
OFL: An open object model based on class andlink semantics customizationRobert Chignoli, Pierre Crescenzo & Philippe LahireI3S Laboratory, University of Nice Sophia Antipolis, Les Algorithmes,bâtiment Euclide, 2000 Route des Lucioles, Sophia Antipolis 06140 Biot - France{lahire, chignoli, crescenz}@i3s.unice.frAbstract. The need to �open� object langages in order to make themmore able to �t new situations appears as a major issue.More and more,objects will be persistent and mobile and will have to get adapted to theevolution of their original pattern. In the context of software engineeringclass languages, these ideas mean that the basic mechanisms (classes,inheritance and client-supplier links) need more �exibility. According tothat, we propose a general model which allows some customization ofclass language semantics. This model provides a re�ective and struc-tured framework for the encapsulation of �rst level object semantics intothree main types of meta-programmable components (�classes�, �links�and �languages�) which role and potential interest are presented in thispaper.1 IntroductionThe starting point of this project is the integration of persistency in class-languages [1] and by the way, the necessity to consider a set of situations (versionmanagement, interoperability, etc.) which can be required for writing and main-taining applications.The variety of the requirements in these �elds has led to the de�nition ofthree main targets : a) to allow the customization of the concept of type in orderto - for instance - arm or disarm the insertion of an object into the persistentcollection of its type; b) to allow the customization of links between classes inorder to - for instance - restrict a general mechanism of inheritance to a speci�cuse; c) to allow the building of new links between classes as - for instance - alink of �is a version of�.Through these targets, we are in some way addressing the well known ideaof �open language� that we propose to apply to the �eld of industrial object-oriented languages in order to make them more �exible 1.In order to reach the targets mentioned above, we have de�ned the OFLmodel which formalizes, in Ei�el3, our approach. This model is currently under-going implementation as the OFL/VM platform (Virtual Machine) [2].1 Hence the name of the project : Object Flexible Language. This may be also read as�Open Ei�el� (Ei�el is pronounced FL in French) because most statements proposedby OFL are derived from Ei�el.

2 Robert Chignoli, Pierre Crescenzo & Philippe LahireOFL/VM is designed as an open application which provides two program-ming levels: a) a meta-level which provides a framework for the concept de�nition(classes and links between classes), and the handling of relationships betweenthose de�nitions; b) a base-level which allows the programmer to develop hisapplication using the concepts of classes and links between classes de�ned at themeta-level. From another point of view, OFL/VM may be shown as a library ofcomponents which may describe the semantics of classes and links implementedin languages such as Ei�el, Java, Smalltalk or C++.The �rst version of OFL/VM relies on a re�ective architecture. This tech-nology (which current bounds regarding e�ciency are well known) provides,according to our purpose, the �exible framework which is perfect for �rst exper-iments.This paper lays out successively: 2) the outlines of OFL model, through anexample which describes the computation of a remote-call statement; 3) the setof customization facilities de�ned within our approach. Finally, 4) we positionour approach according to related work and 5) we conclude with current stateof the project and perspectives.2 The OFL model through an example2.1 Description of the exampleFigure 1 shows a toy application built with three components: EXAMPLE,SQUARE and RECTANGLE (where class EXAMPLE acts as the main pro-gram). Components which are shown in this �gure are written using the Ei�el3language syntax and semantics [3]. Semantic links2 are client-supplier relation-ship and (Ei�el3) inheritance whereas the concept of class is the Ei�el3 one's.In our exemple there are several client-supplier links (is-client-of):� one from class EXAMPLE to class RECTANGLE (attribute rectangle),� one from class EXAMPLE to class SQUARE (attribute square).There are also inheritance links (inherit-from):� one from class SQUARE to class RECTANGLE,� three others, implicit within Ei�el3 syntax, which have class ANY as tar-get and respectively, EXAMPLE, RECTANGLE and SQUARE as sourceclasses.2 In the following, the class which declares a link is the source class, whereas the onewhich ends the link is the target class.

OFL: An open object model based on class and link semantics customization 3
class RECTANGLE

end -- class RECTANGLE

creation

 make

feature

make is

local

do

x,y: INTEGER

y := 10x := 1;

x := 100; y := 50

rectangle: RECTANGLE

creation

 make

feature

make is do end

end -- make

inherit

class EXAMPLE

RECTANGLE

end

creation

 make

feature

make is do end

is-client-of

is-client-of

Described in figure 2

Statement of example

class SQUARE

redefine make, perimeter

perimeter: INEGER is do end

perimeter: INEGER is do end

set_origin (x, y: INTEGER) is do end

set_bottom (x, y: INTEGER) is do end

origin_x, origin_y: INTEGER

bottom_x, bottom_y: INTEGER

end -- class SQUARE

x := rectangle.perimeter

rectangle := square

!! square.make

x := square.perimeter

square.set_bottom (x, y)

square.set_origin (x, y)

square: SQUARE

inherit-from

end -- class EXAMPLE Fig. 1. A basic application (Ei�el3 syntax)2.2 Overview of OFL model entitiesEach class of the application (EXAMPLE, SQUARE, RECTANGLE) is repre-sented by an instance of the meta-class M_CLASS. It corresponds on the �rsthand to the rei�cation of a class (attribute, procedure, function, inheritance link,etc), and on the other hand, to the semantics of the class concept within the lan-guage (in this example, the semantics of an Ei�el3 class). In Ei�el3, every classinherits from class ANY. Within our model we propose the ROOT_M_CLASS,a prede�ned class which implements the basic services that any object should beequipped with; it will provide all necessary features for an easy implementationof the class ANY as it is implemented in Ei�el3 (for making the �gure 2 morereadable we do not draw it).The is-client-of use link and the (Ei�el3) inheritance importation link,are represented by instances of the meta-classes USE_LINK_M_CLASS andIMPORTATION_LINK_M_CLASS. Those meta-classes are specialization ofclass M_CLASS so that, their instances are described by prede�ned classes:USE_LINK and IMPORTATION_LINK (see section 3.1).Instances of class EXAMPLE and SQUARE are described by classM_OBJECT.Each object contains the �elds that match the attributes described within itsclass (e.g.: att_square for class EXAMPLE). Each object3 may become persis-3 Within our model, routines and classes are also objects.

4 Robert Chignoli, Pierre Crescenzo & Philippe Lahiretent and can access to its type through an instantiation link (is-an-instance-of).Class instances do not contain any customizable semantic operators.An instantiation link is a link of type object to class, and is representedby an instance of meta-class OBJECT_TO_CLASS_LINK_M_CLASS, (seesection 3.1). These links are customizable, they provide a support for the mod-eling of complex treatment allowing the delegation of an object request toa class. For any language, it is possible to de�ne an instantiation link with itsown semantics, so that it allows the integration of a customized handling of per-sistency, and additional controls or actions for the object contents conversion oradaptation.A job request corresponds to a statement which does not have a univer-sal semantics but a semantics which depends on the language which de�nes it.For instance, a conditional schema (if condition then code-then else code-else)relies on a well known semantics, whereas, for instance, a dot expression (at-tribute.procedure(...) or attribute.function(...)), depends on the semantics of thelanguage. Section 2.3 gives more details about a job request with the Ei�el3semantics (att_square.perimeter).2.3 Modeling of a statement executionEach meta-class (M_CLASS, USE_LINK_M_CLASS, IMPORTATION_LINK-_M_CLASS), provides a set of customizable semantical operators (object at-tachment, routine invocation, etc), which are activated according to needs, allalong the application execution (tables shown in section 3.3 provide a full list ofthese operators). Our computational model is based on two principles: the dele-gation of semantical actions and controls (SAC) between meta-class instances,and the submission of job request between class instances. The concept ofdelegation implies that the whole semantics is not centralized but distributedwithin the di�erent meta-classes and that coordinating actions are mandatory.The concept of submissionmeans that each object which receives a job requestis up to choose whether it handles it now, never, for some objects only, later, etc.The statement which is shown in this example is att_square.perimeter. Itsde�nition is located in routine �make� of class EXAMPLE which is the root classof the toys application (see �gure 1). In Ei�el3, when the program is launched,one instance of class EXAMPLE is created; this is on this instance that thestatement should be applied4; it becomes the �rst current object5. Figure 2describes main steps (numbered from 0 to 11), of job request processing6.The instance of class EXAMPLE receives the submission of this job re-quest (steps 0 and 1) which handling is delegated to the class EXAMPLE4 The reader may note that all prior operations are not de�ned within the �gure.5 The object which is currently running the routine which holds the statement.6 Operator names mentioned in this section are described in section 3.3.

OFL: An open object model based on class and link semantics customization 5
....... to class INTEGER

IMPORT_LINK

perimeter: INTEGER

IMPORT_LINK

Si
mp

lifi
ed

 st
ep

OBJECT_TO_CLASS_LINK

fields

features

SQUARE
SQUARE

features
perimeter: INTEGER

features

RECTANGLE ROOT_M_CLASS

Job request submission to receiver object

fields

EXEMPLE

(true)is_typed
is_synchronous

contents

is_local (false)

(true)

APPLICATION01

root: EXEMPLE

application

inherit-of

M_CLASS

M_CLASS M_CLASS

M_CLASS

M_OBJECT

M_OBJECT

.......

Job request

De
leg

ati
on

 of
 fe

atu
re

 se
ar

ch
 to

 cl
as

s

Job request submission to current object (submit)

Launch of

Préparing job equest

instruction à sémantique déportée

Class instance

meta-class instance

Volatil reference
Persistent or volatile reference

Submission or delegation of job request

SAT Semantical Actions and Tests

Ensemble d’opérateurs sémantiques

att_square: SQUARE

att_square

(att_square.perimeter)

OBJECT_TO_CLASS_LINK

Delegation of job request to class

Dé
leg

ati
on

 of
 jo

b r
eq

ue
st

to
cla

ss
 (s

ub
mi

t)

Dé
leg

ati
on

 of
 S

AT
 to

 th
e c

las
s

is-client-of

USE_LINK

EXEMPLE

search feature
& receiver-object

Search feature
" perimeter"

9

8

7

6

5

43

2 1

0

USE_LINK

is-client-of

inherit-of to class INTEGER

features

10

"perimeter"execution of

11

USE_LINK

is-client-of

Fig. 2. An example of function-call computation for an Ei�el3 application(step 2) through the is-an-instantiation-of link. Since this link is customizable,it is possible to use the operator submit ofOBJECT_TO_CLASS_LINK objectin order to activate SAC before (or after) the delegation becomes e�ective.When the job request delegation reachs it, class EXAMPLE handles thesubmission of this job request. The description of the semantics associatedto the submission (operator submit of M_CLASS) depends on the languageattached to the job request. Mostly, the handling of the submission of a jobrequest is made up following actions:� To �nd the kind of job request (also step 2) : a job request may beinternal to the object (object attachment, creation or deletion of object,routine invocation or access to �elds corresponding to attributes de�nedwithin the class7), or may need to be encapsulated within a message inorder to be submitted to another object; this is the case for all access toattributes or routine call when they are performed thru a use link ; this kindof job request is commonly called dot expression.� Case of a dot expression (it is the case in 1), it is necessary to:� search, using name and context of the statement, the attribute or thefunction which allows to access after evaluation to the object-receiver

6 Robert Chignoli, Pierre Crescenzo & Philippe Lahire(step 3). These actions are performed thru the operator item ofM_CLASSwhich returns the appropriate feature. This customization allows to im-plement all types of feature overloading, all possible feature search mech-anisms, according to the importation links starting from the class; theselinks are represented by objects of type IMPORTATION_LINK ; thiskind of link allows to describe adaptation clauses (as those that maybe found in most object-oriented languages8), and to delegate featuresearches to the classes reached by the link.� �nd object-receiver(step 4), thru attribute access or thru function com-putation (the attribute att_square points out receiver-object), and toperform controls corresponding to the language semantics (e.g. featureexportation in Ei�el3). All these actions are encapsulated within the op-erator execute of M_CLASS which can possibly be implemented, asit is proposed in section 3.4. This operator (and those it is using) al-lows to plan and perform all prede�ned control and actions (loading ofpersistent object, updating of class extension, etc), according to the uselink associated to the typed feature and to the semantics of class con-cept. The reader may note that it is a link between classes and that itis represented by an object of type USE_LINK.� encapsulate the submission of job request within a message and for-ward it to receiver-object (step 6), using actions de�ned within the op-erator send (in this example the object pointed out by att_square); thereceiver object becomes the new current object. A message should alwaysbe sent according to the constraints associated to the use link, that is tosay using the semantics attached to this link (for an Ei�el3 applicationit is a client-supplier link). Typical actions that should be performed be-fore forwarding the message deal with the loading of persistent objects,information recording, controls; for an Ei�el3 application it will be nec-essary to check9that the feature att_square is visible (exported) to classEXAMPLE (step 5).� Case of an internal job request. The job request which is received by theobject attached to att_square is perimeter ; this object (the new currentobject) delegates the job request to its class, in the same way as the objectof type EXAMPLE (see above, step 7). The class �nds out that it is aninternal job request. It is necessary to perform following actions:� To search the feature that should be accessed (same as feature-searchdescribed in the case of a dot expression). In this application, the searchis extended to the class which is imported, that is to say, target of animportation link (steps 8, 9);� To compute the routine (procedure or function depending on the applica-tion) or to access the attribute (step 11). Some SAC may be performedbefore (see explanations given in the case of a dot expression for theoperator execute , step 10)10.

OFL: An open object model based on class and link semantics customization 7We mentioned above several operators of M_CLASS, especially those thatdeal with the customization of class semantics submit , send , execute , etc. Ofcourse those operators have twins in order to be able to return the result of afunction or the value of an attribute when it is required (execute_with_result ,submit_with_result), or a response when the message needs one (send_with-_response).3 A model for customizing language semanticsIn the previous section, we presented the main aspects of the OFL object protocolat run-time, and some of the possible customization that may be done with ourmodel. This section intends to provide a more comprehensive list of operatorsand to propose a classi�cation of customization facilities.3.1 De�nition of the concepts of language, class and linkFigure 3 gives a synthetic overview of the OFL design according to the semanticcustomization. This design relies on the concepts of language, class and link :� The rei�cation of class semantics. It allows to customize, among otherthings, routine invocation, message sending, object attachment and objectcreation. The choice and the contents of operators implementing the cus-tomization of class semantics rely in particular upon following remarks:� The need to coordinate the use of the semantics located within links(whatever is the class concept in which the description of the link se-mantics is associated, this description should not be dependent on theother types of link; this is the role of the class to handle these dependencyproblems).� The semantics of an action initiated by a class may be in�uenced by thesemantics of the links which plays a part in the action.� The rei�cation of link semantics depends on the kind of link :� The importation links (object structuring)� The use links (structuring of exchanges between instances of classes)� The �object to class� links (structuring of the exchanges between anobject and a class)We do not provide any support for the modeling of �object to object�links. According to our approach, all exchanges between instances of classesare de�ned by a link between object classes (importation links and use links).7 It includes attributes and routines de�ned within a class reachable thru an importa-tion link.8 We allow the de�nition of complex adaptation clauses : rede�ne, rename, unde�neand forget a feature (see section 3.1).9 These controls may be static or dynamic (see section 5).10 For readability purpose, links with class INTEGER are not fully described but itlooks like the link between EXEMPLE and SQUARE.

8 Robert Chignoli, Pierre Crescenzo & Philippe Lahire� The rei�cation of language semantics groups together: a) the semanticsof classes (a given language may possibly de�ne several concepts of class, forinstance a �usual� concept of class and then a concept of version or view[4]), b) the semantics of the links de�ned within the language, and c) severalother informations, controls or rules regarding the combination of link typesand concepts of class.
.....

Semantics

Link type N°1 link type N°2class concept / link type

Class concept N°1

Class concept N°2

info

.....

.....
info info

info

.....

.....

.....

.....

.....

.....

N°2

Language semantics

Language semantics

Language equivalence

N°1

of concept

of class of class

of concept

of use link type of use link type of use link type

N°1 N°2 N°3

N°1 N°2

of import link type of import link type

of object-to-class link type

N°1

SemanticsSemantics

Semantics Semantics Semantics

Semantics Semantics

Fig. 3. Rei�cation of language semantics3.2 Operators for customizing the concept of languageThis section goes back over the operators for the language semantics customiza-tion; these operators allow to access to information which are useful for thehandling of interoperability between objects built with di�erent languages, andfor the implementation of normalized programming rules (for instance within acompany). We present below the set of the main operators, with possible inter-esting examples of use.� Recording of the meta-programming level which is used (see section 3.4 forthe de�nition of meta-programming level);� Recording of the number of importation links (of same type) that it is possi-ble to declare in the same source class, both for the same or di�erent targetclasses. This is especially interesting for the control of the class importationsemantics:

OFL: An open object model based on class and link semantics customization 9� importation of only one class (to be related with single inheritance);� importation of n classes (to be related with multiple inheritance). Beingable to set the number n may help for the implementation of a program-ming methodology within a group of programmers (for instance, no wayto inherit from more than 2 classes);� importation several times of the same type (to be related to repeatedinheritance), still with the ability to set the upper bound.� Recording of several rules dealing with the compatibility between the con-cepts of class and link ; these rules take into account the role of the conceptof class (source or target of the link). For instance, if there are two con-cepts of class (abstract class and implementation class), meta-programmersmay allow the use of an is-a-subtype-of importation link, only within anabstract class and the use of an is-an-implementation-of importation linkonly within an implementation class (see [3] and [5] for the description ofinheritance link usages).� Access to a shared ressource which allows to describe, when it is possible, theequivalence between link types or concepts of class de�ned in two di�erentlanguages.Information associated to the operators described above are particularly usefulwhen people deal with persistent objects created by an application written withanother language; they provide a way to control the distance between languagesemantics. The meta-programmer may use those information when he describesthe operators for which we propose a classi�cation in the next section.3.3 Classi�cation of operators for customizing classes and linksOperators dealing with the customization of the semantics of classes and linksare split in several categories :� Feature looking,� Semantical controls,� Computation of job request (routine invocation, attribute access, messagesending, etc),� Handling of class instances and class extensions (creation, deletion and objectattachment, etc), and� Generic operators (copy, clone, equality, etc).The reader will note that the set of features which handle the modi�cation ofclass contents (feature adding, etc) is not customizable; there are only involvedin the rei�cation of class concept. For instance, consequences of attribute addingor removal should be handled by the de�nition of new ad hoc link types suchas an is-a-version-of link (importation link), and an �object to class� link; thestructural rei�cation may not be customizable whereas the computational rei�-cation does.The classi�cation we propose is divided in two parts of unequal size:

10 Robert Chignoli, Pierre Crescenzo & Philippe Lahire� The customization of classes and links between classes which is describedin the next �ve sections. In each section, we give a list of operators whichcustomize class semantics; for each class operator we mention the operatorswhich customize link semantics11.� The customization of objects thru links of type �object to class�; this providesa way to customize the concept of object (instance of class) which is notcustomizable by itself. The description of those operators may be found insection 3.3.Each operator takes a job request as input; its contents (at least the state-ment which corresponds to the job) is updated as long as the di�erent operatorsare activated. For instance, contents updating deal with the feature which is re-turned by feature-searching operators, the e�ective parameters after evaluationand, possible intermediate result(s) in the case of dot expression processing.Feature looking. Before any feature computation, it is necessary to �nd thefeature associated to a given name according to the statement context (type,number of e�ective parameters, etc); the operators which customize those actionsare given in table 2.Class operators Description of class operator Related link operatorsmatch returns true if the feature attached to parameter satis�es is_matchoverloading rules. (de�nition of overloading rule).local_lookup returns feature of class (if it exists) which satis�esoverloading rules. (de�nition of search sequence)lookup returns feature of class (if it exists) which satis�es overloading lookuprule; class may be found in linked classes by importation link lookdown(de�nition of search sequence is extended to imported classesitem returns feature of class (if it exists), which is accessible directlyor thru imported classes. (coordination of operators match, local_lookup and lookup)all_features Returns the set of all class featuresTable 2. Customization of feature searchLet us take an example with the operator item of classM_CLASS. It allowsthe coordination of the feature search, thru the processing of the local_lookupet lookup operators following the chronological order de�ned by the meta-programmer. These operators handle respectively the feature looking within theclass only, and the feature looking in the target classes of importation links.

OFL: An open object model based on class and link semantics customization 11Class operators Description of class operator Related link operatorsis_import_links_valid de�nition of validity rules for the use of importation linksis_use_links_valid de�nition of validity rules for the use of use linksis_arguments_compatible de�nition of compatibility between is_arguments_control_valide�ective and formal arguments before_arguments_controlafter_arguments_controlis_type_conformance de�nition of type conformance rulesis_same_type de�nition of rules for type equalityis_generics_valid de�nition of compatibility betweene�ective and formal generic parametersis_valid_request de�nition of job request validity (visibility, ...) is_feature_valid, is_send_validTable 4. Customization of semantical controlsSemantical controls. This section deals with operators that implement pos-sible dynamic control. If those controls are handled statically, the operators areempty (see table 4).For instance, let us consider the operator is_import_links_valid. This istypically the operator which should contain the controls dealing with importationlinks, using the information located at the language level (see section 3.2). Suchcontrols are particularly useful in a universe of persistant objects attached todi�erent language semantics.Computation of routine or access to attribute. Operators of this sectiondeal with the customization of routine computation and attribute access forcurrent object or for distant object thru a use link (see table 6).Class operators Description of class operators Related link operatorsarguments_evaluation de�nition of argument evaluation rules before_argument_evaluation, after_argument_evaluationis_argument_evaluation_valide�ective_to_formal attachment of e�ective arguments to before_e�ective_to_formal, after_e�ective_to_formalformal ones is_e�ective_to_formal_validdetach_e�ective detachment of e�ective arguments is_detach_e�ective_validbefore_detach_e�ective, after_detach_e�ectivebefore_request Source code in front of the �rst before_featurestatement of one routine bodyafter_request Source code after the last after_featurestatement of one routine bodyexecute coordination of routine computationor of attribute accessexecute_with_result idem as execute but witha result returned after computationsend coordination of message sending before_send, after_sendfor dot expressionsend_with_response idem as send but with a response before_send, after_sendto message (asynchronous or not)submit coordination of job request submissionsubmit_with_response idem as submit but with a response orresult after request processingTable 6. Customization of routine computation and attribute accessWe consider the operator e�ective_to_formal12. This operator customizesthe attachment of e�ective parameters to formal ones when the routine is be-ing processed. The result of this operator computation depends a lot on the11 We present in this paper a �rst version of the set of link operators, it will be re�nedas long as we will extend the link-type library.12 In section 3.4, we describe the contents of operator execute of M_CLASS.

12 Robert Chignoli, Pierre Crescenzo & Philippe Lahiresemantics of links attached to routine parameters. According to the type oflinks, it is necessary to perform controls and actions dealing with the attache-ment of e�ective parameters to formal ones, and describing the point of viewof links (for instance a copy of objects attached to e�ective parameters inthe case of a composition link); these actions are described in link operatorssuch as before_e�ective_to_formal, after_e�ective_to_formal or elseis_e�ective_to_formal_valid. The operator e�ective_to_formal coor-dinates and controls the computation of those operators.Handling of class instances and class extensions Operators located in thissection allow the customization of instance creation or deletion, object attach-ment, and class extension update (see table 8).Class operators Description of class operators Related link operatorscreate instance creation, coordination between is_creation_valid, before_creationgeneric and non generic instances after_creationinstance_creation allocation of non generic instance is_creation_valid, before_creationafter_creationgeneric_instance_creation allocation of generic instance is_creation_valid, before_creationafter_creationinstance_deletion deletion of instances, activate is_deletion_validdesallocation of before_deletiongeneric and non generic instances after_deletioninstance_desallocation desallocation of is_deletion_validgeneric and non generic instances before_deletionafter_deletionassign Rules and action related to is_assign_validobject attachment before_asignafter_assignmake_instension creation of class extensionupdate_extension Update of class extension update_extensionaccording to source and target classes update_extension_of_to_cupdate_extension_of_from_cTable 8. Customization of the management of class instances and class extensionsIn table 8, we mention the creation of generic class instances; the rei�cationof concept of class described by the meta-classM_CLASS provides the opportu-nity to create generic classes. So that, we should take into account the speci�cityof generic instance creation (control of parameter instantiation, etc). Further-more, the model provides also the ability to handle class extension, that is to saythe set of its instances (see operatorsmake_extension, update_extension);this is very useful, especially in the framework of the integration of universal op-erators (8; 9) within a query language or assertion mechanism [1] [6].

OFL: An open object model based on class and link semantics customization 13Object generic operators. This section deals with basic operators that everyobjects should be equipped with. The customization of those operators accordingto classes and links should make easier the modeling of links such as an is-a-version-of link (see table 9).Class operators Description of class operators Related link operatorsequal_reference de�nition of equality of object before_equal_referencereference after_equal_referenceis_equal_reference_validequal_contents de�nition of equality of object before_equal_contentscontents, not propagated to after_equal_contentsreferenced objects is_equal_contents_validdeep_equal_contents de�nition of deep equality of object before_deep_equal_contentscontents (equality is tested even after_deep_equal_contentsfor referenced objects) is_deep_equal_contents_validcopy_instance de�nition of object copy, not before_copy, after_copypropagated to referenced objects is_copy_validdeep_copy_instance de�nition of deep object copy before_deep_copy(copy is propagated to after_deep_copyreferenced objects) is_deep_copy_validclone_instance de�nition of object cloning, not before_clone, after_clonepropagated to referenced objects is_clone_validdeep_clone_instance de�nition of deep object cloning before_deep_clone(cloning is propagated to after_deep_clonereferenced objects) is_deep_clone_validadapt_instance de�nition of instance adaptation before_adapt_instanceaccording to its (new or modi�ed) after_adapt_instancetype is_adapt_instance_validconforms_to_instance de�nition of compatibility rulesbetween instancesTable 9. Customization of generic operatorsCustomizing operators such as clone_instance allows, for instance, to im-plement a use link which takes into account the update of all object clones whenthe contents of one of them is modi�ed, in order to ensure that objects willremain identical during their whole life cycle.Operators of �object to class� links. Operators which describe links oftype �object to class� are the only one that may modify the semantics of classinstances; this choice can be justi�ed by the fact that the OFL model is dedicatedto the description of software engineering languages. The customization of the�object to class� link types deals with following operators:� object generic operators (clone , equal_contents , etc), see section 3.3,

14 Robert Chignoli, Pierre Crescenzo & Philippe Lahire� operators which handle object attachment and job request submission(see operators assign , submit and submit_with_response of sections3.3 and 3.3).3.4 Strategies of meta-programming through an exampleIt is not acceptable to ask the meta-programmer the same e�ort (or the samelevel of knowledge of the meta-programming tools) whatever are his needs; thisis why we provide a default strategy for meta-programming the large numberof operators which all correspond to elementary needs of customization. But,of course, the meta-programmer can choose to develop its own sequence of op-erator invocations and its own operator bodies, or to mix speci�c and defaultprogramming. This section shows an example with the execute class operator.We present now in this section the prede�ned sequence of operator invo-cations for the operator execute . If a meta-programmer sets in the languagesemantics the indicator called is_default_handling , then when operator ex-ecute is invoked, the prede�ned sequence is applied. In the following example,all operators of the model are indicated by a '<� (*)'. One may note that even ifthe meta-programmer chooses the prede�ned sequence, he can customize a partof the semantics of the operator execute for the class concept de�ned within thelanguage that he addresses (execute_semantics). This possible customizationshould be used for handling the coordination of operators which de�ne actionsdepending on the type of link semantics.execute (m: INTRA_MESSAGE) is-- Computation of internal job request 'm'requiremessage_not_void: m /= voidis_not_void: m.action /= void and m.parameters /= voidexists: attached.has (m)localf_tmp: like itemb_tmp: BOOLEANdoif is_default_handling then-- search of featuref_tmp := item (m) <---- (*)if not is_error (m) then-- setting of selected feature in job requestm.set_candidate_feature (f_tmp)-- evaluation of parametersparameter_evaluation (m) <---- (*)if not is_error (m) then-- control of parametersb_tmp := is_parameters_compatible (m) <---- (*)if not is_error (m) thenif b_tmp then-- attachment of effective parameterseffective_to_formal (m) <---- (*)else -- semantical error (type mistmach)end -- if-- code executed before the computation of any routinebefore_request (m) <---- (*)-- customized part of operator 'execute'execute_semantics (attached, m)-- code executed after the computation of any routineafter_request (m) <---- (*)

OFL: An open object model based on class and link semantics customization 15-- detachment of effective parametersdetach_effective (m) <---- (*)else -- Error handlingend -- ifelse -- Error handlingend -- ifend -- ifelse -- fully free semanticsexecute_semantics (attached, m)end -- ifensureend -- executeComments: If the meta-programmer chooses to use the prede�ned semantics,the operator execute is equivalent to the processing of the following semanticoperations (all these operations may contain speci�c code de�ned by the meta-programmer and take into account the semantics of associated links):1. Feature looking2. Evaluation of Parameters3. Check of e�ective parameter compatibility4. Attachment of e�ective parameters to formal ones5. Computation of something equivalent to a before routine6. Computation of the speci�c code, de�ned by the meta-programmer7. Computation of something equivalent to an after routine8. Detachment of e�ective parametersotherwise, the meta-programmer build his own sequence of semantical operatorinvocations.Reading the code which corresponds to the operator execute, one should bestrongly convinced that it is very important to get a tools for semantics aideddesign (SAD). Such a tool would allow to:� remove any dependency between the meta-programming task and the lan-guage used for implementation (Ei�el 3),� make code optimization according to meta-programming information,� decrease the complexity of meta-programming tasks.4 Comparison with other systemsIn this section, we propose to brie�y position our model according to relatedworks. We study characteristics of re�ective system model built on top of Lisp,Smalltalk, C++ and Java. Main discussed aspects deal with available conceptswith their ability to be customized, and granularity of re�ectivity.

16 Robert Chignoli, Pierre Crescenzo & Philippe LahireSystems built on top of Lisp: CLOS (Common Lisp Object System) [7] proposesa smart, compact and powerful solution based on a Meta-Object Protocol. Eachsemantical concept (invocation of function, instance creation, ...) is describedby a function which is itself a meta-object. Among the main meta-objects ofthe protocol one may �nd, for instance, metaobject , method , generic_function,method_combination, slot_de�nition, specializer , or class ; they are themselvesdescendants and their contents may be rede�ned by meta-programming.According to this, our approach is di�erent from the one of CLOS thru twoaspects. On the �rst hand, with OFL, the language semantics is located in asmaller number of concepts (about �ve for languages such as Ei�el3); On theother hand, we strongly distinguish (in the description of meta-code) the classes,that mainly play a role of coordinator and the di�erent link types implementedin those classes.Systems built on top of Smalltalk : In NeoClasstalk, F. Rivard [8] is interested inthe evolution of object behaviour in the framework of re�ective languages whichare dynamically typed; its motivation is to provide features for decreasing thedistance that exists between the application design and its implementation ina language of classes, when people face objects which structure and behaviourchange during their life cycle. Among the services provided by NeoClasstalk,one may note in particular: the control and the lazy update of instance vari-ables, the ability for an object, to �t the semantics of another class throughthe modi�cation of its instantiation link, the extension of the built-in lookup ofSmalltalk in order to take into account multiple inheritance, the rei�cation ofmethod invocation, and its control thru the receiver-object class. A �rst use ofNeoClasstalk is the OpenCorba environment [9]. Its objective is to extend theoriginal model of the OMG [10] with meta-protocol libraries which specializethe distributed programming mechanisms in order to introduce new semantics(concurrency, replication, security, ...).As NeoClasstalk, our approach allows to modelize several link semantics. Thelinks object to class allow to meta-program the mutation of type in the same wayas NeoClasstalk. The importation links allow to modelize all kinds of inheritance,including one kind which may delete features. Finally, the use links may handleproblems related to replication and security.Systems on top of C++ : As it is mentionned within its name, OpenC++ [11][12]has been designed in order to provide new capabilities to C++ but avoidingtedious tasks for the programmer, such as the programming of an analyser or themodeling of a type system. The main uses of OpenC++ are the development ofsyntactical and/or semantical extension of C++. This sytem focuses on e�ciencyand handles meta-information at compile time. Main services of OpenC++ areobject assignment, handling of di�erent kinds of expressions, function invocation,creation and deletion of instances, access and update of variables.In order to implement its customization, the meta-programmer have to builda meta-class which inherits from the meta-class class and rede�nes the routine

OFL: An open object model based on class and link semantics customization 17bodies that are selected according to the C++ extension that he intends to im-plement (each routine corresponds to a customizable concept); the new contentsof these routines correspond to the new piece of generated code related to thesemantical action which is considered.DART project [13] is based on openC++. It proposes an extension of theC++ syntax and relies on the OpenC++MOP; it aims to provide facilities forthe development of distributed applications thru mechanisms for adapting theirbehaviour according to the system and network environment.Iguana [14] allows the meta-programmer to select the concepts that should berei�ed independently from each other. The modi�cation of semantics attached bydefault is implemented by inheriting from the class which describes the rei�cationand specializes the methods that may be found within it. The set of meta-declarations is encapsulated within the concept of protocol and it is allowed tobuild a new protocol from existing ones. The protocols that are used in a classare selected at declaration time. The main reifed and customizable concepts aremethod invocation, creation and deletion of objects, message receiving, featuresearch, activation/desactivation of semantical controls.Unlike OFL, OpenC++ and Iguana are based upon a same existing languagefor which an open programming environment is proposed. Our approach is alittle bit di�erent according to the fact that we propose a model which is notbased on any particular language. An other important di�erence between OFLand these two models is the central position of links; this corresponds to thestrong determination to isolate the meta-code which handles the relationships(the links) between entities, from the meta-code which handles class semantics.Furthermore, from a general point of view, OFL is closed from OpenC++ by itscustomizing model expressiveness. Then OFL is close to Iguana by more technicalaspects: the customizable meta-informations, and most of all, the encapsulationof semantics (concept of language in OFL vs concept of protocol in Iguana).Systems on top of Java : Standard Java environments provide few capabilitiesfor re�ection. Thru the class loader, it is possible, for instance, to convert anarray of bytes into class, but the reverse translation is not possible. It is also notpossible to change the semantics of a class. The API (java.lang.re�ect) providesservices for re�ection but rei�cation is limited to structures. Several systemsintend to improve the re�ection capabilities of Java.Systems such asRe�exive Java [15], Dalang [16],metaXa [17], LEAD++ [18],extend the re�ection in Java. They all share the same orientation to Internet, thesame concerns (transaction, security, concurrency, distribution, mobility, persis-tence), and the idea dealing with the separation between the meta-code and theapplication base code.Re�exive Java, metaXa and dalang provide the customization of methodinvocation; the last system o�ers before and after routines in front of and afterroutine invocation, and makes possible to customize routine computation on oneobject thru several meta-objects which are associated to it by linking.MetaXa allows the customization of variable access, object creation, classloading; it is possible to attach several meta-objects to a same base-level objects

18 Robert Chignoli, Pierre Crescenzo & Philippe Lahireand to apply the semantics of one or several of them according to the event andto the use of an operator which provides a way to address the next meta-object.The information which are useful for the computation (parameter passing mode,protocols for object replication, persistence handling, message sending, etc.), areforwarded to meta-object at instantiation time or when operators are activated.Another system, guarana [19][20], allows, when several meta-objects are at-tached to a same base-level object of application, to coordinate, put altogether,or �lter, thru a special meta-object, the action of other meta-objects associatedto the base-level object. This approach �ts to the design of meta-object librariessuch as MOLDS [21] which address distributed systems.The LEAD++ model relies on the concept of adaptable procedures (the ideadeals with the adaptation of procedure computation according to run-time en-vironment). These procedures are associated to methods; the method selectionis made according to an adaptation strategy, to run-time environment, and tometa-information attached to it.The models that are brie�y described above aim to open one language andto structurize this openess. Each of them provides characteristics close to thoseof OFL : to meta-program the routines before et after (dalang), to attach sev-eral meta-objects to a same base-level object of application (MetaXa), to coor-dinate, to put altogether, to �lter (guarana), to provide adaptation strategies(LEAD++) are services proposed by OFL and which may be found in previoussections.5 PerspectivesMobile objects We have integrated in OFL the model of persistence that hasbeen proposed in [1] and that has been fully experimented in the FLOO project[22]. This model relies on a transparent handling of persistent objects thru apodvm (Persistent Object Descriptor in Volatil Memory); at this time we workon the extension of the concept of podvm to the one of object �nder in order tobe able to take into account the distribution and the mobility of objects uponthe network.Interoperability We have integrated facilities for interoperability thru the latebinding of the language semantics to an object and thru the handling of meta-information which allows an object to check the validity of the language bindingwhen a job request is submitted to it. It seems important to go deeper and topropose a set of criteria allowing to measure the distance of semantics betweentwo languages.Re�ectivity and e�ciency E�ciency is a key point of the implementation of re-�ective languages or virtual machine. It mainly depends on the expressivenessof the model for customization and on the system ability to support dynamicbehaviour changes. The relative antagonism between these two legitim needsleads to mention two essential questions: should we prefer static semantical con-trols (performed at compiling time) or rather dynamic ones (at run time)? Is it

OFL: An open object model based on class and link semantics customization 19better to propose a full rei�cation of concepts or on the contrary to reify onlysome of them ? Those questions do not address universal answers. Whatever isthe technics, openess has a cost. In the domain of open re�ective environments,there are, as everywhere else, two strategies for handling the problem: either toset the openess capabilities, or to allow meta-programmer to adjust the compu-tation model openess (and the e�ciency) according to its needs. In OFL we havechosen to give a greater place to openess; this will lead us to select the secondstrategy and to provide additionnal adjustment according to the ratio openessof an application (or of a language) / e�ciency.6 ConclusionRe�ection is a promising support for the development of open object platforms.Actually, introduction of this openess in the world of object environment forsoftware engineering should allow the orthogonal integration of both :� �rst-level needs, regarding persistency for local or distributed objects,� and also (an above all ?) meta-needs related to the evolution of the applica-tions which generate those persistent objects (that may change of type, thatis to say change of semantics).In this paper we make a contribution to this problematics with the proposal ofa re�ective model in which :� �rst-level needs are satis�ed by the de�nition of a computational modelbased on the integration of a service of persistency, the submission of ajob request between objects and the delegation between one object andits class.� the ful�llment of meta-needs relies on the ability to meta-program threekinds of components : classes, links and languages . The classes contain thestructural semantics and the behavioral semantics (�local lookup�, etc) anddelegate to links (relationships between classes), treatment that they do notknow how to handle. The languages provide an additional methodologicalsupport useful to regulate combination between links and class concepts .In fact, the OFL model may be seen as �Yet Another Son of MOP� particu-larly dedicated to the software engineering problematics. As all other models,its brothers, OFL proposes its own structuring of object-oriented concepts.From our point of view, the originality of OFL relies on the central positiongiven to the concept of link; this concept which, under di�erent names orsemantics, is found at any stage of the application design: from speci�cationto the implementation in a given language.At that time, we are �nalizing a �rst version of the virtual machine for OFL(OFL/VM) with a client-supplier link and a single-inheritance link. The imple-mentation has been made with the Ei�el 3 language (version 3.3.7, InteractiveSoftware Engineering). To give an idea of the project, 300 speci�c classes havebeen developped (around 40.000 of line code).

20 Robert Chignoli, Pierre Crescenzo & Philippe LahireReferences1. P. Lahire. Conception et réalisation d'un modèle de persistance pour le langageEi�el. Thèse de doctorat de l'Université de Nice - Sophia Antipolis, Mai 1992.2. R. Chignoli, P. Crescenzo & P. Lahire. OFL/VM: Une machine virtuelle à objetset ouverte, pour la gestion d'objets persistants et mobiles. Rapport de recherche, pp65, Laboratoire I3S, Université de Nice - Sophia Antipolis, Déc. 1998.3. B. Meyer. Object-Oriented software construction, 2ndedition. Prentice Hall 1997.4. S. Marcaillou. Intégration de la notion de points de vue dans la modélisation parobjet. Thèse de doctorat de l'Université Paul Sabatier, Fév. 1995.5. R. Chignoli, P. Crescenzo et Philippe Lahire. Liens entre classes dans les langagesà objets. Rapport de recherche 97-22, pp. 26, Laboratoire I3S, Université de Nice -Sophia Antipolis, Juil. 1997.6. P. Collet. Un modèle fondé sur les assertions pour le génie logiciel et les bases dedonnées : application au langage OQUAL, une extension d'Ei�el. Thèse de doctoratde l'Université de Nice - Sophia Antipolis, Déc. 1997.7. R.G. Gabriel, D.G. Bobrow, J.L. White. Clos in context - The shape of the designspace. In Object Oriented Programming - The Clos perspective. MIT Press 1993.8. F. Rivard. Evolution du comportement des objets dans les langages à classes ré�ex-ifs. Thèse de doctorat de l'Université de Nantes, Juin 1997.9. T. Ledoux. OpenCorba: un bus ré�exif adaptable, Actes de LMO'99, Villefranchesur mer, Janvier 1999.10. Object Management Group. The Common Object Request Broker: architectureand speci�cation, revision 2.0, Jul. 95.11. S. Chiba. A Metaobject protocol for C++, Proceedings of the OOPSLA'95 ACMConference, Vol. 30 of SIGPLAN Notice, ACM, 285-299.12. S. Chiba. OpenC++ 2.5 Reference Manual. Institute of Information Science andElectronics, University of Tsukuba, 1998.13. P-G. Raverdy, H. Le Van Gong, R. Lea. DART: A re�ective middleware for adap-tative applications14. B. Gowing, V. Cahill. Meta-Object Protocols for C++: The Iguana Approach.Proceedings of re�exion'96, Ed. Kiczales, San Francisco, California, Apr. 199615. Z. Wu.Re�exive Java and a re�exive component-based transaction architecture.[23]16. I. Welch and R. Stroud. Dalang - A Re�ective Java Extension. in [23]17. M. Golm, J. Kleinöder. metaXa and the future of re�ection. in [23]18. N. Amano & T. Watanabe. LEAD++: an object-oriented fre�ective language fordynamically adaptable software. in [23]19. A. Oliva, L.E. Buzato. Composition of méta-objects in Guaranà. in [23]20. A. Oliva, I.C. Garcia, L.E. Buzato. The re�ective architecture of Guaranà. Techni-cal report IC-98-14, instituo des computaçaos, Universidade Estadual de Campinas,Apr. 1998.21. A. Oliva, L.E. Buzato. An overview of MOLDS: a meta-object library for dis-tributed systems. Technical report IC-98-15, instituo des computaçaos, UniversidadeEstadual de Campinas, Apr. 1998.22. R. Chignoli, J. Farré, P. Lahire, R. Rousseau. FLOO: un environnement pour laprogrammation persistante en Ei�el. Technique et sciences informatique, vol. 15,numéro 6 (Juin 1996), pages 735-763. Numéro spécial �systèmes objets: tendancesactuelles et évolution� A. Napoli & J.F. Perrot (eds.)23. J-C. Fabre & S. Chiba. Proceedings of Workshop on Re�ective Programming inC++ and Java UTCCP Report 98-4, Center for Computational Physics, Universityof Tsukuba, Japan ISSN 1344-3135, Oct. 1998.

