
OFL: Hyper-Genericity for Meta-Programming

– An application to Java –

Adeline CapouillezAdeline.Capouillez�unie.fr Pierre CrescenzoPierre.Cresenzo�unie.frLaboratoire I3S (UNSA/CNRS)Projet OCLLes Algorithmesbâtiment Eulide B2000, route des luiolesB.P. 121F-06903 Sophia Antipolis CEDEXFrane
Philippe LahirePhilippe.Lahire�unie.fr

ABSTRACTOFL is the aronym for Open Flexible Languages and thename of a meta-model for objet-oriented programming lan-guages based on lasses. OFL intends to desribe them,espeially by promoting apabilities suh as introspetion,modi�ation and extension. OFL relies on three essentialonepts of these languages: the desriptions whih are ageneralisation of the notion of lass, the relationships suhas inheritane or aggregation and the languages themselves.OFL provides a ustomisation of these three onepts inorder to adapt their operational semantis to the program-mer's needs. This paper summarises the main harateris-tis of the OFL model, shows how to reate an appliationusing this model and desribes the Java language aordingto OFL.
1. INTRODUCTIONOne of the projet manager's main goals is to bring downthe ost of software prodution. Their ost mainly dependson two steps: programming and maintenane. During thesephases, the balane must be found between fastness andhigh quality. Several approahes are often used to solvethis problem. Examples of some of these approahes anbe given, keeping well in mind that none atually solvesompletely this problem at present.� In a well determined ontext, suh as the design ofgraphial interfaes or Web sites, the apaity to gen-erate soure ode automatially brings valuable help.� The e�orts made to obtain more readable program-ming languages thanks to an ameliorated syntax on-

tribute to improving the readability of the soure odewritten in those languages.� Reduing the gap between the design phase and theprogramming phase is also aimed at to redue the timespent in programming.� Libraries of reusable omponents allow not to startfrom srath for eah new piee of software.� As for the design patterns, they o�er arhiteture mod-els used for spei� programming problems.� Aspet programming addresses separation in terms oforthogonal servies of an appliation's features, suhas persistene or distribution of objets.We will deal with several of those solutions in a ommonapproah starting with the idea that relationships betweenlasses in objet-oriented languages, and espeially inheri-tane, are low-level mehanisms whih it would be interest-ing to speify better. This approah is materialised in thede�nition of the OFL (Open Flexible Languages) model [1℄.OFL was �rst designed as a meta-objet protool suh asthat of CLOS [2℄. However, more open and omplete thatCLOS, it has quikly beome very diÆult and boring �rstto program and then to use it. So we swithed to an hyper-generi approah to solve this problem [3℄. Rather thanallowing to rede�ne behaviours thanks to algorithms, wepropose a set of parameters. These algorithms, already im-plemented, take into aount, the values of these parame-ters to ahieve the desired behaviour. These algorithms arealled ations and they de�ne the operational semantis. Wepromote the idea that it is muh more onvenient for themeta-programmer (faster, more eÆient and reliable, et.)to set parameter values whih drive well-tested ations, thanto hange the soure ode of several methods whih desribealtogether the semantis of the language.
2. OFL APPROACH



At �rst reading the OFL approah an be summed up asthe searh for a set of parameters whose value determinesthe operational semantis of an objet language based onlasses.
2.1 Hyper-GenericityGeneriity is the ability to ustomise the behaviour of alass in an objet language just as in the Ei�el [4℄ or C++(template) [5℄ generi lasses. Hyper-generiity is the abilityto ustomise the behaviour of the language itself. More pre-isely we have hosen to ustomise the behaviours of threeimportant notions of objet languages based on lasses:1. relationships suh as generalisation and omposition[6℄,2. desriptions whih desribes the appliation's objets,suh as the Java lasses and interfaes [7, 8, 9℄, and3. languages themselves.
2.1.1 ParametersWe have de�ned a set of parameters [1℄ whih representsthe main features of the behaviours of these three impor-tant notions whih are alled onept-relationship, onept-desription et onept-language. For instane, onerningthe onept-relationship, the value of the Cardinality pa-rameter allows to speify if it is simple or multiple. As forthe onept-desription we have for instane the Generatorparameter whih determines whether the onept-desrip-tion an or annot reate own instanes.
2.1.2 ActionsThe operational semantis of eah onept must adapt tothe value of its parameters. This is ahieved thanks to aset of ations algorithms whose exeution depends on thesevalues. For example, the assignment of an objet to an at-tribute, the dynami binding of the features, the sendingof messages and lots of other behaviours are expressed a-ording to parameters of onept-relationship and onept-desription. OFL links two faets to eah ation: the �rstillustrates the stati part inside an interpretor or a om-piler; the seond represents the dynami aspet integratedwithin the runtime. The distribution of the ode into thesetwo faets depends on implementation hoies of the OFLmodel.
2.2 OFL ObjectivesThe �rst one is to improve the readability of the ode writ-ten in an objet language based on lasses. Indeed OFLallows to speify the relationships between the desriptionswhose semantis is more preise than inheritane or aggre-gation. Sine inheritane and aggregation are often used forvery di�erent purposes (for example: generalisation, spe-ialisation, ode reuse, : : : ), we aim to o�er the possibilityto reate a relationship whih is spei� to eah of thoseuses. Let us preise that in order to remain pragmati, wedo not aim to fore the programmers out of their habitsand to interhange the relationships there are used to withthe ones we propose. When a spei� relationship is used,readability of the ode is simpli�ed. Furthermore, it willbe easier to generate a relevant automati doumentation

Person

age() : Integer

Name : String

P1 : Person

Birthday = 02/12/1990

CS

CS

OC

CS

Birthday : Date

Name = "Diana"
the value of its attributes (optional)

the "P1" object and its type (type is optional)

the "Person" description

its attributes (optional)

its méthods (optional)

"S" is a composition of "C"

"S" is an aggregation of "C"

"S" is a generalisation of "C"

"O" is an instance of "C"Figure 1: General graphi onventionsand the interpreter or ompiler will be able to ahieve moreappropriate ontrols. As a onsequene, it will be easier tomaintain a program and to ensure further developments ofthe appliation.Also, we wish to ontribute to reduing the gap betweenthe expressiveness of design methods and programming lan-guages. Indeed, one an be partiularly pleased with a verysuitable UML representation but this is often diÆult toimplement straightforwardly using one's favourite program-ming language. OFL allows to de�ne relationships with se-mantis loser to those of design methods and thus to pro-gram faster.In order to obtain a realisti use of OFL, the programmerhas to have aess to libraries of onepts-relationships andonepts-desriptions in whih he an selet whatever hewishes to use. This method is similar to that whih providesreusable software omponents [10℄.
3. OFL MODELFirst in �gure 1, we determine the graphi onventions thatare applied to the whole doument. They are almost iden-tial to those of UML.
3.1 General ArchitectureFigure 2 illustrates how to use the OFL model to desribean appliation. In this �gure the three neessary levels ofmodelisation are shown:1. the appliation level inludes the program's desrip-tions and objets (OFL-instanes and OFL-data),2. the language level desribes the omponents of the pro-gramming language (OFL-omponents), and3. the OFL level represents the rei�ation of those om-ponents (OFL-onepts and OFL-atoms).



...

... ...

relationship description objectconcept−
relationship

concept−
description

a−language

concept−
language

language

a−description

Vehicle Car

RedMyFerrari

relationship
an−aggregation−

Colour

a−
generalisation−

relationship

OFL−concepts

OFL

OFL−instances

OFL−atoms

OFL−components

an application

OFL−data

Figure 2: The OFL arhiteture
3.2 Application LevelTo desribe an appliation, the programmer uses the serviessupplied by the language level. He reates OFL-instanes,whih are the desriptions and the relationships of his appli-ation by instantiation of the OFL-omponents. At runtime,the appliation objets, alled OFL-data, are instanes ofthe OFL-instanes representing the desriptions.
3.2.1 OFL-InstancesEah desription or relationship desribed by the program-mer is modelised by an OFL-instane. Figure 2 gives an ex-ample of an appliation whih inludes �ve OFL-instanes:� three desriptions: Vehile, Car, and Colour,� one generalisation relationship: Car inherits from Ve-hile, and� one aggregation relationship: Car has an attribute ofthe Colour type.
3.2.2 OFL-DataIn the appliation, eah desription instane is modelised atruntime by an OFL-datum. Figure 2 shows two of them:� MyFerrari, an instane of the Car desription, and� Red, an instane of the Colour desription.Let us point out that the OFL-instanes whih are desrip-tions speialise the OFL-atom objet. Indeed, objet is

the rei�ation of data of the appliation (OFL-data). Soit represents the root of the speialisation tree of the OFL-instanes whih are desriptions.
3.3 Language LevelThe language level desribes di�erent types of relationshipsand desriptions whih an be used in the modelised lan-guage. The relationships are instanes of onept-rela-tionship, the desription are instanes of onept-des-ription. The language itself is an instane of onept--language. Its main funtion is to put together the rela-tionships and desriptions whih are supplied to the pro-grammer.
3.3.1 OFL-ComponentsThe language level is solely omposed of OFL-omponents.Figure 2 lists:� some onepts-desriptions among with a-desrip-tion,� some onepts-relationships among with a-generali-sation-relationship and with an-aggregation-re-lationship, and� a onept-language a-language.It is possible to represent a onept-desription as a meta-lass and a onept-relationship as a meta-relationship andsimilarly a onept-language as a meta-language.



concept−
relationship

concept−
description

concept

concept−
relationship−

between−objects

concept−
relationship−

between−descriptions

concept−relationship−
between−objects−
and−descriptions

concept−
language

concept−
import−relationship

concept−
use−relationshipFigure 3: The OFL-onepts

3.4 OFL LevelThe OFL model is a meta-model for the programming lan-guage (language level) and a meta-meta-model for the pro-grams (appliation level). As was said in part 2.1, we havehosen to ustomise three important notions: relationships,desriptions and languages. However, a lot of other ompo-nents need to be rei�ed suh as objets, methods, assertions,et. in order to modelise a language ompletely. The OFLlevel inludes two types of entities:1. the OFL-onepts whih desribes the ustomisablepart of the relationships, desriptions and languages,and2. the OFL-atoms whih desribes the non-ustomisablepart of these three onepts as well as all the otheromponents.Also assertions are desribed in eahOFL-onept andOFL-atom in order to keep the model onsistent.
3.4.1 OFL-ConceptsFigure 3 shows the whole of the lassi�ation of the OFL-onepts. Let us reall that only the OFL-onepts are us-tomised in our model.The meta-programmer's task is to reate an OFL-ompo-nent, i.e. an instane of an OFL-onept, by giving a valueto eah of its parameters. Thus he deides on the behaviourof eah future instane of the OFL-omponent. If the opera-tional semantis whih the meta-programmer wants to bindto an OFL-omponent does not math the ations planned,then he has to modify the ode of those ations. The OFLmodel is left open by this possibility whih should not beused but in very spei� ontext. Indeed, in that ase, themeta-programmer's job is muh heavier than just giving val-ues to parameters.
3.4.1.1 Concepts-Relationships

We all a onept-relationship the entity representing a kindof relationship. A onept-relationship is onsequently ameta-relationship. Among the relationships whih are to befound in lots of objet-oriented languages based on lassesand objet design methods, we may mention for exampleinheritane, aggregation, omposition, generalisation, et.However a given method or language seldom owns all ofthese relationships and usually uses some of them in orderto simulate others. For example the generalisation in UMLdesribes a generalisation as well as an inheritane, a stritsub-typing1, : : :Around thirty parameters de�ne the semantis of all theOFL model's onept-relationship. Part 4.1.1 lists the on-epts-relationships representing the relationships of the Javalanguage.Figure 3 illustrates our lassi�ation of the onepts-relation-ships. Conerning the inter-desription relationships, wedistinguish between the import relationships (generalisationof the inheritane mehanism) and the use relationships(generalisation of the aggregation mehanism). As for �gure2 it illustrates one instane of an import onept-relationship(a-generalisation-relationship) and one example of anuse onept-relationship (an-aggregation-relationship).OFL also takes into aount the relationship between ob-jets and lasses whih are used for example to modelise theinstantiation relationship existing between an objet and itslass. It is also possible to modelise the relationship be-tween objets. Yet, we mainly are about inter-desriptionrelationships.
3.4.1.2 Concepts-DescriptionsA onept-desription allows to de�ne the notion of lassand all that looks like a lass suh as the interfaes in Java.Therefore a onept-desription is a kind of meta-lass.For instane we an notie that even if they look the samethe Ei�el, C++ or Java, lasses show some notable di�er-enes. Figure 2 gives one instane of onept-desriptionalled a-desription as an example.Around twenty parameters are neessary to desribe the be-haviour of a desription in the OFL model. Eah onept-desription is ompatible with a set of onepts-relation-ships. For instane, in Java, the onept-desription inter-fae is ompatible with the onept-relationship implemen-tation but it is inompatible with between-lasses-inhe-ritane.
3.4.1.3 Concepts-LanguagesThe onept-language is an important and yet simple no-tion. It modelises a language. In partiular, eah languageinludes a set of onepts-desriptions and a set of onepts-relationships whih are ompatible with at least one of theonepts-desriptions. In �gure 2 there is only one onept-language's instane (a-language) whih represents the mod-elised language.1These three relationships have di�erent semantis even ifthey are similar enough to be often mistaken.



The onepts-languages are hardly ustomised. Their mainfuntion is to federate the onepts-relationships and on-epts-desriptions whih are ompatible with them.
3.4.2 OFL-AtomsThey represent the rei�ation of the non-ustomised enti-ties of the model. Figure 4 illustrates a part of those OFL-atoms. The relationships, desriptions and languages havetheir own OFL-atoms to desribe the part of their stru-ture and their behaviour whih are not ustomised. Forinstane, in �gure 2, we may say that the OFL-omponentalled an-aggregation-relationship is a speialisation ofthe OFL-atom relationship.For instane in an appliation all the features of a desrip-tion are instanes of an heir of feature, all the expressionsare instanes of expression or of one of its heirs and allthe objets are instanes of objet. Thus OFL gives a fullrei�ation of the entities found at the appliation runtime.
4. IMPLEMENTATION OF OFLAfter desribing the di�erent elements omposing the OFLmodel, we shall now use OFL to modelise the desriptionsand relationships of the Java language. To illustrate thispart we shall give a value of all hyper-generi parameters forone omponent-relationship and one omponent-desription.We shall then deal with other meta-models available withinthe framework of objet-oriented tehnologies. Finally weshall desribe a set of tools allowing the use of our model.
4.1 Intuitive definition of JavaWe are listing now the di�erent semantis of the desriptionsand of the relationships between the desriptions of the Javalanguage. Eah of these semantis is represented by anOFL-omponent. The reader an go to �gure 5 to get the full listof the Java OFL-omponents.For Java we have found:� obviously, one onept-language,� eight onepts-relationships i.e. four import ones andfour use ones, and� ten onepts-desriptions.The reader familiar to Java may �nd the number of OFL-omponents is high. This is the result of the auray of ourparameter system whih provides a rather �ne granularity.The di�erenes in the semantis between the relationshipsor the desriptions are often hidden from the programmerby the use of the same keyword in di�erent ontexts.What we say about the Java OFL-omponents is not thevalue of eah of the parameters but rather a presentationof their main features. The keywords linked to eah of theOFL-omponents are put in brakets.
4.1.1 Concepts-Relationships of JavaThe �rst four onepts-relationships are import ones, thefollowing four as use ones.

4.1.1.1 Between Classes Inheritance (extends)This relationship is used to re�ne the implementation of thespei�ation of a data type. A spei�ation is implementedin a lass; so that a lass is speialised by an between lassesinheritane. This is simple inheritane in whih yles areforbidden. The features of an inherited lass are importedinto the heir lass. It is possible to replae the attributesand to rede�ne the methods. Polymorphism is applied in abottom-up way, i.e. any instane of the heir may be seen asan instane of the inherited one.
4.1.1.2 Between Interfaces Inheritance (extends)This relationship allows to re�ne the spei�ation of a datatype. It is applied between interfaes, the heir speialisingthe inherited ones. Contrary to the between lasses inher-itane, this relationship is multiple indeed. Polymorphismworks in the same way as in the between lasses inheritane.
4.1.1.3 Concretisation (extends)This relationship allows to materialise the implementationof the spei�ation of a data type. It is applied betweenan abstrat (inherited) lass and a non-abstrat (inherit-ing) lass. This relationship is idential to a between lassesinheritane but it is ompulsory to provide a body to theanestor's abstrat methods in the heir.
4.1.1.4 Implementation (implements)This relationship modelise the implementation of the spei-�ation of a data type. A lass an thus implements one orseveral interfaes. Therefore implementation is a multiplerelationship. If the lass is onrete, it must provide a bodyto all the methods whih are spei�ed in the interfaes. Ifthe lass is abstrat, it an provide a body to some methodsand keep the others abstrat. Its polymorphism is identialto that of the inheritane relationships.
4.1.1.5 AggregationThis relationship modelises how to use the servies of the de-sriptions. In order to implement suh a use, one just has todelare an attribute with the type of the used desription2.Contrary of the four previous import relationships, ylesare allowed for aggregations. The attributes of the desrip-tion used is diretly aessible i.e. the use of aessors isnot ompulsory3. The life of the used objet is independentfrom that of the using objet and the same objet an beused by several using objets.
4.1.1.6 Class Aggregation (stati)This relationship modelises the notion of lass attribute wellknown in objet-oriented languages. It is idential to aggre-gation but the used objet is assoiated to the using lassand not to its instanes.
4.1.1.7 CompositionThis relationship modelises the strong use of the desriptionservies. It is similar to an aggregation but the used entity2The use of a method parameter, of a funtion result or of aloal variable with the type of the used desription resemblesaggregation.3Exept if the attribute visibility is restrited, for instanedelaring it as private.



typeentity

class−feature typed−entity

method attribute parameter

procedure function local−variable

message

statement

expression

boolean−expression

assertion

invariantpostcondition precondition

object

relationshipdescription language

concept

Figure 4: The OFL-atoms

Java

class−
aggregation

composition

class−
composition

anonymous−
class

local−
class

concept−
description

abstract−
class

interface

static−
member−class

member−
class

static−
member−
interface

array

primitive−
type

concept−
language

implementation

concretisation

concept−
use−

relationship

aggregation class

concept−
import−

relationship

between−
interfaces−
inheritance

between−
classes−

inheritance

OFL−concepts

OFL−componentsFigure 5: The OFL-omponents of Java



is not an objet beause it is of a primitive type (for exam-ple: int). Thus we onsider that the life of the used entitydepends on that of the using objet.
4.1.1.8 Class Composition (stati)The lass omposition is similar to omposition but it de�nesa lass attribute as lass aggregation does.
4.1.2 Concepts-Descriptions ofJavaIn general, we all inner-lasses the stati member lasses,the member lasses, the loal lasses, the anonymous lasses,and the member stati interfaes too. We have listed tenonepts-desriptions4.
4.1.2.1 Class (lass)A lass is the onrete implementation of a data type. It isa non-generi desription whih may ontain methods5 andattributes. It is visible within the limits of the pakage butthis visibility an be extended or restrited by a quali�er(publi or private for instane). It is able to reate in-stanes but annot destroy them, this task is assigned to agarbage-olletor. Finally it allows the overloading withouttaking into aount the type of funtion result.
4.1.2.2 Abstract Class (abstrat lass)An abstrat lass is an abstrat implementation of a datatype. This desription as the same features as a lass but itan desribe abstrat methods (without a body) and annothave own instanes.
4.1.2.3 Interface (interfae)This is the spei�ation of a data type. Contrary to a lass,an interfae annot de�ne attributes. Moreover, all its meth-ods are abstrat and therefore it annot reate instanes.
4.1.2.4 Static Member Class (stati lass)A stati member lass is an implementation of a data type,loal to a lass. When ompared to a lass, its harateristiis to be de�ned inside a lass and not at the highest level.Besides it is not aessible but through the lass that de�nesit.
4.1.2.5 Member Class (lass)A member lass is an implementation of a data type, loalto a lass too. But unlike the stati member lass, an in-stane of the member lass is automatially assoiated toeah instane of the lass that de�nes it.
4.1.2.6 Local Class (lass)A loal lass is an implementation of a data type, loal toa method. It is only visible within the method that de�nesit. Besides that, it is equivalent to the other lass onepts-desriptions.
4.1.2.7 Anonymous Class (lass)An anonymous lass is an implementation of a data type,loal to an expression. It is similar to a loal lass but onlyvisible within the expression that de�nes it. Moreover, as it4We doesn't onsider abstrat inner-lasses in this paper.5As well as onstrutors and initialisers.

has not got a name, it annot be referred to and so it annotbe inherited. Finally beause of its syntati struture, if itimplements an interfae, it an only implement one.
4.1.2.8 Static Member Interface (stati interfae)A stati member interfae is a spei�ation of a data typeloal to a lass. It is equivalent to a stati member lasswith the shape of an interfae.
4.1.2.9 ArrayIt represents the struture of data that has the same name,whih is well-known by omputer sientists. It is thus anindexed and permanent-sized olletion of entities of a giventype. In Java, array is a partiular ase. Eah array is an in-stane of a virtual lass6 representing its type (for example:an array of integers is of type int[℄).
4.1.2.10 Primitive TypeA primitive type is the representation of a language basitype. It allows essential elements of the appliation to be de-sribed: booleans, haraters, bytes, shorts, integers, longs,oats, and doubles. Let us point out that eah primitivetype desribes a value and not an objet and that a lassexists to represent eah of them. For example, the Integerlass allows to onsider an int as an objet.
4.1.3 Constraints between JavaOFL-ComponentsThe semantis of the OFL-omponents allows to answer thequestion \Whih onepts-desriptions are valid as soure oras target of eah onepts-relationships?". To understandthe problem better, the following de�nition an be useful:� The soure of a relationship is the desription whihdelares the relationship. This desription is the onethat needs the servie. There an be several soures,as in the UML assoiation, even if it is quite a rarease.� The target of a relationship is the desription quotedby the soure when delaring the relationship. Thetarget provides the servie. It is possible to �nd severaltargets, it is more frequent to �nd several targets thanseveral soures (for example: multiple inheritane).As far as import onepts-relationships are onerned, wean mention following onstraints, for example.� It is impossible for between lasses inheritane to haveas target and soure an interfae or a stati memberinterfae. Furthermore, anonymous lasses annot betargeted by suh an inheritane.� The between interfaes inheritane is applied betweeninterfaes (whether they are stati member or not).� The onretisation must take plae between an ab-strat lass and a non-abstrat lass.� Finally, the implementation is a relationship whih al-ways targets one or several interfaes (whihever theyare) and a lass (whihever it is).6This lass does not exist but everything goes as if it did.



The same type of onstraints is found for use onepts-relationships. Here are a few examples of it.� The aggregation may have as a soure all kinds oflasses and only them. As for the targets, there arealso two kinds of interfae.� The lass aggregation has the same onstraints as theaggregation.� The omposition resembles the aggregation but theonly possible target is a primitive type.� We should apply the same onstraints for lass om-position and omposition.
4.2 OFL definition of JavaThe semantis of the Java's omponents had been desribedabove. This setion aims to show how they are de�ned inOFL.In order to reate new OFL-omponents, the meta-program-mer needs to valuate the parameters of the OFL-oneptsassoiated to them. We provide in the following the param-eter values attahed to two of the Java OFL-omponents :one omponent-relationship (the implementation) and oneomponent-desription (the abstrat lass). While readingthe values of OFL-omponent parameters the reader mayrefer to the orresponding paragraph in setion 4.1.
4.2.1 The OFL-componentImplementationPeople may distinguish omponents-relationships of a lan-guage using the parameter Name. For this omponent itsvalue is Implementation. The kind of relationships is reor-ded within the parameter Kind whih is set to import for thisomponent. OFL allows to mention (parameter Context) ifa omponent is spei� to a language or if it belongs to a li-brary of omponents7. We are desribing a relation for Java:Context is set to language. Implementation is a multiplerelationship and Java does not limit the number of target-desriptions so the parameter Cardinality is set to 1�18.The parameter Repetition indiates if a diret repetitionin the soures and/or targets of the relationship is allowed.Aording to the parameter Cardinality, we only onsiderone soure for the Implementation relationship of Java, sothe Repetition for soure is not appliable. Moreover itdoes not make sense to implement several idential interfaesand it is forbidden in Java. Thus, this parameter is set toforbidden for targets.The parameter Cirularity reords if it is possible to getyles thanks to this relationship (that means to be ableto import diretly or not the soure of the relationship it-self). In Java, yles are not allowed for Implementationand Cirularity is set to forbidden. Other possible valueis allowed.7Aording to the value of this parameter it is possible toinlude or not additional information or assertions whihimprove OFL-omponent's onsisteny.8For lassial objet-oriented languages one relationship in-volves only one soure and one or several target(s): one ifthe relationship is simple and several if it is a multiple one.

To set the parameter Symmetry to true would mean thatif a desription of type Class or Abstrat Class named Aimplements another desription of type Interfae named Bthen the B implements A. It is meaningless so that Symmetryis set to false.The parameter Opposite provides (if any) the name of theopposite relationship; otherwise it is set to none. For a sym-metry relationship, the opposite is the relationship itself.The implementation has no opposite in Java and this pa-rameter is set to none.The parameter Diret aess spei�es if the relationshipprovides a diret aess to the features of the target-desrip-tion from the soure-desription. Beause the targets of aImplementation relationship are only Interfaes, all thefeatures of the target-desription are abstrat, and to a-ess to the target-desription features has no meaning sothat Diret aess should be set to forbidden9 .The parameter Indiret aess means that any aess to afeature of the target-desription from the soure-desriptionshould be performed trough the target-desription itself (i.e.the target-lass must be spei�ed). For the same reasonsas for Diret aess, this parameter is set to forbidden.Possible values are mandatory, allowed and forbiddenThe parameter Polymorphism diretion and the parameterPolymorphism are spei� to import relationships. The �rstindiates if the relationship handles polymorphism betweensoure and targets and when it is useful indiates also thediretion (possible values are up, down, both and none). Theseond reords how the relationship handles name onitwhen the �rst one allows some polymorphism. Two possi-bilities are proposed: a feature (we distinguish attribute andmethods) of the soure-desription whih has the same namein the target-desription may hide or override the latter.Aording to the relationship being de�ned, all instanesof the soure-desription are also instanes of the target-desription and Polymorphism diretion is set to up. Po-lymorphism is set to overriding for both attributes (onlyonstant attributes are allowed) and methods.The parameter Feature variane is spei� to import re-lationships. It gives the kind of variane assoiated to theparameters of methods, to the result of funtions and tothe attributes, when a feature is rede�ned. Several valuesare available: nonvariant (new type must be the same),ovariant (new type must be a desendant), ontravariant(new type must be an anestor) and non appliable. Forthis relationship Feature variane is set to nonvariant formethod parameters, result of funtions and attributes.10Another spei� parameter of import relationships is Asser-tion variane. It gives the type of the variane for theassertions when there is a rede�nition. There are threekinds of assertion : invariants, preonditions and poston-9The reader should be aware of the ase of onstant at-tributes that may be de�ned within an interfae. OFL mayhandle this ase not trough parameter values (it is some-thing to spei�) but with a generi mehanism based onbefore/after routines inluded in the OFL's ations.10Remember that Java disposes of overloading apaity.



ditions. Several values are available: strengthened (newassertion must be stronger), weakened (new assertion mustbe lighter), unhanged (assertion must not be modi�ed) andnon appliable. For this relationship Assertion varianeis set to non appliable for all types of assertions beausesuh feature is not present in Java.The parameter Adding indiates if the relationship allows toadd features in the soure-desription. In Java it is allowedfor Implementation, so that Adding is set to allowed. Otherpossible values are forbidden and mandatory.The parameter Removing indiates if it is allowed to removefeatures from the target-desription trough this relation-ship. In Java it is not allowed, so that Removing is set toforbidden. Possible values are the same as those of Adding.The parameter Renaming reords if it is possible to renamefeatures in the soure-desription. In Java it is not allowedwath'ever is the relationship. Renaming is set to forbidden.Possible values are the same as those of Adding.The parameter Redefining indiates whether it is possibleor not to rede�ne assertions, signature, body and modi�er(s)(visibility, protetion, onstany, : : : ) of features. For eahategory, possible values are the same as for Adding. Aord-ing to Implementation, the rede�nition is non appliablefor assertions, it is forbidden for signature and modi�er(s)of features. It is allowed (but not mandatory) for a methodbody (imported features are all abstrat and may be asso-iated to a body in the soure-desription).The parameter Masking is dealing with the apability fora relationship to mask features oming from the target-desription. Possible values are the same as those of Adding.In Java the Implementation relationship does not allow tomask any feature of target-desription. Masking is set toforbidden. The parameter Showing deals exatly with theontrary: the apability to show in the soure-desriptionfeatures whih had been previously masked. In the Im-plementation relationship of Java, Showing is also set toforbidden.The parameter Abstrating reords whether a relationshipmay speify to remove the body of a feature of the target-desription in the soure-desription. Suh apability isforbidden for this relationship (all methods of an interfaeare already abstrat methods). Possible values are the sameas those of Adding.Effeting is exatly the opposite of Abstrating. It in-diates that a soure-desription may provide a body toabstrat methods. For this relationship it is allowed (butnot mandatory): soure-desription may be of type Class orAbstrat Class. Possible values are the same as those ofAdding.
4.2.2 The OFL-componentAbstrat ClassIn previous setion we desribed a omponent-relationship;the next one is dediated to the desription of a omponent-desription. Like omponents-relationships, omponents-de-sriptions are assoiated to a set of parameters whih de-sribes their operational semantis.

A few parameters suh as Name or Context whih partii-pate to the desription of a omponent-relationship are alsopresent in a omponent-desription, with the same meaning.This setion deals with the de�nition of abstrat lasses sothat Name is set to abstrat lass. Moreover, we de�nean abstrat lass in the framework of Java, so that theparameter Context is set to language (f. setion 4.2.1).The parameter Generiity reords if a desription is generior not. There is no generi desription in Java, so thatGeneriity is set to false.The parameter Generator indiates if a omponent-desri-ption is able to reate instanes. If yes, it should be possibleto de�ne onstrutors and initialisers. In Java, for abstratlasses as well as "normal" lasses, this parameter is set totrue. On the ontrary, the parameter Destrutor reords ifit is possible to free an instane. In Java, this is rarely usedbut possible, so this parameter is set to true.The extension of a desription is the set of its own in-stanes and of instanes of its heirs (more preisely, this setof instanes depends on the parameters dediated to poly-morphism of the relationships where are this desriptionis soure or target). The parameter Extension reationreords if the extension of this kind of desription is han-dled automatially or manually. In Java we an set thisparameter to automatially (by default, at the desrip-tion reation, its extension is empty) even if the extensionis maintained only virtually.The parameter Enapsulation indiates if features are en-apsulated into desriptions; it is possible to distinguish be-tween attributes and methods. In Java everything is enap-sulated, so that the parameter is set to <true, true>. Letus mention that the ability to modelise non enapsulatedmethod is useful for the spei�ation of language suh asCLOS.Sharing ontrol is the parameter whih reords if the in-stanes of a desription may be shared and eventually how.An instane may be shared by all instanes of one desrip-tion (this represent the idea of lass variable and the value ofparameter is desription), it may be shared by only someof the instanes of one desription (this is an instane vari-able and the value of parameter is instane). Finally, aninstane may be attahed to only one instane of one de-sription (value unique instane). A Java abstrat lassdoes not put onstraints about the sharing of its instanes(in fat the instanes of its desendants) so Sharing ontrolis set to fdesription, instane, unique instaneg.The parameter Visibility indiates entities from whih thedesription is visible. Several values are possible for thisparameter from a value whih restrits the visibility to asingle expression to one whih open the desription to theentire network. In Java, by default, the visibility is limitedto the pakage whih ontains the desription so the hosenvalue is pakage.Attribute is the parameter whih spei�es if the desrip-tion allows the de�nition of attributes (allowed) or not(forbidden). For an Abstrat Class this parameter is al-



lowed (for onstant attribute only). In the same way, thereis a very similar parameter for methods, it is alled Method.In an Abstrat Class it is also possible to de�ne methods,so that this parameter is set to allowed.The parameter Overloading indiates if the omponent-desription allows or prohibits (allowed, forbidden) theoverloading of features. In fat it is onstituted by fourvalues whih speify this overloading for the attributes, forthe results of funtions, for the number and for the type ofmethod parameters. For a Java abstrat lass the parameteris set to <forbidden, forbidden, allowed, allowed>.
4.2.3 Some more about OFL-componentsPerhaps the reader notied some aspets of the Java lan-guage that were not overed by the parameters presentedabove. Let us take some examples:� In setion 4.2.1 the parameter repetition handles di-ret repetition of target desriptions, that is to say itallows or not to get several time the same desriptionin the list of target. But what about the handling ofindiret repetition (repetition of the same desriptionseveral times in the same hierarhy but at di�erentlevel)?� In setion 4.2.2 we deal with visibility of a desription(parameter visibility) but nothing about the han-dling of the keyword publi that may be attahed to aJava lass. On the other hand the keyword abstratis handled by the parameter Generator, why suh in-equity?� The handling of the features' visibility within the hier-arhy of lasses is not even mentioned. The situation isthe same for the handling of onstrutors and initialis-ers aording to values of the parameter Generator.One may note that it is also neessary to ensure thatonstrutors has same name as the desription, thatinitialisers are anonymous and that the destrutor isalled "finalize".Aording to those questions or remarks we need to makethe three following omments and to propose an answer: theassertions and the quali�ers.Firstly, the hoie to de�ne or not a new parameter for aomponent-relationship or a omponent-desription is main-ly based on the following question: "Is it an enough generaland relevant aspet that ould be integrated in more thanone language and that may be found in existing literature?".To answer this question looks like very diÆult and in someway quite arbitrary but let us give some examples in orderto show the underlying philosophy. The handling of somelanguage keywords is very spei� to eah language. Eahlanguage has its own rules for handling the visibility of rou-tines within the hierarhy of desriptions (private, publi,proteted, export, : : : ). On the other hand, to say thata desription is abstrat or not, justi�es from our point ofview, to assoiate it to one or several parameters. How-ever, the spei�ity of eah language aording to this as-pet may not be fully handled by parameters (for instane

when a language enfores an abstrat desription to ontainonly abstrat methods).Seondly, some semantis into a language may not �t withinonly one omponent. The handling of indiret repetitionor the handling of feature visibility relies on several kindsof relationship (on several OFL-omponents), so that it isneessary to get a mehanism whih is orthogonal to thekinds of relationship.Thirdly, theOFLmodel is based essentially on two ustomis-able onepts: relationships and desriptions. This inten-tional limitation means that the de�nition of the behaviourof entities suh as methods or attributes is loated withinomponents-desriptions and omponents-relationships.In order to take into aount what we mentioned above,we integrated assertions within OFL-omponents: they mayaddress any rei�ed information inluding parameters value.They orrespond to ontrols that the meta-programmer mayneed to set on the hierarhy of omponents. We add alsoto OFL-omponents the ability to de�ne assertions assoi-ated to a keyword (we all them quali�ers). For example wemay de�ne an assertion whih orresponds to the seman-ti of a private method in Java or another one whih dealswith the semanti of publi lass (also in Java). All ontrolsspei�ed by a language either expliitly through a keywordor impliitly whih are not handled by existing parameters,are assoiated to one or several assertions; the tools men-tioned in setion 4.4, espeially OFL-ML are in harge toimplement those assertions.
4.3 Integration in the Existing Meta-ModelsOFL is a meta-model whih desribes objet-oriented lan-guages based on lasses and ustomises the operational se-mantis of their desriptions and relationships. The stateof the art, in the �eld of meta-model shows quite a diver-sity. These meta-models are usually able to desribe oneanother. For us, the most signi�ant one is MOF (MetaObjet Faility) [11℄. We do not aim to ompete againstMOF but to o�er a less general model loser to the pro-grammer. MOF desribes a lass onept, an assoiationonept and a pakage onept.A MOF lass allows to de�ne attributes, the type of whihan be simple or desribed by a lass, and to speify op-erations. Let us point out that OFL and MOF have thesame approah onerning the method bodies that have tobe desribed aording to an independent language (bind-ing). OFL and MOF both draw from the UML and IDL[12℄ notation and syntax.AMOF assoiation allows to de�ne any relationship that o-urs between a number ofMOF soure lasses and a numberofMOF target lasses. The semantis of the relationship de-sribed by suh an assoiation is implemented thanks to theattributes and the operations of the MOF lasses.The MOF pakages allow to enompass the MOF lassesand assoiations.OFL may be desribed aording to MOF and supply thelatter with an additional layer on top of it allowing to us-



tomise the operational semantis of the MOF lasses andassoiations.Besides, we have shown in �gure 2 that OFL an be de-sribed with the UML formalism, in partiular thanks tothe possibility of tagging the new onepts (whih was un-neessary in this �gure).Finally, OFL an also be desribed thanks to XML [13℄ andXML-Shemas.
4.4 OFL ToolsOFL an be used as a set of three tools whih share the infor-mation ontained in a database whose shema is desribedin ODL [14℄.The �rst tool alled OFL-Meta is for the meta-programmer.It allows to graphially reate, modify or delete OFL-om-ponents i.e. the instanes of the OFL-onepts. In otherwords, it allows to desribe the operational semantis of alanguage whih will be used when designing an appliation.The OFL-omponents whih it handles an be stored byusing various standard formalism suh XML or MOF.The seond tool is alled OFL-ML in referene to UML. It isintended for the appliation designer. It is also a graphialtool whih allows to reate, modify or delete OFL-instanes,i.e. the instanes of the OFL-omponents desribed in OFL-Meta. The programming task is inluded by a binding: theseleted language is Java, that is body of all the methods iswritten in Java.The third tool is alled OFL-Parser. It is a translator, inter-preter or ompiler. Its task is to translate the OFL-instanesand the body of methods (using the stati faets of the a-tions) into a target language, Java in our ase. The laststep onsist in exeuting the generated appliation and thusto use the methods and reate the OFL-data, i.e. the in-stanes of the OFL-instanes (using the dynami faets ofthe ations).
5. CONCLUSION AND FURTHER WORKSThe OFL meta-model, the features of whih we have quiklysummed up in this doument, desribes objet-oriented lan-guages based on lasses. Its harateristi is to ustomisethe operational semantis of the desriptions and the rela-tionships of those languages. It is also possible to add otherdesriptions and relationships if their use is ompatible withthose that already exist. OFL also provides several assetswhih may allow a higher maintainability of the applia-tions.We have started implementing eah of the three tools de-sribed in setion 4.4; a prototype of the �rst two ones shouldbe released in the next few months. The third tool will er-tainly take longer.
6. REFERENCES[1℄ A. Capouillez, R. Chignoli, P. Cresenzo, andP. Lahire, \Hyper-g�en�eriit�e pour les langages �aobjets : le mod�ele OFL," in Conf�erene LMO 2001(Langages et Mod�eles �a objets), Hermes SienePubliations, janvier 2001.

[2℄ G. Kizales, J. Des Rivi�eres, and D. G. Bobrow, TheArt of the MetaObjet Protool. MIT-Press, 1991.[3℄ P. Desfray, Objet Engineering, the Fourth Dimension.Addison-Wesley Publishing Co., 1994.[4℄ B. Meyer, Objet-Oriented Software Constrution.Professional Tehnial Referene, Prentie Hall,2nd ed., 1997.[5℄ B. Stroustrup, The C++ Programming Language.Addison-Wesley Publishing Co., 3rd ed., 1997.[6℄ Objet Management Group, Uni�ed ModelingLanguage Spei�ation, 1st ed., Marh 2000. Version1.3.[7℄ K. Arnold and J. Gosling, The Java ProgrammingLanguage. The Java Series : : : from the Soure, SunMirosystems, 3rd ed., 2000.[8℄ D. Flanagan, Java in a Nutshell: a Desktop QuikReferene. O'Reilly, 3rd ed., Deember 1999.[9℄ J. Gosling, B. Joy, G. Steele, and B. G., The JavaLanguage Spei�ation. The Sun Mirosystems PressJava Series, Sun Mirosystems, June 2000.[10℄ M. Bouzeghoub, G. Gardarin, and P. Valduriez, Lesobjets. Eyrolles, 1997.[11℄ Objet Management Group, Meta Objet Faility(MOF) Spei�ation, Marh 2000. Version 1.3.[12℄ Objet Management Group, The Common ObjetRequest Broker: Arhiteture and Spei�ation,February 2001. Version 2.4.2.[13℄ Extensible Markup Language (XML), 2nd ed., Otober2000. Version 1.0, W3C Reommendation.[14℄ R. Cattell, D. K. Barry, D. Bartels, M. Berler,J. Eastman, S. Gamerman, D. Jordan, A. Springer,H. Strikland, and D. Wade, Objet DatabaseStandard: ODMG 2.0. Morgan Kaufmann Publishers,In., 1997.


