be done with our
model. This section intends to provide a more comprehensive list of operators
and to propose a classification of customization facilities.

3.1 Definition of the concepts of language, class and link

Figure 3 gives a synthetic overview of the OFL design according to the semantic
customization. This design relies on the concepts of language, class and link :

— The reification of class semantics. It allows to customize, among other
things, routine invocation, message sending, object attachment and object
creation. The choice and the contents of operators implementing the cus-
tomization of class semantics rely in particular upon following remarks:

e The need to coordinate the use of the semantics located within links
(whatever is the class concept in which the description of the link se-
mantics is associated, this description should not be dependent on the
other types of link; this is the role of the class to handle these dependency
problems).

e The semantics of an action initiated by a class may be influenced by the
semantics of the links which plays a part in the action.

— The reification of link semantics depends on the kind of link :

e The importation links (object structuring)

e The use links (structuring of exchanges between instances of classes)

e The “object to class” links (structuring of the exchanges between an
object and a class)

We do not provide any support for the modeling of “object to object”
links. According to our approach, all exchanges between instances of classes
are defined by a link between object classes (importation links and use links).

7 1t includes attributes and routines defined within a class reachable thru an importa-
tion link.

8 We allow the definition of complex adaptation clauses : redefine, rename, undefine
and forget a feature (see section 3.1).

¥ These controls may be static or dynamic (see section 5).

10 For readability purpose, links with class INTEGER are not fully described but it
looks like the link between EXEMPLE and SQUARE.

8 Robert Chignoli, Pierre Crescenzo & Philippe Lahire

— The reification of language semantics groups together: a) the semantics
of classes (a given language may possibly define several concepts of class, for
instance a “usual” concept of class and then a concept of version or view
[4]), b) the semantics of the links defined within the language, and c¢) several
other informations, controls or rules regarding the combination of link types
and concepts of class.

class concept / link type | Link type N°1| link type N°2 .
Class concept N°1 info info Semantics Semantics
..... of concept of concept
Class concept N°2 info info of class of class
N°1 N°2

N°1 N°2 N°3

Language semantics Sem_antics Sem_antics Senjantics
— of use link type of use link type of use link type

Semantics Semantics
of import link type of import link type

N°1 N°2

Semantics
of object-to-class link type

N°1

Language semantics

Fig. 3. Reification of language semantics

3.2 Operators for customizing the concept of language

This section goes back over the operators for the language semantics customiza-
tion; these operators allow to access to information which are useful for the
handling of interoperability between objects built with different languages, and
for the implementation of normalized programming rules (for instance within a
company). We present below the set of the main operators, with possible inter-
esting examples of use.

— Recording of the meta-programming level which is used (see section 3.4 for
the definition of meta-programming level);

— Recording of the number of importation links (of same type) that it is possi-
ble to declare in the same source class, both for the same or different target
classes. This is especially interesting for the control of the class importation
semantics:

OFL: An open object model based on class and link semantics customization 9

e importation of only one class (to be related with single inheritance);

e importation of n classes (to be related with multiple inheritance). Being
able to set the number n may help for the implementation of a program-
ming methodology within a group of programmers (for instance, no way
to inherit from more than 2 classes);

e importation several times of the same type (to be related to repeated
inheritance), still with the ability to set the upper bound.

— Recording of several rules dealing with the compatibility between the con-
cepts of class and link; these rules take into account the role of the concept
of class (source or target of the link). For instance, if there are two con-
cepts of class (abstract class and implementation class), meta-programmers
may allow the use of an is-a-subtype-of importation link, only within an
abstract class and the use of an is-an-implementation-of importation link
only within an implementation class (see [3] and [5] for the description of
inheritance link usages).

Access to a shared ressource which allows to describe, when it is possible, the
equivalence between link types or concepts of class defined in two different
languages.

Information associated to the operators described above are particularly useful
when people deal with persistent objects created by an application written with
another language; they provide a way to control the distance between language
semantics. The meta-programmer may use those information when he describes
the operators for which we propose a classification in the next section.

3.3 Classification of operators for customizing classes and links

Operators dealing with the customization of the semantics of classes and links
are split in several categories :

Feature looking,

— Semantical controls,

Computation of job request (routine invocation, attribute access, message
sending, etc),

Handling of class instances and class extensions (creation, deletion and object
attachment, etc), and

— Generic operators (copy, clone, equality, etc).

The reader will note that the set of features which handle the modification of
class contents (feature adding, etc) is not customizable; there are only involved
in the reification of class concept. For instance, consequences of attribute adding
or removal should be handled by the definition of new ad hoc link types such
as an is-a-version-of link (importation link), and an “object to class” link; the
structural reification may not be customizable whereas the computational reifi-
cation does.

The classification we propose is divided in two parts of unequal size:

10 Robert Chignoli, Pierre Crescenzo & Philippe Lahire

— The customization of classes and links between classes which is described

in the next five sections. In each section, we give a list of operators which
customize class semantics; for each class operator we mention the operators
which customize link semantics!!.

— The customization of objects thru links of type “object to class”; this provides
a way to customize the concept of object (instance of class) which is not
customizable by itself. The description of those operators may be found in

section 3.3.

Each operator takes a job request as input; its contents (at least the state-
ment which corresponds to the job) is updated as long as the different operators
are activated. For instance, contents updating deal with the feature which is re-
turned by feature-searching operators, the effective parameters after evaluation
and, possible intermediate result(s) in the case of dot expression processing.

Feature looking. Before any feature computation, it is necessary to find the
feature associated to a given name according to the statement context (type,
number of effective parameters, etc); the operators which customize those actions
are given in table 2.

Class operators

Description of class operator

Related link operators

(definition of search sequence is extended to imported classes

match returns true if the feature hed to p isfi is_match
verloading rules. (definition of overloading rule).
local _lookup returns feature of class (if it exists) which satisfies
verloading rules. (definition of search sequence)
lookup returns feature of class (if it exists) which satisfies overloading lookup
rule; class may be found in linked classes by importation link lookdown

item

returns feature of class (if it exists), which is accessible directly

or thru imported classes. (coordination of operators match, local lookup and lookup)

all _features

Returns the set of all class features

Table 2. Customization of feature search

Let us take an example with the operator item of class M_ CLASS. It allows
the coordination of the feature search, thru the processing of the local lookup
et lookup operators following the chronological order defined by the meta-
programmer. These operators handle respectively the feature looking within the
class only, and the feature looking in the target classes of importation links.

OFL: An open object model based on class and link semantics customization

11

Class operators

Description of class operator

Related link operators

is_import_links_valid

definition of validity rules for the use of importation links

is_use_links_valid

definition of validity rules for the use of use links

is_arguments_ compatible

definiti

of

ibility b

is_arguments control valid

effective and formal arguments

before arguments_control

after _arguments_ control

is_type conformance

definition of type conformance rules

is_same_type

definition of rules for type equality

is_generics_valid

Nl rer

of

ibility b

effective and formal generic parameters

is_valid_request

definition of job request validity (visibility, ...)

is_feature valid, is_send valid

Table 4. Customization of semantical controls

Semantical controls. This section deals with operators that implement pos-

sible dynamic control. If those controls are handled statically, the operators are

empty (see table 4).

For instance, let us consider the operator is import links wvalid. This is
typically the operator which should contain the controls dealing with importation
links, using the information located at the language level (see section 3.2). Such
controls are particularly useful in a universe of persistant objects attached to

different language semantics.

Computation of routine or access to attribute. Operators of this section
deal with the customization of routine computation and attribute access for
current object or for distant object thru a use link (see table 6).

Class operators

Description of class operators

Related link operators

arg eval definition of arg I rules |before_argument _ . after_argument _
is_argument _evaluation _valid
effective_to_ formal h of effe arg| to | before_effective_to_formal, after_effective_to_formal
formal ones is_effective_to_formal _valid
detachment of effective arg is_detach_effective_valid

detach_eff

before detach effective, after detach effective

before _request

Source code in front of the first

statement of one routine body

before _feature

after_request

Source code after the last

statement of one routine body

after_feature

coordi of routine computation

or of attribute access

execute with result

idem as execute but with

a result returned after computation

send

of ge sendi

coordi

for dot expression

before_send, after_send

send_ with_response

idem as send but with a response

to message (asynchronous or not)

before_send, after_send

submit

of job req bmissi

coordi

submit_ with_response

idem as submit but with a response or

result after request processing

Table 6. Customization of routine computation and attribute access

We consider the operator eﬁ'ective_to_forma112. This operator customizes
the attachment of effective parameters to formal ones when the routine is be-
ing processed. The result of this operator computation depends a lot on the

' We present in this paper a first version of the set of link operators, it will be refined

as long as we will extend the link-type library.
12 Tn section 3.4, we describe the contents of operator execute of M_ CLASS.

12 Robert Chignoli, Pierre Crescenzo & Philippe Lahire

semantics of links attached to routine parameters. According to the type of
links, it is necessary to perform controls and actions dealing with the attache-
ment of effective parameters to formal ones, and describing the point of view
of links (for instance a copy of objects attached to effective parameters in
the case of a composition link); these actions are described in link operators
such as before effective to formal, after effective to formal or else
is effective to formal valid. The operator effective to formal coor-
dinates and controls the computation of those operators.

Handling of class instances and class extensions Operators located in this
section allow the customization of instance creation or deletion, object attach-
ment, and class extension update (see table 8).

Class operators Description of class operators Related link operators
create instance creation, coordination b is_ ion_valid, before _creation
g ic and non g ici after_creation
instance _ creation Il of non g ic i is ion_valid, before _creation

after_creation

generic_instance creation allocation of generic instance is_creation valid, before creation

after_creation

_ deleti deletion of i i is_ deletion _valid
desallocation of before deletion

g ic and non g ic i after_deletion
instance _desallocation desallocation of is_deletion valid
g ic and non g ici before _deletion

after_deletion

assign Rules and action related to is__assign_ valid
object attachment before _asign

after_assign

make _instension creation of class extension
update _extension Update of class extension update _extension
according to source and target classes update _extension_of_to_c

update_extension of from c

Table 8. Customization of the management of class instances and class extensions

In table 8, we mention the creation of generic class instances; the reification
of concept of class described by the meta-class M CLASS provides the opportu-
nity to create generic classes. So that, we should take into account the specificity
of generic instance creation (control of parameter instantiation, etc). Further-
more, the model provides also the ability to handle class extension, that is to say
the set of its instances (see operators make_extension, update_extension);
this is very useful, especially in the framework of the integration of universal op-
erators (V, 3) within a query language or assertion mechanism [1] [6].

OFL: An open object model based on class and link semantics customization 13

Object generic operators. This section deals with basic operators that every
objects should be equipped with. The customization of those operators according
to classes and links should make easier the modeling of links such as an is-a-
version-of link (see table 9).

Class operators Description of class operators Related link operators
cqual_ref. definition of equality of object before_equal _reference
reference after _equal _reference
is_equal_reference valid
equal _ definition of equality of object before equal_contents
contents, not propagated to after _equal_contents
referenced objects is_equal_contents_ valid
deep equal _ definition of deep equality of object| before deep equal contents
contents (equality is tested even after _deep_equal _contents
for referenced objects) is_deep_equal contents_valid
copy_instance definition of object copy, not before _copy, after_copy
pr d to ref d obj is_copy_valid
deep_copy_instance | definition of deep object copy before_deep_copy
(copy is propagated to after _deep copy
referenced objects) is_deep_copy_valid
clone _instance definition of object cloning, not before clone, after clone
pr d to ref d obj is_clone _valid
deep clone instance | definition of deep object cloning before deep clone
(cloning is propagated to after_deep_clone
referenced objects) is_deep_clone_valid
adapt_i definition of i d i before adapt_instance
according to its (new or modified) after_adapt_instance
type is_adapt_instance valid
conforms_to_i definition of ibility rules
between instances

Table 9. Customization of generic operators

Customizing operators such as clone instance allows, for instance, to im-
plement a use link which takes into account the update of all object clones when
the contents of one of them is modified, in order to ensure that objects will
remain identical during their whole life cycle.

Operators of “object to class” links. Operators which describe links of
type “object to class” are the only one that may modify the semantics of class
instances; this choice can be justified by the fact that the OFL model is dedicated
to the description of software engineering languages. The customization of the
“object to class” link types deals with following operators:

— object generic operators (clone, equal contents, etc), see section 3.3,

14 Robert Chignoli, Pierre Crescenzo & Philippe Lahire

— operators which handle object attachment and job request submission
(see operators assign, submit and submit with response of sections
3.3 and 3.3).

3.4 Strategies of meta-programming through an example

It is not acceptable to ask the meta-programmer the same effort (or the same
level of knowledge of the meta-programming tools) whatever are his needs; this
is why we provide a default strategy for meta-programming the large number
of operators which all correspond to elementary needs of customization. But,
of course, the meta-programmer can choose to develop its own sequence of op-
erator invocations and its own operator bodies, or to mix specific and default
programming. This section shows an example with the execute class operator.

We present now in this section the predefined sequence of operator invo-
cations for the operator execute. If a meta-programmer sets in the language
semantics the indicator called is_ default handling, then when operator ex-
ecute is invoked, the predefined sequence is applied. In the following example,
all operators of the model are indicated by a ’<— (*)’. One may note that even if
the meta-programmer chooses the predefined sequence, he can customize a part
of the semantics of the operator execute for the class concept defined within the
language that he addresses (exzecute_ semantics). This possible customization
should be used for handling the coordination of operators which define actions
depending on the type of link semantics.

execute (m: INTRA_MESSAGE) is
-- Computation of intermal job request ’m’
require
message_not_void: m /= void
is_not_void: m.action /= void and m.parameters /= void
exists: attached.has (m)
local
f_tmp: like item
b_tmp: BOOLEAN
do
if is_default_handling then
-- search of feature
f_tmp := item (m) <---- (%)
if not is_error (m) then
-- setting of selected feature in job request
m.set_candidate_feature (f_tmp)
-- evaluation of parameters
parameter_evaluation (m) <---- (%)
if not is_error (m) then
-- control of parameters
b_tmp := is_parameters_compatible (m) <---- (%)
if not is_error (m) then
if b_tmp then
-- attachment of effective parameters
effective_to_formal (m) <---- (%)
else -- semantical error (type mistmach)
end -- if
-- code executed before the computation of any routine
before_request (m) <---- (%)
-- customized part of operator ’execute’
execute_semantics (attached, m)
-- code executed after the computation of any routine
after_request (m) <---- (%)

OFL: An open object model based on class and link semantics customization 15

-- detachment of effective parameters
detach_effective (m) <---- (%)
else -- Error handling
end -- if
else -- Error handling
end -- if
end -- if
else -- fully free semantics
execute_semantics (attached, m)
end -- if
ensure
end -- execute

Comments: If the meta-programmer chooses to use the predefined semantics,
the operator ezecute is equivalent to the processing of the following semantic
operations (all these operations may contain specific code defined by the meta-
programmer and take into account the semantics of associated links):

Feature looking

Evaluation of Parameters

Check of effective parameter compatibility

Attachment of effective parameters to formal ones

Computation of something equivalent to a before routine
Computation of the specific code, defined by the meta-programmer
Computation of something equivalent to an after routine

® N o oUW

Detachment of effective parameters

otherwise, the meta-programmer build his own sequence of semantical operator
invocations.

Reading the code which corresponds to the operator execute, one should be
strongly convinced that it is very important to get a tools for semantics aided
design (SAD). Such a tool would allow to:

— remove any dependency between the meta-programming task and the lan-
guage used for implementation (Eiffel 3),

— make code optimization according to meta-programming information,
— decrease the complexity of meta-programming tasks.

4 Comparison with other systems

In this section, we propose to briefly position our model according to related
works. We study characteristics of reflective system model built on top of Lisp,
Smalltalk, C++ and Java. Main discussed aspects deal with available concepts
with their ability to be customized, and granularity of reflectivity.

16 Robert Chignoli, Pierre Crescenzo & Philippe Lahire

Systems built on top of Lisp: CLOS (Common Lisp Object System) [7] proposes
a smart, compact and powerful solution based on a Meta-Object Protocol. Each
semantical concept (invocation of function, instance creation, ...) is described
by a function which is itself a meta-object. Among the main meta-objects of
the protocol one may find, for instance, metaobject, method, generic_ function,
method_combination, slot_ definition, specializer, or class; they are themselves
descendants and their contents may be redefined by meta-programming.

According to this, our approach is different from the one of CLOS thru two
aspects. On the first hand, with OFL, the language semantics is located in a
smaller number of concepts (about five for languages such as Eiffel3); On the
other hand, we strongly distinguish (in the description of meta-code) the classes,
that mainly play a role of coordinator and the different link types implemented
in those classes.

Systems built on top of Smalltalk : In NeoClasstalk, F. Rivard [8] is interested in
the evolution of object behaviour in the framework of reflective languages which
are dynamically typed; its motivation is to provide features for decreasing the
distance that exists between the application design and its implementation in
a language of classes, when people face objects which structure and behaviour
change during their life cycle. Among the services provided by NeoClasstalk,
one may note in particular: the control and the lazy update of instance vari-
ables, the ability for an object, to fit the semantics of another class through
the modification of its instantiation link, the extension of the built-in lookup of
Smalltalk in order to take into account multiple inheritance, the reification of
method invocation, and its control thru the receiver-object class. A first use of
NeoClasstalk is the OpenCorba environment [9]. Its objective is to extend the
original model of the OMG [10] with meta-protocol libraries which specialize
the distributed programming mechanisms in order to introduce new semantics
(concurrency, replication, security, ...).

As NeoClasstalk, our approach allows to modelize several link semantics. The
links object to class allow to meta-program the mutation of type in the same way
as NeoClasstalk. The importation links allow to modelize all kinds of inheritance,
including one kind which may delete features. Finally, the use links may handle
problems related to replication and security.

Systems on top of C++ : As it is mentionned within its name, OpenC++ [11][12]
has been designed in order to provide new capabilities to C++ but avoiding
tedious tasks for the programmer, such as the programming of an analyser or the
modeling of a type system. The main uses of OpenC-++ are the development of
syntactical and/or semantical extension of C++. This sytem focuses on efficiency
and handles meta-information at compile time. Main services of OpenC++ are
object assignment, handling of different kinds of expressions, function invocation,
creation and deletion of instances, access and update of variables.

In order to implement its customization, the meta-programmer have to build
a meta-class which inherits from the meta-class class and redefines the routine

OFL: An open object model based on class and link semantics customization 17

bodies that are selected according to the C++ extension that he intends to im-
plement (each routine corresponds to a customizable concept); the new contents
of these routines correspond to the new piece of generated code related to the
semantical action which is considered.

DART project [13] is based on openC++. It proposes an extension of the
C++ syntax and relies on the OpenC++MOP; it aims to provide facilities for
the development of distributed applications thru mechanisms for adapting their
behaviour according to the system and network environment.

Iguana [14] allows the meta-programmer to select the concepts that should be
reified independently from each other. The modification of semantics attached by
default is implemented by inheriting from the class which describes the reification
and specializes the methods that may be found within it. The set of meta-
declarations is encapsulated within the concept of protocol and it is allowed to
build a new protocol from existing ones. The protocols that are used in a class
are selected at declaration time. The main reifed and customizable concepts are
method invocation, creation and deletion of objects, message receiving, feature
search, activation/desactivation of semantical controls.

Unlike OFL, OpenC++ and Iguana are based upon a same existing language
for which an open programming environment is proposed. Our approach is a
little bit different according to the fact that we propose a model which is not
based on any particular language. An other important difference between OFL
and these two models is the central position of links; this corresponds to the
strong determination to isolate the meta-code which handles the relationships
(the links) between entities, from the meta-code which handles class semantics.
Furthermore, from a general point of view, OFL is closed from OpenC++ by its
customizing model expressiveness. Then OFL is close to Iguana by more technical
aspects: the customizable meta-informations, and most of all, the encapsulation
of semantics (concept of language in OFL vs concept of protocol in Iguana).

Systems on top of Java : Standard Java environments provide few capabilities
for reflection. Thru the class loader, it is possible, for instance, to convert an
array of bytes into class, but the reverse translation is not possible. It is also not
possible to change the semantics of a class. The API (java.lang.reflect) provides
services for reflection but reification is limited to structures. Several systems
intend to improve the reflection capabilities of Java.

Systems such as Reflexive Java [15], Dalang [16], metaXa [17], LEAD++ [18],
extend the reflection in Java. They all share the same orientation to Internet, the
same concerns (transaction, security, concurrency, distribution, mobility, persis-
tence), and the idea dealing with the separation between the meta-code and the
application base code.

Reflexive Java, metaXa and dalang provide the customization of method
invocation; the last system offers before and after routines in front of and after
routine invocation, and makes possible to customize routine computation on one
object thru several meta-objects which are associated to it by linking.

MetaXa allows the customization of variable access, object creation, class
loading; it is possible to attach several meta-objects to a same base-level objects

18 Robert Chignoli, Pierre Crescenzo & Philippe Lahire

and to apply the semantics of one or several of them according to the event and
to the use of an operator which provides a way to address the next meta-object.
The information which are useful for the computation (parameter passing mode,
protocols for object replication, persistence handling, message sending, etc.), are
forwarded to meta-object at instantiation time or when operators are activated.

Another system, guarana [19][20], allows, when several meta-objects are at-
tached to a same base-level object of application, to coordinate, put altogether,
or filter, thru a special meta-object, the action of other meta-objects associated
to the base-level object. This approach fits to the design of meta-object libraries
such as MOLDS [21] which address distributed systems.

The LEAD++ model relies on the concept of adaptable procedures (the idea
deals with the adaptation of procedure computation according to run-time en-
vironment). These procedures are associated to methods; the method selection
is made according to an adaptation strategy, to run-time environment, and to
meta-information attached to it.

The models that are briefly described above aim to open one language and
to structurize this openess. Each of them provides characteristics close to those
of OFL : to meta-program the routines before et after (dalang), to attach sev-
eral meta-objects to a same base-level object of application (MetaXa), to coor-
dinate, to put altogether, to filter (guarana), to provide adaptation strategies
(LEAD++) are services proposed by OFL and which may be found in previous
sections.

5 Perspectives

Mobile objects We have integrated in OFL the model of persistence that has
been proposed in [1] and that has been fully experimented in the FLOO project
[22]. This model relies on a transparent handling of persistent objects thru a
podvm (Persistent Object Descriptor in Volatil Memory); at this time we work
on the extension of the concept of podvm to the one of object finder in order to
be able to take into account the distribution and the mobility of objects upon
the network.

Interoperability We have integrated facilities for interoperability thru the late
binding of the language semantics to an object and thru the handling of meta-
information which allows an object to check the validity of the language binding
when a job request is submitted to it. It seems important to go deeper and to
propose a set of criteria allowing to measure the distance of semantics between
two languages.

Reflectivity and efficiency Efficiency is a key point of the implementation of re-
flective languages or virtual machine. It mainly depends on the expressiveness
of the model for customization and on the system ability to support dynamic
behaviour changes. The relative antagonism between these two legitim needs
leads to mention two essential questions: should we prefer static semantical con-
trols (performed at compiling time) or rather dynamic ones (at run time)? Is it

OFL: An open object model based on class and link semantics customization 19

better to propose a full reification of concepts or on the contrary to reify only
some of them ? Those questions do not address universal answers. Whatever is
the technics, openess has a cost. In the domain of open reflective environments,
there are, as everywhere else, two strategies for handling the problem: either to
set the openess capabilities, or to allow meta-programmer to adjust the compu-
tation model openess (and the efficiency) according to its needs. In OFL we have
chosen to give a greater place to openess; this will lead us to select the second
strategy and to provide additionnal adjustment according to the ratio openess
of an application (or of a language) | efficiency.

6 Conclusion

Reflection is a promising support for the development of open object platforms.
Actually, introduction of this openess in the world of object environment for
software engineering should allow the orthogonal integration of both :

— first-level needs, regarding persistency for local or distributed objects,

— and also (an above all ?) meta-needs related to the evolution of the applica-
tions which generate those persistent objects (that may change of type, that
is to say change of semantics).

In this paper we make a contribution to this problematics with the proposal of
a reflective model in which :

— first-level needs are satisfied by the definition of a computational model
based on the integration of a service of persistency, the submission of a
job request between objects and the delegation between one object and
its class.

— the fulfillment of meta-needs relies on the ability to meta-program three
kinds of components : classes, links and languages . The classes contain the
structural semantics and the behavioral semantics (“local lookup”, etc) and
delegate to links (relationships between classes), treatment that they do not
know how to handle. The languages provide an additional methodological
support useful to regulate combination between links and class concepts .

In fact, the OFL model may be seen as “Yet Another Son of MOP” particu-
larly dedicated to the software engineering problematics. As all other models,
its brothers, OFL proposes its own structuring of object-oriented concepts.
From our point of view, the originality of OFL relies on the central position
given to the concept of link; this concept which, under different names or
semantics, is found at any stage of the application design: from specification
to the implementation in a given language.

At that time, we are finalizing a first version of the virtual machine for OFL
(OFL/VM) with a client-supplier link and a single-inheritance link. The imple-
mentation has been made with the Eiffel 3 language (version 3.3.7, Interactive
Software Engineering). To give an idea of the project, 300 specific classes have
been developped (around 40.000 of line code).

20 Robert Chignoli, Pierre Crescenzo & Philippe Lahire

References

1. P. Lahire. Conception et réalisation d’un modéle de persistance pour le langage
Eiffel. Thése de doctorat de I'Université de Nice - Sophia Antipolis, Mai 1992.

2. R. Chignoli, P. Crescenzo & P. Lahire. OFL/VM: Une machine virtuelle a objets
et ouverte, pour la gestion d’objets persistants et mobiles. Rapport de recherche, pp
65, Laboratoire I3S, Université de Nice - Sophia Antipolis, Déc. 1998.

3. B. Meyer. Object-Oriented software construction, 2"%edition. Prentice Hall 1997.

4. S. Marcaillou. Intégration de la notion de points de vue dans la modélisation par
objet. Thése de doctorat de I'Université Paul Sabatier, Fév. 1995.

5. R. Chignoli, P. Crescenzo et Philippe Lahire. Liens entre classes dans les langages
a objets. Rapport de recherche 97-22, pp. 26, Laboratoire I3S, Université de Nice -
Sophia Antipolis, Juil. 1997.

6. P. Collet. Un modéle fondé sur les assertions pour le génie logiciel et les bases de
données : application au langage OQUAL, une extension d’Eiffel. Thése de doctorat
de I’Université de Nice - Sophia Antipolis, Déc. 1997.

7. R.G. Gabriel, D.G. Bobrow, J.L. White. Clos in context - The shape of the design
space. In Object Oriented Programming - The Clos perspective. MIT Press 1993.

8. F. Rivard. Evolution du comportement des objets dans les langages a classes réflex-
ifs. Thése de doctorat de I’Université de Nantes, Juin 1997.

9. T. Ledoux. OpenCorba: un bus réflexif adaptable, Actes de LMO’99, Villefranche
sur mer, Janvier 1999.

10. Object Management Group. The Common Object Request Broker: architecture
and specification, revision 2.0, Jul. 95.

11. S. Chiba. A Metaobject protocol for C++, Proceedings of the OOPSLA’95 ACM
Conference, Vol. 30 of SIGPLAN Notice, ACM, 285-299.

12. S. Chiba. OpenC-++ 2.5 Reference Manual. Institute of Information Science and
Electronics, University of Tsukuba, 1998.

13. P-G. Raverdy, H. Le Van Gong, R. Lea. DART: A reflective middleware for adap-
tative applications

14. B. Gowing, V. Cahill. Meta-Object Protocols for C+-+: The Iguana Approach.
Proceedings of reflexion’96, Ed. Kiczales, San Francisco, California, Apr. 1996

15. Z. Wu.Reflexive Java and a reflexive component-based transaction architecture.[23]

16. 1. Welch and R. Stroud. Dalang - A Reflective Java Extension. in [23]

17. M. Golm, J. Kleinéder. metaXa and the future of reflection. in [23]

18. N. Amano & T. Watanabe. LEAD++: an object-oriented freflective language for
dynamically adaptable software. in [23]

19. A. Oliva, L.E. Buzato. Composition of méta-objects in Guarana. in [23]

20. A. Oliva, I.C. Garcia, L.E. Buzato. The reflective architecture of Guarana. Techni-
cal report IC-98-14, instituo des computacaos, Universidade Estadual de Campinas,
Apr. 1998.

21. A. Oliva, L.E. Buzato. An overview of MOLDS: a meta-object library for dis-
tributed systems. Technical report 1C-98-15, instituo des computagaos, Universidade
Estadual de Campinas, Apr. 1998.

22. R. Chignoli, J. Farré, P. Lahire, R. Rousseau. FLOO: un environnement pour la
programmation persistante en Eiffel. Technique et sciences informatique, vol. 15,
numéro 6 (Juin 1996), pages 735-763. Numéro spécial “systémes objets: tendances
actuelles et évolution” A. Napoli & J.F. Perrot (eds.)

23. J-C. Fabre & S. Chiba. Proceedings of Workshop on Reflective Programming in
C++ and Java UTCCP Report 98-4, Center for Computational Physics, University
of Tsukuba, Japan ISSN 1344-3135, Oct. 1998.

