
OFL: Hyper-Genericity for Meta-Programming

– An application to Java –

Adeline CapouillezAdeline.Capouillez�uni
e.fr Pierre CrescenzoPierre.Cres
enzo�uni
e.frLaboratoire I3S (UNSA/CNRS)Projet OCLLes Algorithmesbâtiment Eu
lide B2000, route des lu
iolesB.P. 121F-06903 Sophia Antipolis CEDEXFran
e
Philippe LahirePhilippe.Lahire�uni
e.fr

ABSTRACTOFL is the a
ronym for Open Flexible Languages and thename of a meta-model for obje
t-oriented programming lan-guages based on 
lasses. OFL intends to des
ribe them,espe
ially by promoting 
apabilities su
h as introspe
tion,modi�
ation and extension. OFL relies on three essential
on
epts of these languages: the des
riptions whi
h are ageneralisation of the notion of 
lass, the relationships su
has inheritan
e or aggregation and the languages themselves.OFL provides a 
ustomisation of these three 
on
epts inorder to adapt their operational semanti
s to the program-mer's needs. This paper summarises the main 
hara
teris-ti
s of the OFL model, shows how to 
reate an appli
ationusing this model and des
ribes the Java language a

ordingto OFL.
1. INTRODUCTIONOne of the proje
t manager's main goals is to bring downthe 
ost of software produ
tion. Their 
ost mainly dependson two steps: programming and maintenan
e. During thesephases, the balan
e must be found between fastness andhigh quality. Several approa
hes are often used to solvethis problem. Examples of some of these approa
hes 
anbe given, keeping well in mind that none a
tually solves
ompletely this problem at present.� In a well determined 
ontext, su
h as the design ofgraphi
al interfa
es or Web sites, the 
apa
ity to gen-erate sour
e 
ode automati
ally brings valuable help.� The e�orts made to obtain more readable program-ming languages thanks to an ameliorated syntax 
on-

tribute to improving the readability of the sour
e 
odewritten in those languages.� Redu
ing the gap between the design phase and theprogramming phase is also aimed at to redu
e the timespent in programming.� Libraries of reusable 
omponents allow not to startfrom s
rat
h for ea
h new pie
e of software.� As for the design patterns, they o�er ar
hite
ture mod-els used for spe
i�
 programming problems.� Aspe
t programming addresses separation in terms oforthogonal servi
es of an appli
ation's features, su
has persisten
e or distribution of obje
ts.We will deal with several of those solutions in a 
ommonapproa
h starting with the idea that relationships between
lasses in obje
t-oriented languages, and espe
ially inheri-tan
e, are low-level me
hanisms whi
h it would be interest-ing to spe
ify better. This approa
h is materialised in thede�nition of the OFL (Open Flexible Languages) model [1℄.OFL was �rst designed as a meta-obje
t proto
ol su
h asthat of CLOS [2℄. However, more open and 
omplete thatCLOS, it has qui
kly be
ome very diÆ
ult and boring �rstto program and then to use it. So we swit
hed to an hyper-generi
 approa
h to solve this problem [3℄. Rather thanallowing to rede�ne behaviours thanks to algorithms, wepropose a set of parameters. These algorithms, already im-plemented, take into a

ount, the values of these parame-ters to a
hieve the desired behaviour. These algorithms are
alled a
tions and they de�ne the operational semanti
s. Wepromote the idea that it is mu
h more 
onvenient for themeta-programmer (faster, more eÆ
ient and reliable, et
.)to set parameter values whi
h drive well-tested a
tions, thanto 
hange the sour
e 
ode of several methods whi
h des
ribealtogether the semanti
s of the language.
2. OFL APPROACH



At �rst reading the OFL approa
h 
an be summed up asthe sear
h for a set of parameters whose value determinesthe operational semanti
s of an obje
t language based on
lasses.
2.1 Hyper-GenericityGeneri
ity is the ability to 
ustomise the behaviour of a
lass in an obje
t language just as in the Ei�el [4℄ or C++(template) [5℄ generi
 
lasses. Hyper-generi
ity is the abilityto 
ustomise the behaviour of the language itself. More pre-
isely we have 
hosen to 
ustomise the behaviours of threeimportant notions of obje
t languages based on 
lasses:1. relationships su
h as generalisation and 
omposition[6℄,2. des
riptions whi
h des
ribes the appli
ation's obje
ts,su
h as the Java 
lasses and interfa
es [7, 8, 9℄, and3. languages themselves.
2.1.1 ParametersWe have de�ned a set of parameters [1℄ whi
h representsthe main features of the behaviours of these three impor-tant notions whi
h are 
alled 
on
ept-relationship, 
on
ept-des
ription et 
on
ept-language. For instan
e, 
on
erningthe 
on
ept-relationship, the value of the Cardinality pa-rameter allows to spe
ify if it is simple or multiple. As forthe 
on
ept-des
ription we have for instan
e the Generatorparameter whi
h determines whether the 
on
ept-des
rip-tion 
an or 
annot 
reate own instan
es.
2.1.2 ActionsThe operational semanti
s of ea
h 
on
ept must adapt tothe value of its parameters. This is a
hieved thanks to aset of a
tions algorithms whose exe
ution depends on thesevalues. For example, the assignment of an obje
t to an at-tribute, the dynami
 binding of the features, the sendingof messages and lots of other behaviours are expressed a
-
ording to parameters of 
on
ept-relationship and 
on
ept-des
ription. OFL links two fa
ets to ea
h a
tion: the �rstillustrates the stati
 part inside an interpretor or a 
om-piler; the se
ond represents the dynami
 aspe
t integratedwithin the runtime. The distribution of the 
ode into thesetwo fa
ets depends on implementation 
hoi
es of the OFLmodel.
2.2 OFL ObjectivesThe �rst one is to improve the readability of the 
ode writ-ten in an obje
t language based on 
lasses. Indeed OFLallows to spe
ify the relationships between the des
riptionswhose semanti
s is more pre
ise than inheritan
e or aggre-gation. Sin
e inheritan
e and aggregation are often used forvery di�erent purposes (for example: generalisation, spe-
ialisation, 
ode reuse, : : : ), we aim to o�er the possibilityto 
reate a relationship whi
h is spe
i�
 to ea
h of thoseuses. Let us pre
ise that in order to remain pragmati
, wedo not aim to for
e the programmers out of their habitsand to inter
hange the relationships there are used to withthe ones we propose. When a spe
i�
 relationship is used,readability of the 
ode is simpli�ed. Furthermore, it willbe easier to generate a relevant automati
 do
umentation

Person

age() : Integer

Name : String

P1 : Person

Birthday = 02/12/1990

CS

CS

OC

CS

Birthday : Date

Name = "Diana"
the value of its attributes (optional)

the "P1" object and its type (type is optional)

the "Person" description

its attributes (optional)

its méthods (optional)

"S" is a composition of "C"

"S" is an aggregation of "C"

"S" is a generalisation of "C"

"O" is an instance of "C"Figure 1: General graphi
 
onventionsand the interpreter or 
ompiler will be able to a
hieve moreappropriate 
ontrols. As a 
onsequen
e, it will be easier tomaintain a program and to ensure further developments ofthe appli
ation.Also, we wish to 
ontribute to redu
ing the gap betweenthe expressiveness of design methods and programming lan-guages. Indeed, one 
an be parti
ularly pleased with a verysuitable UML representation but this is often diÆ
ult toimplement straightforwardly using one's favourite program-ming language. OFL allows to de�ne relationships with se-manti
s 
loser to those of design methods and thus to pro-gram faster.In order to obtain a realisti
 use of OFL, the programmerhas to have a

ess to libraries of 
on
epts-relationships and
on
epts-des
riptions in whi
h he 
an sele
t whatever hewishes to use. This method is similar to that whi
h providesreusable software 
omponents [10℄.
3. OFL MODELFirst in �gure 1, we determine the graphi
 
onventions thatare applied to the whole do
ument. They are almost iden-ti
al to those of UML.
3.1 General ArchitectureFigure 2 illustrates how to use the OFL model to des
ribean appli
ation. In this �gure the three ne
essary levels ofmodelisation are shown:1. the appli
ation level in
ludes the program's des
rip-tions and obje
ts (OFL-instan
es and OFL-data),2. the language level des
ribes the 
omponents of the pro-gramming language (OFL-
omponents), and3. the OFL level represents the rei�
ation of those 
om-ponents (OFL-
on
epts and OFL-atoms).



...

... ...

relationship description objectconcept−
relationship

concept−
description

a−language

concept−
language

language

a−description

Vehicle Car

RedMyFerrari

relationship
an−aggregation−

Colour

a−
generalisation−

relationship

OFL−concepts

OFL

OFL−instances

OFL−atoms

OFL−components

an application

OFL−data

Figure 2: The OFL ar
hite
ture
3.2 Application LevelTo des
ribe an appli
ation, the programmer uses the servi
essupplied by the language level. He 
reates OFL-instan
es,whi
h are the des
riptions and the relationships of his appli-
ation by instantiation of the OFL-
omponents. At runtime,the appli
ation obje
ts, 
alled OFL-data, are instan
es ofthe OFL-instan
es representing the des
riptions.
3.2.1 OFL-InstancesEa
h des
ription or relationship des
ribed by the program-mer is modelised by an OFL-instan
e. Figure 2 gives an ex-ample of an appli
ation whi
h in
ludes �ve OFL-instan
es:� three des
riptions: Vehi
le, Car, and Colour,� one generalisation relationship: Car inherits from Ve-hi
le, and� one aggregation relationship: Car has an attribute ofthe Colour type.
3.2.2 OFL-DataIn the appli
ation, ea
h des
ription instan
e is modelised atruntime by an OFL-datum. Figure 2 shows two of them:� MyFerrari, an instan
e of the Car des
ription, and� Red, an instan
e of the Colour des
ription.Let us point out that the OFL-instan
es whi
h are des
rip-tions spe
ialise the OFL-atom obje
t. Indeed, obje
t is

the rei�
ation of data of the appli
ation (OFL-data). Soit represents the root of the spe
ialisation tree of the OFL-instan
es whi
h are des
riptions.
3.3 Language LevelThe language level des
ribes di�erent types of relationshipsand des
riptions whi
h 
an be used in the modelised lan-guage. The relationships are instan
es of 
on
ept-rela-tionship, the des
ription are instan
es of 
on
ept-des-
ription. The language itself is an instan
e of 
on
ept--language. Its main fun
tion is to put together the rela-tionships and des
riptions whi
h are supplied to the pro-grammer.
3.3.1 OFL-ComponentsThe language level is solely 
omposed of OFL-
omponents.Figure 2 lists:� some 
on
epts-des
riptions among with a-des
rip-tion,� some 
on
epts-relationships among with a-generali-sation-relationship and with an-aggregation-re-lationship, and� a 
on
ept-language a-language.It is possible to represent a 
on
ept-des
ription as a meta-
lass and a 
on
ept-relationship as a meta-relationship andsimilarly a 
on
ept-language as a meta-language.



concept−
relationship

concept−
description

concept

concept−
relationship−

between−objects

concept−
relationship−

between−descriptions

concept−relationship−
between−objects−
and−descriptions

concept−
language

concept−
import−relationship

concept−
use−relationshipFigure 3: The OFL-
on
epts

3.4 OFL LevelThe OFL model is a meta-model for the programming lan-guage (language level) and a meta-meta-model for the pro-grams (appli
ation level). As was said in part 2.1, we have
hosen to 
ustomise three important notions: relationships,des
riptions and languages. However, a lot of other 
ompo-nents need to be rei�ed su
h as obje
ts, methods, assertions,et
. in order to modelise a language 
ompletely. The OFLlevel in
ludes two types of entities:1. the OFL-
on
epts whi
h des
ribes the 
ustomisablepart of the relationships, des
riptions and languages,and2. the OFL-atoms whi
h des
ribes the non-
ustomisablepart of these three 
on
epts as well as all the other
omponents.Also assertions are des
ribed in ea
hOFL-
on
ept andOFL-atom in order to keep the model 
onsistent.
3.4.1 OFL-ConceptsFigure 3 shows the whole of the 
lassi�
ation of the OFL-
on
epts. Let us re
all that only the OFL-
on
epts are 
us-tomised in our model.The meta-programmer's task is to 
reate an OFL-
ompo-nent, i.e. an instan
e of an OFL-
on
ept, by giving a valueto ea
h of its parameters. Thus he de
ides on the behaviourof ea
h future instan
e of the OFL-
omponent. If the opera-tional semanti
s whi
h the meta-programmer wants to bindto an OFL-
omponent does not mat
h the a
tions planned,then he has to modify the 
ode of those a
tions. The OFLmodel is left open by this possibility whi
h should not beused but in very spe
i�
 
ontext. Indeed, in that 
ase, themeta-programmer's job is mu
h heavier than just giving val-ues to parameters.
3.4.1.1 Concepts-Relationships

We 
all a 
on
ept-relationship the entity representing a kindof relationship. A 
on
ept-relationship is 
onsequently ameta-relationship. Among the relationships whi
h are to befound in lots of obje
t-oriented languages based on 
lassesand obje
t design methods, we may mention for exampleinheritan
e, aggregation, 
omposition, generalisation, et
.However a given method or language seldom owns all ofthese relationships and usually uses some of them in orderto simulate others. For example the generalisation in UMLdes
ribes a generalisation as well as an inheritan
e, a stri
tsub-typing1, : : :Around thirty parameters de�ne the semanti
s of all theOFL model's 
on
ept-relationship. Part 4.1.1 lists the 
on-
epts-relationships representing the relationships of the Javalanguage.Figure 3 illustrates our 
lassi�
ation of the 
on
epts-relation-ships. Con
erning the inter-des
ription relationships, wedistinguish between the import relationships (generalisationof the inheritan
e me
hanism) and the use relationships(generalisation of the aggregation me
hanism). As for �gure2 it illustrates one instan
e of an import 
on
ept-relationship(a-generalisation-relationship) and one example of anuse 
on
ept-relationship (an-aggregation-relationship).OFL also takes into a

ount the relationship between ob-je
ts and 
lasses whi
h are used for example to modelise theinstantiation relationship existing between an obje
t and its
lass. It is also possible to modelise the relationship be-tween obje
ts. Yet, we mainly 
are about inter-des
riptionrelationships.
3.4.1.2 Concepts-DescriptionsA 
on
ept-des
ription allows to de�ne the notion of 
lassand all that looks like a 
lass su
h as the interfa
es in Java.Therefore a 
on
ept-des
ription is a kind of meta-
lass.For instan
e we 
an noti
e that even if they look the samethe Ei�el, C++ or Java, 
lasses show some notable di�er-en
es. Figure 2 gives one instan
e of 
on
ept-des
ription
alled a-des
ription as an example.Around twenty parameters are ne
essary to des
ribe the be-haviour of a des
ription in the OFL model. Ea
h 
on
ept-des
ription is 
ompatible with a set of 
on
epts-relation-ships. For instan
e, in Java, the 
on
ept-des
ription inter-fa
e is 
ompatible with the 
on
ept-relationship implemen-tation but it is in
ompatible with between-
lasses-inhe-ritan
e.
3.4.1.3 Concepts-LanguagesThe 
on
ept-language is an important and yet simple no-tion. It modelises a language. In parti
ular, ea
h languagein
ludes a set of 
on
epts-des
riptions and a set of 
on
epts-relationships whi
h are 
ompatible with at least one of the
on
epts-des
riptions. In �gure 2 there is only one 
on
ept-language's instan
e (a-language) whi
h represents the mod-elised language.1These three relationships have di�erent semanti
s even ifthey are similar enough to be often mistaken.



The 
on
epts-languages are hardly 
ustomised. Their mainfun
tion is to federate the 
on
epts-relationships and 
on-
epts-des
riptions whi
h are 
ompatible with them.
3.4.2 OFL-AtomsThey represent the rei�
ation of the non-
ustomised enti-ties of the model. Figure 4 illustrates a part of those OFL-atoms. The relationships, des
riptions and languages havetheir own OFL-atoms to des
ribe the part of their stru
-ture and their behaviour whi
h are not 
ustomised. Forinstan
e, in �gure 2, we may say that the OFL-
omponent
alled an-aggregation-relationship is a spe
ialisation ofthe OFL-atom relationship.For instan
e in an appli
ation all the features of a des
rip-tion are instan
es of an heir of feature, all the expressionsare instan
es of expression or of one of its heirs and allthe obje
ts are instan
es of obje
t. Thus OFL gives a fullrei�
ation of the entities found at the appli
ation runtime.
4. IMPLEMENTATION OF OFLAfter des
ribing the di�erent elements 
omposing the OFLmodel, we shall now use OFL to modelise the des
riptionsand relationships of the Java language. To illustrate thispart we shall give a value of all hyper-generi
 parameters forone 
omponent-relationship and one 
omponent-des
ription.We shall then deal with other meta-models available withinthe framework of obje
t-oriented te
hnologies. Finally weshall des
ribe a set of tools allowing the use of our model.
4.1 Intuitive definition of JavaWe are listing now the di�erent semanti
s of the des
riptionsand of the relationships between the des
riptions of the Javalanguage. Ea
h of these semanti
s is represented by anOFL-
omponent. The reader 
an go to �gure 5 to get the full listof the Java OFL-
omponents.For Java we have found:� obviously, one 
on
ept-language,� eight 
on
epts-relationships i.e. four import ones andfour use ones, and� ten 
on
epts-des
riptions.The reader familiar to Java may �nd the number of OFL-
omponents is high. This is the result of the a

ura
y of ourparameter system whi
h provides a rather �ne granularity.The di�eren
es in the semanti
s between the relationshipsor the des
riptions are often hidden from the programmerby the use of the same keyword in di�erent 
ontexts.What we say about the Java OFL-
omponents is not thevalue of ea
h of the parameters but rather a presentationof their main features. The keywords linked to ea
h of theOFL-
omponents are put in bra
kets.
4.1.1 Concepts-Relationships of JavaThe �rst four 
on
epts-relationships are import ones, thefollowing four as use ones.

4.1.1.1 Between Classes Inheritance (extends)This relationship is used to re�ne the implementation of thespe
i�
ation of a data type. A spe
i�
ation is implementedin a 
lass; so that a 
lass is spe
ialised by an between 
lassesinheritan
e. This is simple inheritan
e in whi
h 
y
les areforbidden. The features of an inherited 
lass are importedinto the heir 
lass. It is possible to repla
e the attributesand to rede�ne the methods. Polymorphism is applied in abottom-up way, i.e. any instan
e of the heir may be seen asan instan
e of the inherited one.
4.1.1.2 Between Interfaces Inheritance (extends)This relationship allows to re�ne the spe
i�
ation of a datatype. It is applied between interfa
es, the heir spe
ialisingthe inherited ones. Contrary to the between 
lasses inher-itan
e, this relationship is multiple indeed. Polymorphismworks in the same way as in the between 
lasses inheritan
e.
4.1.1.3 Concretisation (extends)This relationship allows to materialise the implementationof the spe
i�
ation of a data type. It is applied betweenan abstra
t (inherited) 
lass and a non-abstra
t (inherit-ing) 
lass. This relationship is identi
al to a between 
lassesinheritan
e but it is 
ompulsory to provide a body to thean
estor's abstra
t methods in the heir.
4.1.1.4 Implementation (implements)This relationship modelise the implementation of the spe
i-�
ation of a data type. A 
lass 
an thus implements one orseveral interfa
es. Therefore implementation is a multiplerelationship. If the 
lass is 
on
rete, it must provide a bodyto all the methods whi
h are spe
i�ed in the interfa
es. Ifthe 
lass is abstra
t, it 
an provide a body to some methodsand keep the others abstra
t. Its polymorphism is identi
alto that of the inheritan
e relationships.
4.1.1.5 AggregationThis relationship modelises how to use the servi
es of the de-s
riptions. In order to implement su
h a use, one just has tode
lare an attribute with the type of the used des
ription2.Contrary of the four previous import relationships, 
y
lesare allowed for aggregations. The attributes of the des
rip-tion used is dire
tly a

essible i.e. the use of a

essors isnot 
ompulsory3. The life of the used obje
t is independentfrom that of the using obje
t and the same obje
t 
an beused by several using obje
ts.
4.1.1.6 Class Aggregation (stati
)This relationship modelises the notion of 
lass attribute wellknown in obje
t-oriented languages. It is identi
al to aggre-gation but the used obje
t is asso
iated to the using 
lassand not to its instan
es.
4.1.1.7 CompositionThis relationship modelises the strong use of the des
riptionservi
es. It is similar to an aggregation but the used entity2The use of a method parameter, of a fun
tion result or of alo
al variable with the type of the used des
ription resemblesaggregation.3Ex
ept if the attribute visibility is restri
ted, for instan
ede
laring it as private.



typeentity

class−feature typed−entity

method attribute parameter

procedure function local−variable

message

statement

expression

boolean−expression

assertion

invariantpostcondition precondition

object

relationshipdescription language

concept

Figure 4: The OFL-atoms

Java

class−
aggregation

composition

class−
composition

anonymous−
class

local−
class

concept−
description

abstract−
class

interface

static−
member−class

member−
class

static−
member−
interface

array

primitive−
type

concept−
language

implementation

concretisation

concept−
use−

relationship

aggregation class

concept−
import−

relationship

between−
interfaces−
inheritance

between−
classes−

inheritance

OFL−concepts

OFL−componentsFigure 5: The OFL-
omponents of Java



is not an obje
t be
ause it is of a primitive type (for exam-ple: int). Thus we 
onsider that the life of the used entitydepends on that of the using obje
t.
4.1.1.8 Class Composition (stati
)The 
lass 
omposition is similar to 
omposition but it de�nesa 
lass attribute as 
lass aggregation does.
4.1.2 Concepts-Descriptions ofJavaIn general, we 
all inner-
lasses the stati
 member 
lasses,the member 
lasses, the lo
al 
lasses, the anonymous 
lasses,and the member stati
 interfa
es too. We have listed ten
on
epts-des
riptions4.
4.1.2.1 Class (
lass)A 
lass is the 
on
rete implementation of a data type. It isa non-generi
 des
ription whi
h may 
ontain methods5 andattributes. It is visible within the limits of the pa
kage butthis visibility 
an be extended or restri
ted by a quali�er(publi
 or private for instan
e). It is able to 
reate in-stan
es but 
annot destroy them, this task is assigned to agarbage-
olle
tor. Finally it allows the overloading withouttaking into a

ount the type of fun
tion result.
4.1.2.2 Abstract Class (abstra
t 
lass)An abstra
t 
lass is an abstra
t implementation of a datatype. This des
ription as the same features as a 
lass but it
an des
ribe abstra
t methods (without a body) and 
annothave own instan
es.
4.1.2.3 Interface (interfa
e)This is the spe
i�
ation of a data type. Contrary to a 
lass,an interfa
e 
annot de�ne attributes. Moreover, all its meth-ods are abstra
t and therefore it 
annot 
reate instan
es.
4.1.2.4 Static Member Class (stati
 
lass)A stati
 member 
lass is an implementation of a data type,lo
al to a 
lass. When 
ompared to a 
lass, its 
hara
teristi
is to be de�ned inside a 
lass and not at the highest level.Besides it is not a

essible but through the 
lass that de�nesit.
4.1.2.5 Member Class (
lass)A member 
lass is an implementation of a data type, lo
alto a 
lass too. But unlike the stati
 member 
lass, an in-stan
e of the member 
lass is automati
ally asso
iated toea
h instan
e of the 
lass that de�nes it.
4.1.2.6 Local Class (
lass)A lo
al 
lass is an implementation of a data type, lo
al toa method. It is only visible within the method that de�nesit. Besides that, it is equivalent to the other 
lass 
on
epts-des
riptions.
4.1.2.7 Anonymous Class (
lass)An anonymous 
lass is an implementation of a data type,lo
al to an expression. It is similar to a lo
al 
lass but onlyvisible within the expression that de�nes it. Moreover, as it4We doesn't 
onsider abstra
t inner-
lasses in this paper.5As well as 
onstru
tors and initialisers.

has not got a name, it 
annot be referred to and so it 
annotbe inherited. Finally be
ause of its synta
ti
 stru
ture, if itimplements an interfa
e, it 
an only implement one.
4.1.2.8 Static Member Interface (stati
 interfa
e)A stati
 member interfa
e is a spe
i�
ation of a data typelo
al to a 
lass. It is equivalent to a stati
 member 
lasswith the shape of an interfa
e.
4.1.2.9 ArrayIt represents the stru
ture of data that has the same name,whi
h is well-known by 
omputer s
ientists. It is thus anindexed and permanent-sized 
olle
tion of entities of a giventype. In Java, array is a parti
ular 
ase. Ea
h array is an in-stan
e of a virtual 
lass6 representing its type (for example:an array of integers is of type int[℄).
4.1.2.10 Primitive TypeA primitive type is the representation of a language basi
type. It allows essential elements of the appli
ation to be de-s
ribed: booleans, 
hara
ters, bytes, shorts, integers, longs,
oats, and doubles. Let us point out that ea
h primitivetype des
ribes a value and not an obje
t and that a 
lassexists to represent ea
h of them. For example, the Integer
lass allows to 
onsider an int as an obje
t.
4.1.3 Constraints between JavaOFL-ComponentsThe semanti
s of the OFL-
omponents allows to answer thequestion \Whi
h 
on
epts-des
riptions are valid as sour
e oras target of ea
h 
on
epts-relationships?". To understandthe problem better, the following de�nition 
an be useful:� The sour
e of a relationship is the des
ription whi
hde
lares the relationship. This des
ription is the onethat needs the servi
e. There 
an be several sour
es,as in the UML asso
iation, even if it is quite a rare
ase.� The target of a relationship is the des
ription quotedby the sour
e when de
laring the relationship. Thetarget provides the servi
e. It is possible to �nd severaltargets, it is more frequent to �nd several targets thanseveral sour
es (for example: multiple inheritan
e).As far as import 
on
epts-relationships are 
on
erned, we
an mention following 
onstraints, for example.� It is impossible for between 
lasses inheritan
e to haveas target and sour
e an interfa
e or a stati
 memberinterfa
e. Furthermore, anonymous 
lasses 
annot betargeted by su
h an inheritan
e.� The between interfa
es inheritan
e is applied betweeninterfa
es (whether they are stati
 member or not).� The 
on
retisation must take pla
e between an ab-stra
t 
lass and a non-abstra
t 
lass.� Finally, the implementation is a relationship whi
h al-ways targets one or several interfa
es (whi
hever theyare) and a 
lass (whi
hever it is).6This 
lass does not exist but everything goes as if it did.



The same type of 
onstraints is found for use 
on
epts-relationships. Here are a few examples of it.� The aggregation may have as a sour
e all kinds of
lasses and only them. As for the targets, there arealso two kinds of interfa
e.� The 
lass aggregation has the same 
onstraints as theaggregation.� The 
omposition resembles the aggregation but theonly possible target is a primitive type.� We should apply the same 
onstraints for 
lass 
om-position and 
omposition.
4.2 OFL definition of JavaThe semanti
s of the Java's 
omponents had been des
ribedabove. This se
tion aims to show how they are de�ned inOFL.In order to 
reate new OFL-
omponents, the meta-program-mer needs to valuate the parameters of the OFL-
on
eptsasso
iated to them. We provide in the following the param-eter values atta
hed to two of the Java OFL-
omponents :one 
omponent-relationship (the implementation) and one
omponent-des
ription (the abstra
t 
lass). While readingthe values of OFL-
omponent parameters the reader mayrefer to the 
orresponding paragraph in se
tion 4.1.
4.2.1 The OFL-componentImplementationPeople may distinguish 
omponents-relationships of a lan-guage using the parameter Name. For this 
omponent itsvalue is Implementation. The kind of relationships is re
or-ded within the parameter Kind whi
h is set to import for this
omponent. OFL allows to mention (parameter Context) ifa 
omponent is spe
i�
 to a language or if it belongs to a li-brary of 
omponents7. We are des
ribing a relation for Java:Context is set to language. Implementation is a multiplerelationship and Java does not limit the number of target-des
riptions so the parameter Cardinality is set to 1�18.The parameter Repetition indi
ates if a dire
t repetitionin the sour
es and/or targets of the relationship is allowed.A

ording to the parameter Cardinality, we only 
onsiderone sour
e for the Implementation relationship of Java, sothe Repetition for sour
e is not appli
able. Moreover itdoes not make sense to implement several identi
al interfa
esand it is forbidden in Java. Thus, this parameter is set toforbidden for targets.The parameter Cir
ularity re
ords if it is possible to get
y
les thanks to this relationship (that means to be ableto import dire
tly or not the sour
e of the relationship it-self). In Java, 
y
les are not allowed for Implementationand Cir
ularity is set to forbidden. Other possible valueis allowed.7A

ording to the value of this parameter it is possible toin
lude or not additional information or assertions whi
himprove OFL-
omponent's 
onsisten
y.8For 
lassi
al obje
t-oriented languages one relationship in-volves only one sour
e and one or several target(s): one ifthe relationship is simple and several if it is a multiple one.

To set the parameter Symmetry to true would mean thatif a des
ription of type Class or Abstra
t Class named Aimplements another des
ription of type Interfa
e named Bthen the B implements A. It is meaningless so that Symmetryis set to false.The parameter Opposite provides (if any) the name of theopposite relationship; otherwise it is set to none. For a sym-metry relationship, the opposite is the relationship itself.The implementation has no opposite in Java and this pa-rameter is set to none.The parameter Dire
t a

ess spe
i�es if the relationshipprovides a dire
t a

ess to the features of the target-des
rip-tion from the sour
e-des
ription. Be
ause the targets of aImplementation relationship are only Interfa
es, all thefeatures of the target-des
ription are abstra
t, and to a
-
ess to the target-des
ription features has no meaning sothat Dire
t a

ess should be set to forbidden9 .The parameter Indire
t a

ess means that any a

ess to afeature of the target-des
ription from the sour
e-des
riptionshould be performed trough the target-des
ription itself (i.e.the target-
lass must be spe
i�ed). For the same reasonsas for Dire
t a

ess, this parameter is set to forbidden.Possible values are mandatory, allowed and forbiddenThe parameter Polymorphism dire
tion and the parameterPolymorphism are spe
i�
 to import relationships. The �rstindi
ates if the relationship handles polymorphism betweensour
e and targets and when it is useful indi
ates also thedire
tion (possible values are up, down, both and none). These
ond re
ords how the relationship handles name 
on
i
twhen the �rst one allows some polymorphism. Two possi-bilities are proposed: a feature (we distinguish attribute andmethods) of the sour
e-des
ription whi
h has the same namein the target-des
ription may hide or override the latter.A

ording to the relationship being de�ned, all instan
esof the sour
e-des
ription are also instan
es of the target-des
ription and Polymorphism dire
tion is set to up. Po-lymorphism is set to overriding for both attributes (only
onstant attributes are allowed) and methods.The parameter Feature varian
e is spe
i�
 to import re-lationships. It gives the kind of varian
e asso
iated to theparameters of methods, to the result of fun
tions and tothe attributes, when a feature is rede�ned. Several valuesare available: nonvariant (new type must be the same),
ovariant (new type must be a des
endant), 
ontravariant(new type must be an an
estor) and non appli
able. Forthis relationship Feature varian
e is set to nonvariant formethod parameters, result of fun
tions and attributes.10Another spe
i�
 parameter of import relationships is Asser-tion varian
e. It gives the type of the varian
e for theassertions when there is a rede�nition. There are threekinds of assertion : invariants, pre
onditions and post
on-9The reader should be aware of the 
ase of 
onstant at-tributes that may be de�ned within an interfa
e. OFL mayhandle this 
ase not trough parameter values (it is some-thing to spe
i�
) but with a generi
 me
hanism based onbefore/after routines in
luded in the OFL's a
tions.10Remember that Java disposes of overloading 
apa
ity.



ditions. Several values are available: strengthened (newassertion must be stronger), weakened (new assertion mustbe lighter), un
hanged (assertion must not be modi�ed) andnon appli
able. For this relationship Assertion varian
eis set to non appli
able for all types of assertions be
ausesu
h feature is not present in Java.The parameter Adding indi
ates if the relationship allows toadd features in the sour
e-des
ription. In Java it is allowedfor Implementation, so that Adding is set to allowed. Otherpossible values are forbidden and mandatory.The parameter Removing indi
ates if it is allowed to removefeatures from the target-des
ription trough this relation-ship. In Java it is not allowed, so that Removing is set toforbidden. Possible values are the same as those of Adding.The parameter Renaming re
ords if it is possible to renamefeatures in the sour
e-des
ription. In Java it is not allowedwath'ever is the relationship. Renaming is set to forbidden.Possible values are the same as those of Adding.The parameter Redefining indi
ates whether it is possibleor not to rede�ne assertions, signature, body and modi�er(s)(visibility, prote
tion, 
onstan
y, : : : ) of features. For ea
h
ategory, possible values are the same as for Adding. A

ord-ing to Implementation, the rede�nition is non appli
ablefor assertions, it is forbidden for signature and modi�er(s)of features. It is allowed (but not mandatory) for a methodbody (imported features are all abstra
t and may be asso-
iated to a body in the sour
e-des
ription).The parameter Masking is dealing with the 
apability fora relationship to mask features 
oming from the target-des
ription. Possible values are the same as those of Adding.In Java the Implementation relationship does not allow tomask any feature of target-des
ription. Masking is set toforbidden. The parameter Showing deals exa
tly with the
ontrary: the 
apability to show in the sour
e-des
riptionfeatures whi
h had been previously masked. In the Im-plementation relationship of Java, Showing is also set toforbidden.The parameter Abstra
ting re
ords whether a relationshipmay spe
ify to remove the body of a feature of the target-des
ription in the sour
e-des
ription. Su
h 
apability isforbidden for this relationship (all methods of an interfa
eare already abstra
t methods). Possible values are the sameas those of Adding.Effe
ting is exa
tly the opposite of Abstra
ting. It in-di
ates that a sour
e-des
ription may provide a body toabstra
t methods. For this relationship it is allowed (butnot mandatory): sour
e-des
ription may be of type Class orAbstra
t Class. Possible values are the same as those ofAdding.
4.2.2 The OFL-componentAbstra
t ClassIn previous se
tion we des
ribed a 
omponent-relationship;the next one is dedi
ated to the des
ription of a 
omponent-des
ription. Like 
omponents-relationships, 
omponents-de-s
riptions are asso
iated to a set of parameters whi
h de-s
ribes their operational semanti
s.

A few parameters su
h as Name or Context whi
h parti
i-pate to the des
ription of a 
omponent-relationship are alsopresent in a 
omponent-des
ription, with the same meaning.This se
tion deals with the de�nition of abstra
t 
lasses sothat Name is set to abstra
t 
lass. Moreover, we de�nean abstra
t 
lass in the framework of Java, so that theparameter Context is set to language (
f. se
tion 4.2.1).The parameter Generi
ity re
ords if a des
ription is generi
or not. There is no generi
 des
ription in Java, so thatGeneri
ity is set to false.The parameter Generator indi
ates if a 
omponent-des
ri-ption is able to 
reate instan
es. If yes, it should be possibleto de�ne 
onstru
tors and initialisers. In Java, for abstra
t
lasses as well as "normal" 
lasses, this parameter is set totrue. On the 
ontrary, the parameter Destru
tor re
ords ifit is possible to free an instan
e. In Java, this is rarely usedbut possible, so this parameter is set to true.The extension of a des
ription is the set of its own in-stan
es and of instan
es of its heirs (more pre
isely, this setof instan
es depends on the parameters dedi
ated to poly-morphism of the relationships where are this des
riptionis sour
e or target). The parameter Extension 
reationre
ords if the extension of this kind of des
ription is han-dled automati
ally or manually. In Java we 
an set thisparameter to automati
ally (by default, at the des
rip-tion 
reation, its extension is empty) even if the extensionis maintained only virtually.The parameter En
apsulation indi
ates if features are en-
apsulated into des
riptions; it is possible to distinguish be-tween attributes and methods. In Java everything is en
ap-sulated, so that the parameter is set to <true, true>. Letus mention that the ability to modelise non en
apsulatedmethod is useful for the spe
i�
ation of language su
h asCLOS.Sharing 
ontrol is the parameter whi
h re
ords if the in-stan
es of a des
ription may be shared and eventually how.An instan
e may be shared by all instan
es of one des
rip-tion (this represent the idea of 
lass variable and the value ofparameter is des
ription), it may be shared by only someof the instan
es of one des
ription (this is an instan
e vari-able and the value of parameter is instan
e). Finally, aninstan
e may be atta
hed to only one instan
e of one de-s
ription (value unique instan
e). A Java abstra
t 
lassdoes not put 
onstraints about the sharing of its instan
es(in fa
t the instan
es of its des
endants) so Sharing 
ontrolis set to fdes
ription, instan
e, unique instan
eg.The parameter Visibility indi
ates entities from whi
h thedes
ription is visible. Several values are possible for thisparameter from a value whi
h restri
ts the visibility to asingle expression to one whi
h open the des
ription to theentire network. In Java, by default, the visibility is limitedto the pa
kage whi
h 
ontains the des
ription so the 
hosenvalue is pa
kage.Attribute is the parameter whi
h spe
i�es if the des
rip-tion allows the de�nition of attributes (allowed) or not(forbidden). For an Abstra
t Class this parameter is al-



lowed (for 
onstant attribute only). In the same way, thereis a very similar parameter for methods, it is 
alled Method.In an Abstra
t Class it is also possible to de�ne methods,so that this parameter is set to allowed.The parameter Overloading indi
ates if the 
omponent-des
ription allows or prohibits (allowed, forbidden) theoverloading of features. In fa
t it is 
onstituted by fourvalues whi
h spe
ify this overloading for the attributes, forthe results of fun
tions, for the number and for the type ofmethod parameters. For a Java abstra
t 
lass the parameteris set to <forbidden, forbidden, allowed, allowed>.
4.2.3 Some more about OFL-componentsPerhaps the reader noti
ed some aspe
ts of the Java lan-guage that were not 
overed by the parameters presentedabove. Let us take some examples:� In se
tion 4.2.1 the parameter repetition handles di-re
t repetition of target des
riptions, that is to say itallows or not to get several time the same des
riptionin the list of target. But what about the handling ofindire
t repetition (repetition of the same des
riptionseveral times in the same hierar
hy but at di�erentlevel)?� In se
tion 4.2.2 we deal with visibility of a des
ription(parameter visibility) but nothing about the han-dling of the keyword publi
 that may be atta
hed to aJava 
lass. On the other hand the keyword abstra
tis handled by the parameter Generator, why su
h in-equity?� The handling of the features' visibility within the hier-ar
hy of 
lasses is not even mentioned. The situation isthe same for the handling of 
onstru
tors and initialis-ers a

ording to values of the parameter Generator.One may note that it is also ne
essary to ensure that
onstru
tors has same name as the des
ription, thatinitialisers are anonymous and that the destru
tor is
alled "finalize".A

ording to those questions or remarks we need to makethe three following 
omments and to propose an answer: theassertions and the quali�ers.Firstly, the 
hoi
e to de�ne or not a new parameter for a
omponent-relationship or a 
omponent-des
ription is main-ly based on the following question: "Is it an enough generaland relevant aspe
t that 
ould be integrated in more thanone language and that may be found in existing literature?".To answer this question looks like very diÆ
ult and in someway quite arbitrary but let us give some examples in orderto show the underlying philosophy. The handling of somelanguage keywords is very spe
i�
 to ea
h language. Ea
hlanguage has its own rules for handling the visibility of rou-tines within the hierar
hy of des
riptions (private, publi
,prote
ted, export, : : : ). On the other hand, to say thata des
ription is abstra
t or not, justi�es from our point ofview, to asso
iate it to one or several parameters. How-ever, the spe
i�
ity of ea
h language a

ording to this as-pe
t may not be fully handled by parameters (for instan
e

when a language enfor
es an abstra
t des
ription to 
ontainonly abstra
t methods).Se
ondly, some semanti
s into a language may not �t withinonly one 
omponent. The handling of indire
t repetitionor the handling of feature visibility relies on several kindsof relationship (on several OFL-
omponents), so that it isne
essary to get a me
hanism whi
h is orthogonal to thekinds of relationship.Thirdly, theOFLmodel is based essentially on two 
ustomis-able 
on
epts: relationships and des
riptions. This inten-tional limitation means that the de�nition of the behaviourof entities su
h as methods or attributes is lo
ated within
omponents-des
riptions and 
omponents-relationships.In order to take into a

ount what we mentioned above,we integrated assertions within OFL-
omponents: they mayaddress any rei�ed information in
luding parameters value.They 
orrespond to 
ontrols that the meta-programmer mayneed to set on the hierar
hy of 
omponents. We add alsoto OFL-
omponents the ability to de�ne assertions asso
i-ated to a keyword (we 
all them quali�ers). For example wemay de�ne an assertion whi
h 
orresponds to the seman-ti
 of a private method in Java or another one whi
h dealswith the semanti
 of publi
 
lass (also in Java). All 
ontrolsspe
i�ed by a language either expli
itly through a keywordor impli
itly whi
h are not handled by existing parameters,are asso
iated to one or several assertions; the tools men-tioned in se
tion 4.4, espe
ially OFL-ML are in 
harge toimplement those assertions.
4.3 Integration in the Existing Meta-ModelsOFL is a meta-model whi
h des
ribes obje
t-oriented lan-guages based on 
lasses and 
ustomises the operational se-manti
s of their des
riptions and relationships. The stateof the art, in the �eld of meta-model shows quite a diver-sity. These meta-models are usually able to des
ribe oneanother. For us, the most signi�
ant one is MOF (MetaObje
t Fa
ility) [11℄. We do not aim to 
ompete againstMOF but to o�er a less general model 
loser to the pro-grammer. MOF des
ribes a 
lass 
on
ept, an asso
iation
on
ept and a pa
kage 
on
ept.A MOF 
lass allows to de�ne attributes, the type of whi
h
an be simple or des
ribed by a 
lass, and to spe
ify op-erations. Let us point out that OFL and MOF have thesame approa
h 
on
erning the method bodies that have tobe des
ribed a

ording to an independent language (bind-ing). OFL and MOF both draw from the UML and IDL[12℄ notation and syntax.AMOF asso
iation allows to de�ne any relationship that o
-
urs between a number ofMOF sour
e 
lasses and a numberofMOF target 
lasses. The semanti
s of the relationship de-s
ribed by su
h an asso
iation is implemented thanks to theattributes and the operations of the MOF 
lasses.The MOF pa
kages allow to en
ompass the MOF 
lassesand asso
iations.OFL may be des
ribed a

ording to MOF and supply thelatter with an additional layer on top of it allowing to 
us-



tomise the operational semanti
s of the MOF 
lasses andasso
iations.Besides, we have shown in �gure 2 that OFL 
an be de-s
ribed with the UML formalism, in parti
ular thanks tothe possibility of tagging the new 
on
epts (whi
h was un-ne
essary in this �gure).Finally, OFL 
an also be des
ribed thanks to XML [13℄ andXML-S
hemas.
4.4 OFL ToolsOFL 
an be used as a set of three tools whi
h share the infor-mation 
ontained in a database whose s
hema is des
ribedin ODL [14℄.The �rst tool 
alled OFL-Meta is for the meta-programmer.It allows to graphi
ally 
reate, modify or delete OFL-
om-ponents i.e. the instan
es of the OFL-
on
epts. In otherwords, it allows to des
ribe the operational semanti
s of alanguage whi
h will be used when designing an appli
ation.The OFL-
omponents whi
h it handles 
an be stored byusing various standard formalism su
h XML or MOF.The se
ond tool is 
alled OFL-ML in referen
e to UML. It isintended for the appli
ation designer. It is also a graphi
altool whi
h allows to 
reate, modify or delete OFL-instan
es,i.e. the instan
es of the OFL-
omponents des
ribed in OFL-Meta. The programming task is in
luded by a binding: thesele
ted language is Java, that is body of all the methods iswritten in Java.The third tool is 
alled OFL-Parser. It is a translator, inter-preter or 
ompiler. Its task is to translate the OFL-instan
esand the body of methods (using the stati
 fa
ets of the a
-tions) into a target language, Java in our 
ase. The laststep 
onsist in exe
uting the generated appli
ation and thusto use the methods and 
reate the OFL-data, i.e. the in-stan
es of the OFL-instan
es (using the dynami
 fa
ets ofthe a
tions).
5. CONCLUSION AND FURTHER WORKSThe OFL meta-model, the features of whi
h we have qui
klysummed up in this do
ument, des
ribes obje
t-oriented lan-guages based on 
lasses. Its 
hara
teristi
 is to 
ustomisethe operational semanti
s of the des
riptions and the rela-tionships of those languages. It is also possible to add otherdes
riptions and relationships if their use is 
ompatible withthose that already exist. OFL also provides several assetswhi
h may allow a higher maintainability of the appli
a-tions.We have started implementing ea
h of the three tools de-s
ribed in se
tion 4.4; a prototype of the �rst two ones shouldbe released in the next few months. The third tool will 
er-tainly take longer.
6. REFERENCES[1℄ A. Capouillez, R. Chignoli, P. Cres
enzo, andP. Lahire, \Hyper-g�en�eri
it�e pour les langages �aobjets : le mod�ele OFL," in Conf�eren
e LMO 2001(Langages et Mod�eles �a objets), Hermes S
ien
ePubli
ations, janvier 2001.

[2℄ G. Ki
zales, J. Des Rivi�eres, and D. G. Bobrow, TheArt of the MetaObje
t Proto
ol. MIT-Press, 1991.[3℄ P. Desfray, Obje
t Engineering, the Fourth Dimension.Addison-Wesley Publishing Co., 1994.[4℄ B. Meyer, Obje
t-Oriented Software Constru
tion.Professional Te
hni
al Referen
e, Prenti
e Hall,2nd ed., 1997.[5℄ B. Stroustrup, The C++ Programming Language.Addison-Wesley Publishing Co., 3rd ed., 1997.[6℄ Obje
t Management Group, Uni�ed ModelingLanguage Spe
i�
ation, 1st ed., Mar
h 2000. Version1.3.[7℄ K. Arnold and J. Gosling, The Java ProgrammingLanguage. The Java Series : : : from the Sour
e, SunMi
rosystems, 3rd ed., 2000.[8℄ D. Flanagan, Java in a Nutshell: a Desktop Qui
kReferen
e. O'Reilly, 3rd ed., De
ember 1999.[9℄ J. Gosling, B. Joy, G. Steele, and B. G., The JavaLanguage Spe
i�
ation. The Sun Mi
rosystems PressJava Series, Sun Mi
rosystems, June 2000.[10℄ M. Bouzeghoub, G. Gardarin, and P. Valduriez, Lesobjets. Eyrolles, 1997.[11℄ Obje
t Management Group, Meta Obje
t Fa
ility(MOF) Spe
i�
ation, Mar
h 2000. Version 1.3.[12℄ Obje
t Management Group, The Common Obje
tRequest Broker: Ar
hite
ture and Spe
i�
ation,February 2001. Version 2.4.2.[13℄ Extensible Markup Language (XML), 2nd ed., O
tober2000. Version 1.0, W3C Re
ommendation.[14℄ R. Cattell, D. K. Barry, D. Bartels, M. Berler,J. Eastman, S. Gamerman, D. Jordan, A. Springer,H. Stri
kland, and D. Wade, Obje
t DatabaseStandard: ODMG 2.0. Morgan Kaufmann Publishers,In
., 1997.


