OFL: Hyper-Genericity for Meta-Programming

— An application to Java —

Adeline Capouillez

Adeline.CapouillezQunice.fr

Pierre Crescenzo

Pierre.Crescenzo@unice.fr

Philippe Lahire

Philippe.LahireQunice.fr

Laboratoire 13S (UNSA/CNRS)
Projet OCL
Les Algorithmes
batiment Euclide B
2000, route des lucioles
B.P. 121
F-06903 Sophia Antipolis CEDEX
France

ABSTRACT

OFL is the acronym for Open Flexible Languages and the
name of a meta-model for object-oriented programming lan-
guages based on classes. OFL intends to describe them,
especially by promoting capabilities such as introspection,
modification and extension. OFL relies on three essential
concepts of these languages: the descriptions which are a
generalisation of the notion of class, the relationships such
as inheritance or aggregation and the languages themselves.
OFL provides a customisation of these three concepts in
order to adapt their operational semantics to the program-
mer’s needs. This paper summarises the main characteris-
tics of the OFL model, shows how to create an application
using this model and describes the Java language according
to OFL.

1. INTRODUCTION

One of the project manager’s main goals is to bring down
the cost of software production. Their cost mainly depends
on two steps: programming and maintenance. During these
phases, the balance must be found between fastness and
high quality. Several approaches are often used to solve
this problem. Examples of some of these approaches can
be given, keeping well in mind that none actually solves
completely this problem at present.

e In a well determined context, such as the design of
graphical interfaces or Web sites, the capacity to gen-
erate source code automatically brings valuable help.

e The efforts made to obtain more readable program-
ming languages thanks to an ameliorated syntax con-

tribute to improving the readability of the source code
written in those languages.

e Reducing the gap between the design phase and the
programming phase is also aimed at to reduce the time
spent in programming.

e Libraries of reusable components allow not to start
from scratch for each new piece of software.

e Asfor the design patterns, they offer architecture mod-
els used for specific programming problems.

e Aspect programming addresses separation in terms of
orthogonal services of an application’s features, such
as persistence or distribution of objects.

We will deal with several of those solutions in a common
approach starting with the idea that relationships between
classes in object-oriented languages, and especially inheri-
tance, are low-level mechanisms which it would be interest-
ing to specify better. This approach is materialised in the
definition of the OFL (Open Flexible Languages) model [1].

OFL was first designed as a meta-object protocol such as
that of CLOS [2]. However, more open and complete that
CLOS, it has quickly become very difficult and boring first
to program and then to use it. So we switched to an hyper-
generic approach to solve this problem [3]. Rather than
allowing to redefine behaviours thanks to algorithms, we
propose a set of parameters. These algorithms, already im-
plemented, take into account, the values of these parame-
ters to achieve the desired behaviour. These algorithms are
called actions and they define the operational semantics. We
promote the idea that it is much more convenient for the
meta-programmer (faster, more efficient and reliable, etc.)
to set parameter values which drive well-tested actions, than
to change the source code of several methods which describe
altogether the semantics of the language.

2. OFL APPROACH



At first reading the OFL approach can be summed up as
the search for a set of parameters whose value determines
the operational semantics of an object language based on
classes.

2.1 Hyper-Genericity

Genericity is the ability to customise the behaviour of a
class in an object language just as in the Eiffel [4] or C++
(template) [5] generic classes. Hyper-genericity is the ability
to customise the behaviour of the language itself. More pre-
cisely we have chosen to customise the behaviours of three
important notions of object languages based on classes:

1. relationships such as generalisation and composition
[6],

2. descriptions which describes the application’s objects,
such as the Java classes and interfaces [7, 8, 9], and

3. languages themselves.

2.1.1 Parameters

We have defined a set of parameters [1] which represents
the main features of the behaviours of these three impor-
tant notions which are called concept-relationship, concept-
description et concept-language. For instance, concerning
the concept-relationship, the value of the Cardinality pa-
rameter allows to specify if it is simple or multiple. As for
the concept-description we have for instance the Generator
parameter which determines whether the concept-descrip-
tion can or cannot create own instances.

2.1.2 Actions

The operational semantics of each concept must adapt to
the value of its parameters. This is achieved thanks to a
set of actions algorithms whose execution depends on these
values. For example, the assignment of an object to an at-
tribute, the dynamic binding of the features, the sending
of messages and lots of other behaviours are expressed ac-
cording to parameters of concept-relationship and concept-
description. OFL links two facets to each action: the first
illustrates the static part inside an interpretor or a com-
piler; the second represents the dynamic aspect integrated
within the runtime. The distribution of the code into these
two facets depends on implementation choices of the OFL
model.

2.2 OFL Objectives

The first one is to improve the readability of the code writ-
ten in an object language based on classes. Indeed OFL
allows to specify the relationships between the descriptions
whose semantics is more precise than inheritance or aggre-
gation. Since inheritance and aggregation are often used for
very different purposes (for example: generalisation, spe-
cialisation, code reuse, ... ), we aim to offer the possibility
to create a relationship which is specific to each of those
uses. Let us precise that in order to remain pragmatic, we
do not aim to force the programmers out of their habits
and to interchange the relationships there are used to with
the ones we propose. When a specific relationship is used,
readability of the code is simplified. Furthermore, it will
be easier to generate a relevant automatic documentation

Person the "Person" description

Name : String
Birthday : Date

age() : Integer

its attributes (optional)

its méthods (optional)

P1 : Person the "P1" object and its type (type is optional)

Name = "Diana"

Birthday = 02/12/1990 the value of its attributes (optional)

"S" is an aggregation of "C"

"S" is a composition of "C"

"S" is a generalisation of "C"

"O" is an instance of "C"

Figure 1: General graphic conventions

and the interpreter or compiler will be able to achieve more
appropriate controls. As a consequence, it will be easier to
maintain a program and to ensure further developments of
the application.

Also, we wish to contribute to reducing the gap between
the expressiveness of design methods and programming lan-
guages. Indeed, one can be particularly pleased with a very
suitable UML representation but this is often difficult to
implement straightforwardly using one’s favourite program-
ming language. OFL allows to define relationships with se-
mantics closer to those of design methods and thus to pro-
gram faster.

In order to obtain a realistic use of OFL, the programmer
has to have access to libraries of concepts-relationships and
concepts-descriptions in which he can select whatever he
wishes to use. This method is similar to that which provides
reusable software components [10].

3. OFL MODEL
First in figure 1, we determine the graphic conventions that
are applied to the whole document. They are almost iden-
tical to those of UML.

3.1 General Architecture

Figure 2 illustrates how to use the OFL model to describe
an application. In this figure the three necessary levels of
modelisation are shown:

1. the application level includes the program’s descrip-
tions and objects (OFL-instances and OFL-data),

2. the language level describes the components of the pro-
gramming language (OFL-components), and

3. the OFL level represents the reification of those com-
ponents (OFL-concepts and OFL-atoms).



OFL

OFL~-concepts OFL-atoms

concept—
language

concept—
description

concept—

langua
relationship ouag

e

relationship description object

2E

a-

an—aggregation-

,,,,,, - eneralisation— — ipti
t a-language grelatiolnshlip relationship a—description
N ™ )
\ N 1
T
OFL-components \ 1
\ 1
\ N 1
an application - S L
e e !
1 \ I N 1
\ L N L
\ \\
Vehicle Q—O— Car K> > Colour
OFL-instances \ \
1 1
OFL-data ! !
L L
MyFerrari Red

Figure 2: The OFL architecture

3.2 Application Level

To describe an application, the programmer uses the services
supplied by the language level. He creates OFL-instances,
which are the descriptions and the relationships of his appli-
cation by instantiation of the OFL-components. At runtime,
the application objects, called OFL-data, are instances of
the OFL-instances representing the descriptions.

3.2.1 OFL-Instances

Each description or relationship described by the program-
mer is modelised by an OFL-instance. Figure 2 gives an ex-
ample of an application which includes five OFL-instances:

e three descriptions: Vehicle, Car, and Colour,

e one generalisation relationship: Car inherits from Ve-
hicle, and

e one aggregation relationship: Car has an attribute of
the Colour type.

3.2.2 OFL-Data

In the application, each description instance is modelised at
runtime by an OFL-datum. Figure 2 shows two of them:

e MyFerrari, an instance of the Car description, and

e Red, an instance of the Colour description.

Let us point out that the OFL-instances which are descrip-
tions specialise the OFL-atom object. Indeed, object is

the reification of data of the application (OFL-data). So
it represents the root of the specialisation tree of the OFL-
instances which are descriptions.

3.3 Language Level

The language level describes different types of relationships
and descriptions which can be used in the modelised lan-
guage. The relationships are instances of concept-rela-
tionship, the description are instances of concept-des-
cription. The language itself is an instance of concept-
-language. Its main function is to put together the rela-
tionships and descriptions which are supplied to the pro-
grammer.

3.3.1 OFL-Components

The language level is solely composed of OFL-components.
Figure 2 lists:

e some concepts-descriptions among with a-descrip-
tion,

e some concepts-relationships among with a-generali-
sation-relationship and with an-aggregation-re-
lationship, and

e a concept-language a-language.
It is possible to represent a concept-description as a meta-

class and a concept-relationship as a meta-relationship and
similarly a concept-language as a meta-language.



concept

concept— concept- concept—
language relationship description
concept— concept- concept-relationship—

relationship—
between-objects

relationship—
between—-descriptions

T

concept— concept—
import-relationship use-relationship

between-objects—
and-descriptions

Figure 3: The OFL-concepts

3.4 OFL Level

The OFL model is a meta-model for the programming lan-
guage (language level) and a meta-meta-model for the pro-
grams (application level). As was said in part 2.1, we have
chosen to customise three important notions: relationships,
descriptions and languages. However, a lot of other compo-
nents need to be reified such as objects, methods, assertions,
etc. in order to modelise a language completely. The OFL
level includes two types of entities:

1. the OFL-concepts which describes the customisable
part of the relationships, descriptions and languages,
and

2. the OFL-atoms which describes the non-customisable
part of these three concepts as well as all the other
components.

Also assertions are described in each OFL-concept and OFL-
atom in order to keep the model consistent.

3.4.1 OFL-Concepts

Figure 3 shows the whole of the classification of the OFL-
concepts. Let us recall that only the OFL-concepts are cus-
tomised in our model.

The meta-programmer’s task is to create an OFL-compo-
nent, i.e. an instance of an OFL-concept, by giving a value
to each of its parameters. Thus he decides on the behaviour
of each future instance of the OFL-component. If the opera-
tional semantics which the meta-programmer wants to bind
to an OFL-component does not match the actions planned,
then he has to modify the code of those actions. The OFL
model is left open by this possibility which should not be
used but in very specific context. Indeed, in that case, the
meta-programmer’s job is much heavier than just giving val-
ues to parameters.

3.4.1.1 Concepts-Relationships

We call a concept-relationship the entity representing a kind
of relationship. A concept-relationship is consequently a
meta-relationship. Among the relationships which are to be
found in lots of object-oriented languages based on classes
and object design methods, we may mention for example
inheritance, aggregation, composition, generalisation, etc.
However a given method or language seldom owns all of
these relationships and usually uses some of them in order
to simulate others. For example the generalisation in UML
describes a generalisation as well as an inheritance, a strict
sub-typing!, ...

Around thirty parameters define the semantics of all the
OFL model’s concept-relationship. Part 4.1.1 lists the con-
cepts-relationships representing the relationships of the Java
language.

Figure 3 illustrates our classification of the concepts-relation-
ships. Concerning the inter-description relationships, we
distinguish between the import relationships (generalisation
of the inheritance mechanism) and the use relationships
(generalisation of the aggregation mechanism). As for figure
2 it illustrates one instance of an import concept-relationship
(a-generalisation-relationship) and one example of an
use concept-relationship (an-aggregation-relationship).

OFL also takes into account the relationship between ob-
jects and classes which are used for example to modelise the
instantiation relationship existing between an object and its
class. It is also possible to modelise the relationship be-
tween objects. Yet, we mainly care about inter-description
relationships.

3.4.1.2 Concepts-Descriptions

A concept-description allows to define the notion of class
and all that looks like a class such as the interfaces in Java.
Therefore a concept-description is a kind of meta-class.

For instance we can notice that even if they look the same
the Eiffel, C++ or Java, classes show some notable differ-
ences. Figure 2 gives one instance of concept-description
called a-description as an example.

Around twenty parameters are necessary to describe the be-
haviour of a description in the OFL model. Each concept-
description is compatible with a set of concepts-relation-
ships. For instance, in Java, the concept-description inter-
face is compatible with the concept-relationship implemen-—
tation but it is incompatible with between-classes-inhe-
ritance.

3.4.1.3 Concepts-Languages

The concept-language is an important and yet simple no-
tion. It modelises a language. In particular, each language
includes a set of concepts-descriptions and a set of concepts-
relationships which are compatible with at least one of the
concepts-descriptions. In figure 2 there is only one concept-
language’s instance (a-language) which represents the mod-
elised language.

!These three relationships have different semantics even if
they are similar enough to be often mistaken.



The concepts-languages are hardly customised. Their main
function is to federate the concepts-relationships and con-
cepts-descriptions which are compatible with them.

3.4.2 OFL-Atoms

They represent the reification of the non-customised enti-
ties of the model. Figure 4 illustrates a part of those OFL-
atoms. The relationships, descriptions and languages have
their own OFL-atoms to describe the part of their struc-
ture and their behaviour which are not customised. For
instance, in figure 2, we may say that the OFL-component
called an-aggregation-relationship is a specialisation of
the OFL-atom relationship.

For instance in an application all the features of a descrip-
tion are instances of an heir of feature, all the expressions
are instances of expression or of one of its heirs and all
the objects are instances of object. Thus OFL gives a full
reification of the entities found at the application runtime.

4. |IMPLEMENTATION OF OFL

After describing the different elements composing the OFL
model, we shall now use OFL to modelise the descriptions
and relationships of the Java language. To illustrate this
part we shall give a value of all hyper-generic parameters for
one component-relationship and one component-description.
We shall then deal with other meta-models available within
the framework of object-oriented technologies. Finally we
shall describe a set of tools allowing the use of our model.

4.1 Intuitive definition of Java

We are listing now the different semantics of the descriptions
and of the relationships between the descriptions of the Java
language. Each of these semantics is represented by an OFL-
component. The reader can go to figure 5 to get the full list
of the Java OFL-components.

For Java we have found:

e obviously, one concept-language,

e eight concepts-relationships i.e. four import ones and
four use ones, and

e ten concepts-descriptions.

The reader familiar to Java may find the number of OFL-
components is high. This is the result of the accuracy of our
parameter system which provides a rather fine granularity.
The differences in the semantics between the relationships
or the descriptions are often hidden from the programmer
by the use of the same keyword in different contexts.

What we say about the Java OFL-components is not the
value of each of the parameters but rather a presentation
of their main features. The keywords linked to each of the
OFL-components are put in brackets.

4.1.1 Concepts-Relationships of Java
The first four concepts-relationships are import ones, the
following four as use ones.

4.1.1.1 Between Classes Inheritaneg:énds)

This relationship is used to refine the implementation of the
specification of a data type. A specification is implemented
in a class; so that a class is specialised by an between classes
inheritance. This is simple inheritance in which cycles are
forbidden. The features of an inherited class are imported
into the heir class. It is possible to replace the attributes
and to redefine the methods. Polymorphism is applied in a
bottom-up way, i.e. any instance of the heir may be seen as
an instance of the inherited one.

4.1.1.2 Between Interfaces Inheritanegténds)

This relationship allows to refine the specification of a data
type. It is applied between interfaces, the heir specialising
the inherited ones. Contrary to the between classes inher-
itance, this relationship is multiple indeed. Polymorphism
works in the same way as in the between classes inheritance.

4.1.1.3 Concretisationsftends)

This relationship allows to materialise the implementation
of the specification of a data type. It is applied between
an abstract (inherited) class and a non-abstract (inherit-
ing) class. This relationship is identical to a between classes
inheritance but it is compulsory to provide a body to the
ancestor’s abstract methods in the heir.

4.1.1.4 Implementationfplements)

This relationship modelise the implementation of the speci-
fication of a data type. A class can thus implements one or
several interfaces. Therefore implementation is a multiple
relationship. If the class is concrete, it must provide a body
to all the methods which are specified in the interfaces. If
the class is abstract, it can provide a body to some methods
and keep the others abstract. Its polymorphism is identical
to that of the inheritance relationships.

4.1.1.5 Aggregation

This relationship modelises how to use the services of the de-
scriptions. In order to implement such a use, one just has to
declare an attribute with the type of the used description?.
Contrary of the four previous import relationships, cycles
are allowed for aggregations. The attributes of the descrip-
tion used is directly accessible i.e. the use of accessors is
not compulsory®. The life of the used object is independent
from that of the using object and the same object can be
used by several using objects.

4.1.1.6 Class Aggregationtatic)

This relationship modelises the notion of class attribute well
known in object-oriented languages. It is identical to aggre-
gation but the used object is associated to the using class
and not to its instances.

4.1.1.7 Composition
This relationship modelises the strong use of the description
services. It is similar to an aggregation but the used entity

2The use of a method parameter, of a function result or of a
local variable with the type of the used description resembles
aggregation.

®Except if the attribute visibility is restricted, for instance
declaring it as private.



/\ /\

/\

/\ /\
m
/\ /\

T

/\
postcondition variant precondition
- -

Figure 4: The OFL-atoms

concept- concept-
import— use-
relationship relationship

between—
classes— aggregation
inheritance

between—
interfaces—
inheritance

concept—
language

concept—
description

class— abstract— anonymous—
aggregation class

interface

- static—
concretisation hondl

member— primitive—
type

Figure 5: The OFL-components of Java



is not an object because it is of a primitive type (for exam-
ple: int). Thus we consider that the life of the used entity
depends on that of the using object.

4.1.1.8 Class Compositioatatic)
The class composition is similar to composition but it defines
a class attribute as class aggregation does.

4.1.2 Concepts-Descriptions ofva

In general, we call inner-classes the static member classes,
the member classes, the local classes, the anonymous classes,
and the member static interfaces too. We have listed ten
concepts-descriptions?.

4121 Cl&SS((lass)

A class is the concrete implementation of a data type. Tt is
a non-generic description which may contain methods® and
attributes. It is visible within the limits of the package but
this visibility can be extended or restricted by a qualifier
(public or private for instance). It is able to create in-
stances but cannot destroy them, this task is assigned to a
garbage-collector. Finally it allows the overloading without
taking into account the type of function result.

4.1.2.2 Abstract Classstract class)

An abstract class is an abstract implementation of a data
type. This description as the same features as a class but it
can describe abstract methods (without a body) and cannot
have own instances.

4.1.2.3 Interfaceifnterface)

This is the specification of a data type. Contrary to a class,
an interface cannot define attributes. Moreover, all its meth-
ods are abstract and therefore it cannot create instances.

4.1.2.4 Static Member Classtbtic class)

A static member class is an implementation of a data type,
local to a class. When compared to a class, its characteristic
is to be defined inside a class and not at the highest level.
Besides it is not accessible but through the class that defines
it.

4.1.2.5 Member Class1ass)

A member class is an implementation of a data type, local
to a class too. But unlike the static member class, an in-
stance of the member class is automatically associated to
each instance of the class that defines it.

4.1.2.6 Local Classf(ass)

A local class is an implementation of a data type, local to
a method. It is only visible within the method that defines
it. Besides that, it is equivalent to the other class concepts-
descriptions.

4.1.2.7 Anonymous Clasa éss)

An anonymous class is an implementation of a data type,
local to an expression. It is similar to a local class but only
visible within the expression that defines it. Moreover, as it

“We doesn’t consider abstract inner-classes in this paper.
% As well as constructors and initialisers.

has not got a name, it cannot be referred to and so it cannot
be inherited. Finally because of its syntactic structure, if it
implements an interface, it can only implement one.

4.1.2.8 Static Member Interfacetbtic interface)
A static member interface is a specification of a data type
local to a class. It is equivalent to a static member class
with the shape of an interface.

41.2.9 Array

It represents the structure of data that has the same name,
which is well-known by computer scientists. It is thus an
indezed and permanent-sized collection of entities of a given
type. In Java, array is a particular case. Each array is an in-
stance of a virtual class® representing its type (for example:
an array of integers is of type int[]).

4.1.2.10 Primitive Type

A primitive type is the representation of a language basic
type. It allows essential elements of the application to be de-
scribed: booleans, characters, bytes, shorts, integers, longs,
floats, and doubles. Let us point out that each primitive
type describes a value and not an object and that a class
exists to represent each of them. For example, the Integer
class allows to consider an int as an object.

4.1.3 Constraints between Jagar-Components
The semantics of the OFL-components allows to answer the
question “Which concepts-descriptions are valid as source or
as target of each concepts-relationships?”. To understand
the problem better, the following definition can be useful:

e The source of a relationship is the description which
declares the relationship. This description is the one
that needs the service. There can be several sources,
as in the UML association, even if it is quite a rare
case.

e The target of a relationship is the description quoted
by the source when declaring the relationship. The
target provides the service. It is possible to find several
targets, it is more frequent to find several targets than
several sources (for example: multiple inheritance).

As far as import concepts-relationships are concerned, we
can mention following constraints, for example.

e It is impossible for between classes inheritance to have
as target and source an interface or a static member
interface. Furthermore, anonymous classes cannot be
targeted by such an inheritance.

e The between interfaces inheritance is applied between
interfaces (whether they are static member or not).

e The concretisation must take place between an ab-
stract class and a non-abstract class.

e Finally, the implementation is a relationship which al-
ways targets one or several interfaces (whichever they
are) and a class (whichever it is).

6This class does not exist but everything goes as if it did.



The same type of constraints is found for use concepts-
relationships. Here are a few examples of it.

e The aggregation may have as a source all kinds of
classes and only them. As for the targets, there are
also two kinds of interface.

e The class aggregation has the same constraints as the
aggregation.

e The composition resembles the aggregation but the
only possible target is a primitive type.

e We should apply the same constraints for class com-
position and composition.

4.2 OFL definition of Java

The semantics of the Java’s components had been described
above. This section aims to show how they are defined in
OFL.

In order to create new OFL-components, the meta-program-
mer needs to valuate the parameters of the OFL-concepts
associated to them. We provide in the following the param-
eter values attached to two of the Java OFL-components :
one component-relationship (the implementation) and one
component-description (the abstract class). While reading
the values of OFL-component parameters the reader may
refer to the corresponding paragraph in section 4.1.

4.2.1 The OFL-componentplementation

People may distinguish components-relationships of a lan-
guage using the parameter Name. For this component its
value is Implementation. The kind of relationships is recor-
ded within the parameter Kind which is set to import for this
component. OFL allows to mention (parameter Context) if
a component is specific to a language or if it belongs to a li-
brary of components’. We are describing a relation for Java:
Context is set to language. Implementation is a multiple
relationship and Java does not limit the number of target-
descriptions so the parameter Cardinality is set to 1 —oo®.

The parameter Repetition indicates if a direct repetition
in the sources and/or targets of the relationship is allowed.
According to the parameter Cardinality, we only consider
one source for the Implementation relationship of Java, so
the Repetition for source is not applicable. Moreover it
does not make sense to implement several identical interfaces
and it is forbidden in Java. Thus, this parameter is set to
forbidden for targets.

The parameter Circularity records if it is possible to get
cycles thanks to this relationship (that means to be able
to import directly or not the source of the relationship it-
self). In Java, cycles are not allowed for Implementation
and Circularity is set to forbidden. Other possible value
is allowed.

"According to the value of this parameter it is possible to
include or not additional information or assertions which
improve OFL-component’s consistency.

8For classical object-oriented languages one relationship in-
volves only one source and one or several target(s): one if
the relationship is simple and several if it is a multiple one.

To set the parameter Symmetry to true would mean that
if a description of type Class or Abstract Class named A
implements another description of type Interface named B
then the B implements A. It is meaningless so that Symmetry
is set to false.

The parameter Opposite provides (if any) the name of the
opposite relationship; otherwise it is set to none. For a sym-
metry relationship, the opposite is the relationship itself.
The implementation has no opposite in Java and this pa-
rameter is set to none.

The parameter Direct_access specifies if the relationship
provides a direct access to the features of the target-descrip-
tion from the source-description. Because the targets of a
Implementation relationship are only Interfaces, all the
features of the target-description are abstract, and to ac-
cess to the target-description features has no meaning so
that Direct_access should be set to forbidden®.

The parameter Indirect_access means that any access to a
feature of the target-description from the source-description
should be performed trough the target-description itself (i.e.
the target-class must be specified). For the same reasons
as for Direct_access, this parameter is set to forbidden.
Possible values are mandatory, allowed and forbidden

The parameter Polymorphism_direction and the parameter
Polymorphism are specific to import relationships. The first
indicates if the relationship handles polymorphism between
source and targets and when it is useful indicates also the
direction (possible values are up, down, both and none). The
second records how the relationship handles name conflict
when the first one allows some polymorphism. Two possi-
bilities are proposed: a feature (we distinguish attribute and
methods) of the source-description which has the same name
in the target-description may hide or override the latter.
According to the relationship being defined, all instances
of the source-description are also instances of the target-
description and Polymorphism direction is set to up. Po-
lymorphism is set to overriding for both attributes (only
constant attributes are allowed) and methods.

The parameter Feature_variance is specific to import re-
lationships. It gives the kind of variance associated to the
parameters of methods, to the result of functions and to
the attributes, when a feature is redefined. Several values
are available: nonvariant (new type must be the same),
covariant (new type must be a descendant), contravariant
(new type must be an ancestor) and non_applicable. For
this relationship Feature_variance is set to nonvariant for
method parameters, result of functions and attributes.!°

Another specific parameter of import relationships is Asser-
tion_variance. It gives the type of the variance for the
assertions when there is a redefinition. There are three
kinds of assertion : invariants, preconditions and postcon-

°The reader should be aware of the case of constant at-
tributes that may be defined within an interface. OFL may
handle this case not trough parameter values (it is some-
thing to specific) but with a generic mechanism based on
before/after routines included in the OFL’s actions.

0Remember that Java disposes of overloading capacity.



ditions. Several values are available: strengthened (new
assertion must be stronger), weakened (new assertion must
be lighter), unchanged (assertion must not be modified) and
non_applicable. For this relationship Assertion_variance
is set to non_applicable for all types of assertions because
such feature is not present in Java.

The parameter Adding indicates if the relationship allows to
add features in the source-description. In Java it is allowed
for Implementation, so that Adding is set to allowed. Other
possible values are forbidden and mandatory.

The parameter Removing indicates if it is allowed to remove
features from the target-description trough this relation-
ship. In Java it is not allowed, so that Removing is set to
forbidden. Possible values are the same as those of Adding.

The parameter Renaming records if it is possible to rename
features in the source-description. In Java it is not allowed
wath’ever is the relationship. Renaming is set to forbidden.
Possible values are the same as those of Adding.

The parameter Redefining indicates whether it is possible
or not to redefine assertions, signature, body and modifier(s)
(visibility, protection, constancy, ... ) of features. For each
category, possible values are the same as for Adding. Accord-
ing to Implementation, the redefinition is non_applicable
for assertions, it is forbidden for signature and modifier(s)
of features. It is allowed (but not mandatory) for a method
body (imported features are all abstract and may be asso-
ciated to a body in the source-description).

The parameter Masking is dealing with the capability for
a relationship to mask features coming from the target-
description. Possible values are the same as those of Adding.
In Java the Implementation relationship does not allow to
mask any feature of target-description. Masking is set to
forbidden. The parameter Showing deals exactly with the
contrary: the capability to show in the source-description
features which had been previously masked. In the Im-
plementation relationship of Java, Showing is also set to
forbidden.

The parameter Abstracting records whether a relationship
may specify to remove the body of a feature of the target-
description in the source-description. Such capability is
forbidden for this relationship (all methods of an interface
are already abstract methods). Possible values are the same
as those of Adding.

Effecting is exactly the opposite of Abstracting. It in-
dicates that a source-description may provide a body to
abstract methods. For this relationship it is allowed (but
not mandatory): source-description may be of type Class or
Abstract Class. Possible values are the same as those of
Adding.

4.2.2 The OFL-componemtstract Class

In previous section we described a component-relationship;
the next one is dedicated to the description of a component-
description. Like components-relationships, components-de-
scriptions are associated to a set of parameters which de-
scribes their operational semantics.

A few parameters such as Name or Context which partici-
pate to the description of a component-relationship are also
present in a component-description, with the same meaning.
This section deals with the definition of abstract classes so
that Name is set to abstract class. Moreover, we define
an abstract class in the framework of Java, so that the
parameter Context is set to language (cf. section 4.2.1).

The parameter Genericity records if a description is generic
or not. There is no generic description in Java, so that
Genericity is set to false.

The parameter Generator indicates if a component-descri-
ption is able to create instances. If yes, it should be possible
to define constructors and initialisers. In Java, for abstract
classes as well as "normal” classes, this parameter is set to
true. On the contrary, the parameter Destructor records if
it is possible to free an instance. In Java, this is rarely used
but possible, so this parameter is set to true.

The extension of a description is the set of its own in-
stances and of instances of its heirs (more precisely, this set
of instances depends on the parameters dedicated to poly-
morphism of the relationships where are this description
is source or target). The parameter Extension_creation
records if the extension of this kind of description is han-
dled automatically or manually. In Java we can set this
parameter to automatically (by default, at the descrip-
tion creation, its extension is empty) even if the extension
is maintained only virtually.

The parameter Encapsulation indicates if features are en-
capsulated into descriptions; it is possible to distinguish be-
tween attributes and methods. In Java everything is encap-
sulated, so that the parameter is set to <true, true>. Let
us mention that the ability to modelise non encapsulated
method is useful for the specification of language such as
CLOS.

Sharing _control is the parameter which records if the in-
stances of a description may be shared and eventually how.
An instance may be shared by all instances of one descrip-
tion (this represent the idea of class variable and the value of
parameter is description), it may be shared by only some
of the instances of one description (this is an instance vari-
able and the value of parameter is instance). Finally, an
instance may be attached to only one instance of one de-
scription (value unique_instance). A Java abstract class
does not put constraints about the sharing of its instances
(in fact the instances of its descendants) so Sharing _control
is set to {description, instance, unique_instance}.

The parameter Visibility indicates entities from which the
description is visible. Several values are possible for this
parameter from a value which restricts the visibility to a
single expression to one which open the description to the
entire network. In Java, by default, the visibility is limited
to the package which contains the description so the chosen
value is package.

Attribute is the parameter which specifies if the descrip-
tion allows the definition of attributes (allowed) or not
(forbidden). For an Abstract Class this parameter is al-



lowed (for constant attribute only). In the same way, there
is a very similar parameter for methods, it is called Method.
In an Abstract Class it is also possible to define methods,
so that this parameter is set to allowed.

The parameter Overloading indicates if the component-
description allows or prohibits (allowed, forbidden) the
overloading of features. In fact it is constituted by four
values which specify this overloading for the attributes, for
the results of functions, for the number and for the type of
method parameters. For a Java abstract class the parameter
is set to <forbidden, forbidden, allowed, allowed>.

4.2.3 Some more about OFL-components
Perhaps the reader noticed some aspects of the Java lan-
guage that were not covered by the parameters presented
above. Let us take some examples:

e In section 4.2.1 the parameter repetition handles di-
rect repetition of target descriptions, that is to say it
allows or not to get several time the same description
in the list of target. But what about the handling of
indirect repetition (repetition of the same description
several times in the same hierarchy but at different
level)?

e In section 4.2.2 we deal with visibility of a description
(parameter visibility) but nothing about the han-
dling of the keyword public that may be attached to a
Java class. On the other hand the keyword abstract
is handled by the parameter Generator, why such in-
equity?

e The handling of the features’ visibility within the hier-
archy of classes is not even mentioned. The situation is
the same for the handling of constructors and initialis-
ers according to values of the parameter Generator.
One may note that it is also necessary to ensure that
constructors has same name as the description, that
initialisers are anonymous and that the destructor is
called "finalize”.

According to those questions or remarks we need to make
the three following comments and to propose an answer: the
assertions and the qualifiers.

Firstly, the choice to define or not a new parameter for a
component-relationship or a component-description is main-
ly based on the following question: ”Is it an enough general
and relevant aspect that could be integrated in more than
one language and that may be found in existing literature?”.
To answer this question looks like very difficult and in some
way quite arbitrary but let us give some examples in order
to show the underlying philosophy. The handling of some
language keywords is very specific to each language. Each
language has its own rules for handling the visibility of rou-
tines within the hierarchy of descriptions (private, public,
protected, export, ... ). On the other hand, to say that
a description is abstract or not, justifies from our point of
view, to associate it to one or several parameters. How-
ever, the specificity of each language according to this as-
pect may not be fully handled by parameters (for instance

when a language enforces an abstract description to contain
only abstract methods).

Secondly, some semantics into a language may not fit within
only one component. The handling of indirect repetition
or the handling of feature visibility relies on several kinds
of relationship (on several OFL-components), so that it is
necessary to get a mechanism which is orthogonal to the
kinds of relationship.

Thirdly, the OFL model is based essentially on two customis-
able concepts: relationships and descriptions. This inten-
tional limitation means that the definition of the behaviour
of entities such as methods or attributes is located within
components-descriptions and components-relationships.

In order to take into account what we mentioned above,
we integrated assertions within OFL-components: they may
address any reified information including parameters value.
They correspond to controls that the meta-programmer may
need to set on the hierarchy of components. We add also
to OFL-components the ability to define assertions associ-
ated to a keyword (we call them qualifiers). For example we
may define an assertion which corresponds to the seman-
tic of a private method in Java or another one which deals
with the semantic of public class (also in Java). All controls
specified by a language either explicitly through a keyword
or implicitly which are not handled by existing parameters,
are associated to one or several assertions; the tools men-
tioned in section 4.4, especially OFL-ML are in charge to
implement those assertions.

4.3 Integration in the Existing Meta-Models
OFL is a meta-model which describes object-oriented lan-
guages based on classes and customises the operational se-
mantics of their descriptions and relationships. The state
of the art, in the field of meta-model shows quite a diver-
sity. These meta-models are usually able to describe one
another. For us, the most significant one is MOF (Meta
Object Facility) [11]. We do not aim to compete against
MOF but to offer a less general model closer to the pro-
grammer. MOF' describes a class concept, an association
concept and a package concept.

A MOF class allows to define attributes, the type of which
can be simple or described by a class, and to specify op-
erations. Let us point out that OFL and MOF have the
same approach concerning the method bodies that have to
be described according to an independent language (bind-
ing). OFL and MOF both draw from the UML and IDL
[12] notation and syntax.

A MOF association allows to define any relationship that oc-
curs between a number of MOF source classes and a number
of MOF target classes. The semantics of the relationship de-
scribed by such an association is implemented thanks to the
attributes and the operations of the MOF classes.

The MOF packages allow to encompass the MOF classes
and associations.

OFL may be described according to MOF and supply the
latter with an additional layer on top of it allowing to cus-



tomise the operational semantics of the MOF classes and
associations.

Besides, we have shown in figure 2 that OFL can be de-
scribed with the UML formalism, in particular thanks to
the possibility of tagging the new concepts (which was un-
necessary in this figure).

Finally, OFL can also be described thanks to XML [13] and
XML-Schemas.

4.4 OFL Tools

OFL can be used as a set of three tools which share the infor-
mation contained in a database whose schema is described
in ODL [14].

The first tool called OFL-Meta is for the meta-programmer.
It allows to graphically create, modify or delete OFL-com-
ponents i.e. the instances of the OFL-concepts. In other
words, it allows to describe the operational semantics of a
language which will be used when designing an application.
The OFL-components which it handles can be stored by
using various standard formalism such XML or MOF.

The second tool is called OFL-ML in reference to UML. It is
intended for the application designer. It is also a graphical
tool which allows to create, modify or delete OFL-instances,
i.e. the instances of the OFL-components described in OFL-
Meta. The programming task is included by a binding: the
selected language is Java, that is body of all the methods is
written in Java.

The third tool is called OFL-Parser. 1t is a translator, inter-
preter or compiler. Its task is to translate the OF L-instances
and the body of methods (using the static facets of the ac-
tions) into a target language, Java in our case. The last
step consist in executing the generated application and thus
to use the methods and create the OFL-data, i.e. the in-
stances of the OFL-instances (using the dynamic facets of
the actions).

5. CONCLUSION AND FURTHER WORKS

The OFL meta-model, the features of which we have quickly
summed up in this document, describes object-oriented lan-
guages based on classes. Its characteristic is to customise
the operational semantics of the descriptions and the rela-
tionships of those languages. It is also possible to add other
descriptions and relationships if their use is compatible with
those that already exist. OFL also provides several assets
which may allow a higher maintainability of the applica-
tions.

We have started implementing each of the three tools de-
scribed in section 4.4; a prototype of the first two ones should
be released in the next few months. The third tool will cer-
tainly take longer.

6. REFERENCES
[1] A. Capouillez, R. Chignoli, P. Crescenzo, and
P. Lahire, “Hyper-généricité pour les langages a
objets : le modeéle OFL,” in Conférence LMO 2001
(Langages et Modéles a objets), Hermes Science
Publications, janvier 2001.

2]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

G. Kiczales, J. Des Riviéres, and D. G. Bobrow, The
Art of the MetaObject Protocol. MIT-Press, 1991.

P. Desfray, Object Engineering, the Fourth Dimension.
Addison-Wesley Publishing Co., 1994.

B. Meyer, Object-Oriented Software Construction.
Professional Technical Reference, Prentice Hall,
2nd ed., 1997.

B. Stroustrup, The C++ Programming Language.
Addison-Wesley Publishing Co., 3rd ed., 1997.

Object Management Group, Unified Modeling
Language Specification, 1st ed., March 2000. Version
1.3.

K. Arnold and J. Gosling, The Java Programming
Language. The Java Series ... from the Source, Sun
Microsystems, 3rd ed., 2000.

D. Flanagan, Java in a Nutshell: a Desktop Quick
Reference. O'Reilly, 3rd ed., December 1999.

J. Gosling, B. Joy, G. Steele, and B. G., The Java
Language Specification. The Sun Microsystems Press
Java Series, Sun Microsystems, June 2000.

M. Bouzeghoub, G. Gardarin, and P. Valduriez, Les
objets. Eyrolles, 1997.

Object Management Group, Meta Object Facility
(MOF) Specification, March 2000. Version 1.3.

Object Management Group, The Common Object
Request Broker: Architecture and Specification,
February 2001. Version 2.4.2.

Eztensible Markup Language (XML), 2nd ed., October
2000. Version 1.0, W3C Recommendation.

R. Cattell, D. K. Barry, D. Bartels, M. Berler,

J. Eastman, S. Gamerman, D. Jordan, A. Springer,
H. Strickland, and D. Wade, Object Database
Standard: ODMG 2.0. Morgan Kaufmann Publishers,
Inc., 1997.



