
An Extension of OFL Model through Modi�ersDan Pes
aru, Pierre Cres
enzo, Philippe Lahiredan�
s.utt.roPierre.Cres
enzo�uni
e.frPhilippe.Lahire�uni
e.frFa
ulty of Automati
s and Computer S
ien
e,"Politehni
a" University of Timisoara,Bd. V. Parvan no 2, 1900 Timisoara, ROMANIA,Laboratoire I3S (UNSA/CNRS), Proje
t OCL 2000,Route de Lu
ioles, Les Algorithmes,Btiment Eu
lide B BP121 F-06903,Sophia-Antipolis CEDEX, FRANCENovember 10, 2003

Contents
1 Introdu
tion 42 The OCL Language 63 The OFL Modi�ers 93.1 Component Modi�ers in Commer
ial Languages 93.1.1 Java language. 93.1.2 C++ language. 103.1.3 Ei�el language. 103.2 De�nition of an OFL-Modi�er . 103.3 Modi�ers Classi�
ation Regarding OFL Implementation Issues . 133.3.1 A

ess Control Modi�ers 133.3.2 Optimization Modi�ers 143.3.3 Servi
e Modi�ers . 143.3.4 Additional Modi�ers . 144 Basi
 A

ess Control Modi�ers 154.1 Examples of Native Basi
 A

ess Control Modi�ers 154.1.1 Java Language . 154.1.2 C++ Language . 164.1.3 Ei�el Language . 164.2 Basi
 A

ess Control Modi�ers for Features 164.2.1 Modi�er Assertions . 164.2.2 Modi�er A
tions . 184.3 Basi
 A

ess Control Modi�ers for Des
riptions 184.3.1 Modi�er Assertions . 184.3.2 Modi�er A
tions . 205 Complex A

ess Control Modi�ers 215.1 Examples of Native Complex A

ess Control Modi�ers 215.1.1 Java Language. 215.1.2 C++ Language. 215.1.3 Ei�el Language. 215.2 Complex A

ess Control Modi�ers for Methods 221

5.2.1 Modi�er Assertions. 225.2.2 Modi�er A
tions. 225.3 Complex A

ess Control Modi�ers for Attributes 225.3.1 Modi�er Assertions . 235.3.2 Modi�er A
tions . 235.4 Complex A

ess Control Modi�ers for Des
riptions 235.4.1 Modi�er Assertions . 245.4.2 Modi�er A
tions . 246 Optimization Modi�ers 256.1 Examples of Native Optimization Modi�ers 256.1.1 Java Language. 256.1.2 C++ Language. 266.1.3 Ei�el Language. 266.2 Optimization Modi�ers for Attributes 266.2.1 Modi�er Assertions . 266.2.2 Modi�er A
tions . 276.3 Optimization Modi�ers for Methods 276.3.1 Modi�er Assertions . 276.3.2 Modi�er A
tions . 276.4 Optimization Modi�ers for Des
ription 286.4.1 Modi�er Assertions . 286.4.2 Modi�er A
tions . 287 Servi
e Modi�ers 297.1 Examples of Native Servi
e Modi�ers 297.1.1 Java Language. 297.1.2 C++ Language. 297.1.3 Ei�el Language. 297.2 Servi
e Modi�ers for Attributes 307.2.1 Modi�er Assertions . 307.2.2 Modi�er A
tions . 307.3 Servi
e Modi�ers for Methods . 307.3.1 Modi�er Assertions . 307.3.2 Modi�er A
tions . 307.4 Servi
e Modi�ers for Des
riptions 317.4.1 Modi�er Assertions . 317.4.2 Modi�er A
tions . 318 Additional Modi�ers 328.1 Examples of Native Additional Modi�ers 328.1.1 Java Language. 328.1.2 C++ Language. 328.1.3 Ei�el Language. 328.1.4 Modi�er Assertions . 338.1.5 Modi�er A
tions . 332

9 Con
lusion and perspe
tives 34

3

Chapter 1Introdu
tionOFL model provides a
ustomization of main aspe
ts of the semanti
s of alanguage through a
tions and parameters, but the
ustomization provided
andeal only with features that are enough general for being appli
able to mostexisting obje
t oriented programming languages1. Pra
ti
al experien
e pointsout the ne
essity to
apture more of the semanti
s of these languages. Toa
hieve that it is ne
essary to add new elements to the original OFL Model[Cre01, CL02℄.In order to preserve simpli
ity, a large part of the language rei�
ation isnot
ustomizable in the OFL Model philosophy. However, in order to a
hievea

eptan
e in programmers'
ommunity, some other
ustomizations are needed.Generally, this additional semanti
s is handled by keywords (modi�ers) in ex-isting languages.One of main goal for introdu
ing modi�ers is to limit the number of
om-ponents within an OFL-language. Using modi�ers, it is not ne
essary anymoreto de�ne one di�erent
omponent for ea
h di�erent
ombination of parameters.For instan
e, instead of having both publi
 java-
lass and pa
kage java-
lass
omponents di�erentiated only by one parameter (visibility), we
an design justone java-
lass
omponent and something else (like modi�ers) in order to ensure(when it is ne
essary) that the a

ess is publi
.Another goal of modi�ers is to improve the
exibility of the meta-level byproviding a
lean way to extend a language with new
apabilities.A

ording to that we propose a generi
 approa
h whi
h allows to de�ne rulesfor implementing a

ess
ontrols or additional semanti
s for language
ompo-nents. The general idea is to apply these rules to an appli
ation in order toprovide for example metri
s, error reporting, and design or debugging fa
ilities.Thanks to these rules we
an had
onstraints to language entities in order toenri
h, when it is ne
essary, the expressiveness of a given language.Comparing with other approa
hes found in [ACL03, S
h02℄, we fo
us on ageneri
 te
hnique independent from languages. Moreover, instead to de�ne a1For more information on the OFL Model, to read the thesis of Pierre Cres
enzo [Cre01℄.4

formalism whi
h depi
ts a

ess
ontrol me
hanisms, we propose an approa
hthat des
ribes how to implement these me
hanisms at a meta-programminglevel.Following those goals we pay a spe
ial attention to the
onsisten
y of thisapproa
h with the OFL model philosophy.Considering these issues we propose to add at the level of language
ompo-nents the ability to de�ne di�erent kinds of modi�ers and to add the entitiesthat are ne
essary to their rei�
ation.OFL modi�ers are used together with other language entities in order to
hange prote
tion or other aspe
ts of their semanti
s. Some of them
orrespondto keywords that may be found in existing programming languages, while others
ould be added in order to simplify some programming tasks.

5

Chapter 2The OCL LanguageStarting from the point that most of the OFL modi�ers relay on
onstraints tobe applied to program entities, we
hoose OCL as the language for spe
ifyingthese
onstraints. OCL is a formal language whi
h allows to express side e�e
t-free
onstraints. The Obje
t Management Group (OMG) de�nes OCL (Obje
tConstraint Language) [OMG00℄ as a part of UML 1.3 standard spe
i�
ation.Main motivation regarding this
hoi
e are the independen
e of OCL from pro-gramming languages and its general a

eptan
e within many
ommunities.OCL is designed to express side e�e
t-free
onstraints. It was used by OMGin the UML Semanti
s do
ument to spe
ify the rules of the UML meta-model.Ea
h rule in the stati
 semanti
s se
tions in the UML Semanti
s do
ument
ontains an OCL expression, whi
h is an invariant for the involved
lass.The usage of OCL is important be
ause in obje
t-oriented modeling a graph-i
al model, like a
lass model, is not enough for a pre
ise and unambiguousspe
i�
ation. There is a need to des
ribe additional
onstraints about the ob-je
ts in the model. Su
h
onstraints are often des
ribed in natural language.Pra
ti
e has shown that this will always result in ambiguities. In order to writeunambiguous
onstraints, so-
alled formal languages have been developed. Thedisadvantage of traditional formal languages is that they are usable to personswith a strong mathemati
al ba
kground, but diÆ
ult for the average businessor system modeler to use.OCL has been developed to �ll this gap. It is a formal language that remainseasy to read and write. It has been developed as a business modeling languagewithin the IBM Insuran
e division, and has its roots in the Syntropy method.OCL is a pure expression language. Therefore, an OCL expression is guar-anteed to be without side e�e
t; it
annot
hange anything in the model. Thismeans that the state of the system will never
hange be
ause of an OCL ex-pression, even though an OCL expression
an be used to spe
ify a state
hange,for example in a post-
ondition. With other words, any �elds of any obje
ts,in
luding links,
annot be modi�ed. Whenever an OCL expression is evaluated,it simply delivers a return value.OCL is not a programming language, so it is not possible to write program6

logi
 or
ow
ontrol in OCL.OCL is a typed language, so ea
h OCL expression has a type. OCL
an beused for a number of di�erent purposes:� to spe
ify invariant on
lasses and types in a
lass model,� to spe
ify type invariant for UML stereotypes,� to des
ribe pre/post
onditions on operations and methods,� to des
ribe Guards,� to spe
ify
onstraints on operations,� as a navigation language.We use OCL to des
ribe
onstraints introdu
ed by modi�ers. It
an be alsoused to spe
ify pre and post
onditions for OFL-entities at the level of OFL-MLimplementation.As a notation
onvention for this do
ument, the underlined word beforean OCL expression determines the
ontext for the expression and the OCLexpression itself will be in itali
.In OCL, a number of basi
 types are prede�ned and available at any time:Boolean, Integer, Real, String and Enumeration. Several operations are alsode�ned on these prede�ned types. In addition, all OFL-des
riptions1
omingfrom the OFL Model are types in OCL whi
h are atta
hed to the model.The type Colle
tion, whi
h is prede�ned in OCL, plays an important rolea

ording to
onstraint de�nitions. It in
ludes a large number of prede�nedoperations for the handling of
olle
tions. Colle
tion operations are
onsistentwith the de�nition of OCL as an expression language, they never modify the
ontents of
olle
tions. They may return a
olle
tion, but rather than
hangingthe original
olle
tion they put the result into a new one.Colle
tion is an abstra
t type, with the
on
rete
olle
tion types as its sub-types. OCL distinguishes three di�erent
olle
tion types: Set, Sequen
e, andBag. A Set is the mathemati
al set ; it does not
ontain dupli
ate elements.A Bag is like a set, whi
h may
ontain dupli
ates, i.e. the same element maybe in a bag twi
e or more. A Sequen
e is like a Bag in whi
h the elements areordered. Both Bags and Sets have no order de�ned on them. Sets, Sequen
esand Bags
an be spe
i�ed by a literal in OCL.OCL de�nes a number of operators for
olle
tion manipulation:� SELECT and REJECT - allows to spe
ify a sele
tion from a spe
i�

ol-le
tion ;� COLLECT - allows to spe
ify a
olle
tion whi
h is derived from some other
olle
tion, but whi
h
ontains di�erent obje
ts from the original
olle
tion(i.e. it is not a sub-
olle
tion) ;1An OFL-Des
ription or OFL-ComponentDes
ription is the name
hosen in OFL for
las-si�er. 7

� FORALL - allows to spe
ify a Boolean expression, whi
h must be veri�edfor all obje
ts in a
olle
tion ;� EXISTS - allows to spe
ify a Boolean expression whi
h must be veri�edfor at least one obje
t in a
olle
tion ;� ITERATE - allows building one a

umulation value by iterating over a
olle
tion. It is a very generi
 operation. Reje
t, Sele
t, forAll, Exists andColle
t
an all be des
ribed in terms of Iterate.

8

Chapter 3The OFL Modi�ersAn intuitive de�nition of a modi�er entity is the following: a modi�er is alanguage keyword that is used in
omposition with other keywords in order to
hange their semanti
s. An important issue is that a modi�er keyword have nostand-alone meaning.OFL-modi�ers are designed to reify those entities in order to ensure betterOFL
ustomization for programming languages. Generally, modi�ers imply
onstraints added to the appli
ation model in order to a
hieve a �ne
ontrol.Not all language modi�ers are intended to be rei�ed by OFL modi�ers.Semanti
s
hanges indu
ed by some of them are very deep and rely on severalOFL
omponents. We name them
omponent modi�ers. Following list presentsmodi�ers for three well known obje
t-oriented languages: Java [GJSB00℄, C++[Str97℄ and Ei�el [Mey02℄.3.1 Component Modi�ers in Commer
ial Lan-guagesThe modi�ers proposed in the following rely on several parameters or propertiesthat are mentioned.3.1.1 Java language.abstra
t f
lass de
larationg An abstra
t
lass is a
lass that is in
omplete,or to be
onsidered in
omplete. The rei�
ation for a
lass de
lared abstra
tin Java results in several OFL-ComponentDes
ription for abstra
t
lass,stati
 abstra
t nested
lass, abstra
t inner
lass and abstra
t lo
al
lass.All these
omponents have the parameters generator and destru
tor setto value false.�nal fattribute de
larationg A �nal attribute may only be assigned on
e.When a �nal attribute has been assigned, it always
ontains the same9

value. To model this kind of attribute in OFL we use anOFL-AtomAttributethat has property isConstant set to true.stati
 ffeature de
larationg If a feature (attribute or method) is de
laredstati
, then it exists exa
tly one in
arnation of the feature, no matterhow many instan
es (possibly zero) of the
lass whi
h may eventually be
reated. A stati
 attribute, sometimes
alled \
lass variable", is in
arnatedwhen the
lass is initialized. A stati
 method,
alled \
lass method",is always invoked without referen
e to a parti
ular obje
t. The OFL-AtomAttribute and OFL-AtomMethod that rei�es these entities has theisDes
riptionFeature property set to false.3.1.2 C++ language.stati
 fmember de
larationg In C++ a variable that is part of a
lass, butis not part of an obje
t of that
lass, is de
lared as stati
 member. Thereis exa
tly one
opy of a stati
 member instead of one
opy per obje
t.Similarly, a fun
tion that needs a

ess to members of a
lass, but whi
hdoesn't need to be invoked for a parti
ular obje
t, is
alled a stati
 memberfun
tion. The OFL rei�
ation resides in OFL-AtomAttribute and OFL-AtomMethod entities, whi
h have the isDes
riptionFeature property setto false.3.1.3 Ei�el language.expanded f
lass de
larationg De
laring a
lass as expanded means that anyof its instan
es whi
h is addressed through a �eld of a given obje
t, is ex-panded (in
luded) in this obje
t (by default a �eld
ontains only a refer-en
e to it). These
lasses will be rei�ed by OFL-
omponentDes
ription
orresponding to expanding
lass and generi
 expanding
lass. Those
omponents
ould not be a target of neither aggregation relationship norgeneri
 derivation. But, they
ould be a target of inheritan
e relationship,expanded
lient relationship and expanded generi
ally derivation.Figure 3.1 illustrates the OFL model extended with OFL-Modi�ers. We de�nefour kinds of modi�ers (one for ea
h type of entity whi
h is
on
erned by mod-i�er de�nition) : des
ription-modi�er, relation-modi�er, method-modi�er andattribute-modi�er. The OFL modi�ers
omponents inherit from OFL-modi�ersand represent the rei�
ation of language modi�ers.3.2 De�nition of an OFL-Modi�erAn OFL-modi�er is de�ned by a name, a
ontext (the entity on whi
h it ap-plies), a keyword, assertions (OCL
onstraints) and a set of asso
iated a
tions(modi�ed OFL-a
tions). 10

Figure 3.1: The extension of the OFL model through OFL-Modi�ersModi�er Name. The name is used to identify the modi�er. It should be alegal identi�er related with OFL and the language binding.Modi�er Context. Type of entity that a

epts the modi�er is denoted byits
ontext. The
ontext
ould be either one des
ription, one relationship, oneattribute or one method.Modi�er Keyword. The modi�er keyword represents the string representa-tion of the modi�er in the language syntax.Modi�er Assertions. We use OCL to spe
ify the modi�er
onstraints throughassertions.A �rst solution is to de�ne These
onstraints in invariant for OFL
ompo-nents or in pre and post
onditions for OFL a
tions. Implementation of
ontrolimplies assertions at the level of OFL entities reifying the
orresponding me
h-anisms. Indeed, they will be atta
hed to
orresponding OFL-Components andOFL-A
tions.Another solution is to de�ne the assertion within the OFL-Modi�er itselfbut the drawba
k is that if assertion refers to other modi�ers then it has toknow about other modi�ers and this de
rease its reuse
apabilities.The role of an OFL-Modi�er is to take into a

ount those remarks in orderto help the meta-programmer to manage and organize assertions.For assertions we use notation that have the same meaning as in OCL de�-nition [OMG00℄. The self keyword refers the
urrent instan
e of the asso
iated
omponent. The OCL modi�er assertions are written in the
ontext of the OFL11

model de�nition; as a result of that, all types de�ned by the OFL model
ouldbe used in assertions.Some
omponent features
orrespond to OCL
olle
tion type and supportOCL
olle
tion operators. For instan
e, \
omponent.modi�ers! in
ludes('modi�ername')" that tests if the
omponent has modi�er modi�er name atta
hed to itor not.Modi�er's A
tions. Modi�er's a
tions are OFL-A
tions rewritten to
on-sider new semanti
s. The modi�er keeps referen
es to all rewritten a
tion, help-ing meta-programmer to manage them. A
tions play di�erent roles dependingon the
omplexity of the
onsidered modi�er. Most modi�ers do not need a
tionrewriting. They have just a set of assertions atta
hed to them.In order to build a
omplex semanti
s from simpler ones and to extend mod-i�ers, we de�ne a modi�er
omposition operator. This operator spe
i�es howto
ombine assertions and a
tions that are spe
i�ed within
omposed modi�ers.In the
ontext of
omposition operation we state the de�nition of "
ompatiblemodi�ers" and "in
ompatible modi�ers". Two modi�ers de�ned in the same
ontext are
ompatible if they
an be
omposed. They are in
ompatible if theira
tions and assertions are not disjun
tive. A
tions and assertions are not dis-jun
tive if their semanti
s interfere. A

ording to that we extent the de�nition ofOFL-Modi�er by adding a
hara
teristi
 named in
ompatible modi�er set. Onemodi�er keeps in this set information about all modi�ers that are in
ompatiblewith it.In the
omposition pro
ess, two aspe
ts of modi�ers are addressed: theassertions and the a
tions asso
iated with it. For
ompatible modi�ers all inter-a
tions will be just
umulative. For the assertions, whi
h are OCL expressions,other
onstraints
an be
omposed using the AND logi
al operator. Be
auseOCL avoids side e�e
ts,
omposition of assertions is
ommutative. A
tions maybe
alled in a random order. Indeed, if there are some intera
tions at the level ofa
tion semanti
s, the modi�ers are in
ompatible and the
omposition operator
annot be applied. To deal with in
ompatible modi�ers we de�ne an invariantin the OFL entity whi
h is the modi�er
ontext.Following example
onsiders the Java publi
 modi�er for attributes. For abetter understanding we
onsider a 'pa
kage' modi�er whi
h repla
es the defaultvisibility rule for attributes. The OFL rei�
ation for an attribute is the OFL-AtomAttribute. At the time the modi�er is de�ned we atta
h an invariant tothis entity whi
h means : in
ompatible modi�ers set for publi
 is fprote
ted,private, pa
kageg.
ontext AtomAttributeinv: self.modifiers->in
ludes('publi
')impliesNOT (self.modifiers->in
ludes('private')ORself.modifiers->in
ludes('pa
kage')12

ORself.modifiers->in
ludes('prote
ted'))In order to
over all situations a new de�nition of invariant should be madefor ea
h newly added modi�er.If we
onsider the extension of a given language extension, we
an distin-guish two kind of modi�ers. An OFL-modi�er
an represent the rei�
ation of amodi�er that belongs to the language binding - we name it native modi�er - orit
an be a
ustom modi�er added by the meta-programmer in order to enri
hthe language semanti
s.The native modi�ers will have the same meaning (related to the languagebinding
omponents), as in the original language. The meta-programming taskwill
onsist in des
ribing the meaning and the behavior of modi�ers a

ordingto their de�nition. When a meta-programmer adds new extension for the lan-guage (new
omponents) he has the responsibility to extend the de�nition ofthe modi�ers a

ording to the new entities.In the following se
tions we try to provide an orthogonal approa
h in orderto de�ne both native and
ustom modi�ers.Next we present a
lassi�
ation based on the semanti
s whi
h is behindmodi�ers. The meaning of semanti
s in this
ontext deals with the aspe
t ofentity semanti
s that is
hanged by the modi�er. To evaluate semanti

hanges,we
onsider all the OFL-A
tions that are involved.3.3 Modi�ers Classi�
ation Regarding OFL Im-plementation IssuesAll the kinds of modi�ers presented in this se
tion will be addressed in detailwithin the next
hapters.3.3.1 A

ess Control Modi�ersThe importan
e of a systemati
 approa
h on a

ess
ontrol me
hanism rep-resents an a
tual topi
 of resear
h in the �eld of obje
t oriented te
hnology[Aba98, Ard02, CNP89, Sny86℄. Even the UML standard [OMG03℄, whi
h wasplanned to be language independent, la
ks in de�ning prote
tion me
hanisms.Flower and S
ott emphasize this aspe
t [FS01℄:"When you are using visibility, use the rules of the language in whi
h youare working. When you are looking at UML model from elsewhere, be wary ofthe meaning of visibility markers, and be aware how those meanings
an
hangefrom language to language."OFL Model also la
ks in
ustomization of a

ess
ontrol me
hanisms [PL03℄.Modi�ers represent a way to add this
ustomization. Considering the OFL-A
tions involved by the semanti
s we
an split these modi�ers into two sub
at-egories: basi
 modi�ers and
omplex modi�ers.13

Basi
 A

ess Control Modi�ers. Some modi�ers add
onstraints to somefa
ets of the language whi
h are
ustomizable in OFL by setting values tosome of the parameters and
hara
teristi
s built in the OFL Model. Toimplement these modi�ers, meta-programmer has to write assertions atthe level of one or several OFL-Components only. They do not imply anya
tion rewriting. We
all them basi
 modi�ers.Complex A

ess Control Modi�ers. Some other modi�ers address me
ha-nisms that are implemented in OFL through pie
es of
ode wrote by ameta-programmer. To implement these modi�ers, he has to rewrite someof the OFL-A
tions and/or to extend their assertions. Be
ause writinga
tions is a more
ompli
ated job, we
all them
omplex modi�ers.
omplex modi�ers implies always prote
tion and some time they impliesalso visibility (ex. prote
ted-write [CKMR99℄).3.3.2 Optimization Modi�ersThese modi�ers have no impa
t at the level of appli
ation model semanti
s.They are used only to establish optimization strategies for
ompilers or, moregenerally, translators (ex. in line, volatile, register et
.). The
orrespondingOFL-modi�ers are used only to allow the programmer to spe
ify optimizationfor OFL Parser. This is parti
ularly important if he plans to run the resultingOFL-appli
ation.3.3.3 Servi
e Modi�ersServi
e modi�ers are used to introdu
e new kind of servi
es like
ustom look-up,persisten
y or
on
urren
y; They
ould have an impa
t at the level of modelsemanti
 or only at the level of
ode generation. (ex. persistent, syn
hronisedet
.)3.3.4 Additional Modi�ersIn addition to previous
onsidered modi�ers, languages propose also other key-words used to in
uen
e the semanti
s of program entities. The meaning ofthese additional modi�er is to for
e
ompiler to treat in a spe
ial way the entitythat de
lare the modi�er. This
ategory does not in
lude modi�ers that modifythe rei�
ation of
onsidered entity (this subje
t was dis
ussed in se
. 3). Themodi�ed semanti
s is handled by the native
ompiler (ex. expli
it, agent et
.).
14

Chapter 4Basi
 A

ess ControlModi�ersMost of a

ess-
ontrol modi�ers add
onstraints regarding the way features
ould be rea
hed by other entities that are
onne
ted through di�erent kindsof relationships. They imply only
onstraints related with me
hanisms rei�edby OFL relationships (dynami
 relationships like the one that links an instan
eto its
lass
ould also be
onsidered). A

ording to that they
ould be
on-sidered as basi
 modi�ers. Their implementation relies only on assertions inOFL-
omponentDes
riptions whi
h involve those relationships.4.1 Examples of Native Basi
 A

ess ControlModi�ers4.1.1 Java LanguageJava [GJSB00℄ has several modi�ers used for basi
 a

ess
ontrol: publi
, pro-te
ted, private, and default (to be more expressive we name it pa
kage).Java
lass members (attributes and methods) that are de
lared publi

an bea

essed from any
lass whi
h
an a

ess to the
lass where they are de
lared.Members that are de
lared as prote
ted
an be a

essed from any
lass ofthe pa
kage, and also from any sub
lasses, of the
lass where they are de
lared.Members that are de
lared as private are only a

essible from the
lass inwhi
h they are de�ned (it means that sub
lasses are not allowed to).Class members that have no a

ess
ontrol modi�er asso
iated are
onsideredto have default visibility. These members
an be a

essed only from
lasses ofthe pa
kage where they are de
lared.A Java
lass, an abstra
t
lass or an interfa
e whi
h is de
lared as publi

an be referen
ed from outside its pa
kage. If a
lass is not de
lared as publi
,it
an be referen
ed only within its pa
kage.15

Classes and members that are not expli
itly asso
iated to a modi�er havethe default Java visibility, that it is to say that they are visible only within thepa
kage.4.1.2 C++ LanguageFor C++ language [Str97℄ the publi
, prote
ted and private modi�ers have ameaning whi
h is slightly di�erent than in Java [Ard02℄. There is no "pa
kage"resolution but another kind of visibility denoted by friend.Using the friend keyword, a
lass
an grant a

ess to non-member fun
tionsor to another
lass. These friend fun
tions and friend
lasses are permitted toa

ess private and prote
ted
lass members. The publi
 and prote
ted keywordsdo not apply to friend fun
tions, as the
lass has no
ontrol over the s
ope offriends.If a member of a C++
lass is private, its name
an be used only by memberfun
tions and friends of the
lass in whi
h it is de
lared. A prote
ted member
an be used only by member fun
tions and friends of the
lass in whi
h it isde
lared and by member fun
tions and friends of
lasses derived from this
lass.A publi
 member
an be used by any fun
tion. The default a

ess for C++
lass members is private.These modi�ers
ould be used to
hange a

ess
ontrol through inheritan
ebetween
lasses. When pre
eding the name of a base
lass, the publi
 keywordspe
i�es that the publi
 and prote
ted members of the base
lass are publi
 andprote
ted members, respe
tively, of the derived
lass. The prote
ted keywordused for inheritan
e spe
i�es that the publi
 and prote
ted members of the base
lass are prote
ted members of its derived
lasses. Finally, when pre
eding thename of a base
lass, the private keyword spe
i�es that the publi
 and prote
tedmembers of the base
lass are private members of the derived
lass.4.1.3 Ei�el LanguageIn Ei�el [Mey02℄ there are two
onstru
tions that
an deal with a

ess modi�ers;these are feature and export. In this language some of the prote
tion semanti
sare hidden in the language philosophy. For instan
e, the writing prote
tion hasno dire
t meaning for an attribute be
ause a

ess to an attribute from outside
lass is
onsidered as a query (and it is not possible to write into a result of aquery).4.2 Basi
 A

ess Control Modi�ers for Features4.2.1 Modi�er AssertionsThe assertions of basi
 a

ess
ontrol modi�ers for features (attributes and meth-ods) are de�ned in OFL-Relationship
omponents that manage export of thosefeatures. They should be tested ea
h time a relationship involving that featureis
reated. An invariant in the des
ription to whi
h belongs the feature is not16

ne
essary (basi
 modi�ers do not prote
t features against the des
ription itself).Independently of the language syntax we
an
onsider three possibilities: i) thefeature belongs to
urrent
lass ii) it is inherited through an inheritan
e rela-tionship from a dire
t or indire
t an
estor or iii) it is a

essed through an userelationship (
urrent
lass is a
lient of the des
ription whi
h owns the feature).In the last situation we
onsider that the
urrent des
ription
an a

ess to thesupplier one. Indeed, this aspe
t is
overed by a

ess
ontrol handled at thelevel of des
riptions. By
urrent des
ription we mean the one that a

esses tothe feature.If we
onsider the Java syntax, features belonging to a
lass or inherited bythe
lass, are a

essed using the keyword this as quali�er. This keyword
ouldbe expli
it or impli
it (non-quali�ed features). Features a

essed through anuse relationship are expli
itly quali�ed with the supplier name. To
onsider allsituations, an invariant is needed for all OFL-
omponents, dealing with bothimport relationship and use relationship, whi
h are de�ned for a given language.The following example presents invariants for the extends Java inter-
lassrelationship and the Java aggregation relationship. In Java, basi
 modi�ersrelated to features are publi
, prote
ted, private, pa
kage.
ontext ComponentJavaClassExtendsinv: self.shownFeatures->forall(f:Feature |f.modifiers->in
ludes('publi
')ORf.modifiers->in
lude('prote
ted'))inv: self.redefinedFeatures->forall(f:Feature |f.modifiers->in
ludes('publi
')ORf.modifiers->in
lude('prote
ted'))inv: self.hiddenFeatures->forall(f:Feature |f.modifiers->in
ludes('private'))The invariant says that all shown and rede�ned features through an extendrelationship should have modi�ers publi
 or prote
ted atta
hed. All hidden fea-tures have private modi�er. It has to be noted that in OFL, shownFeatures,rede�nedFeatures and hiddenFeatures are
olle
tions of features whi
h parti
i-pates to the rei�
ation of a relationship.
ontext ComponentJavaAggregationinv: self.shownFeatures->forall(f:Feature |f.modifiers->in
ludes('publi
')OR((f.modifiers->in
lude('pa
kage') ORf.modifiers->in
lude('prote
ted'))ANDself.sour
e.pa
kage = self.target.pa
kage)))inv: self.hiddenFeatures->forall(f:Feature |f.modifiers->in
ludes('private')17

OR((f.modifiers->in
lude('pa
kage') ORf.modifiers->in
lude('prote
ted'))ANDself.sour
e.pa
kage <> self.target.pa
kage)))In addition to previous assertion, this one tests also information about thepa
kages to whi
h belong the des
riptions; it
onsiders the des
riptions whi
h aresour
e1 and target2 of the instan
e of the OFL-relationship
omponent (self).All these modi�ers are in
ompatible. When the feature is a method, the setof in
ompatible modi�ers
ontains also the modi�er abstra
t.4.2.2 Modi�er A
tionsInterferen
e with OFL-a
tions (a
tions whi
h are de�ned in the OFL model)is minimal. Assertions are added (see above), in order to
ontrol the a

essto features through relationships and no a
tion rewriting is ne
essary. Indeed,modi�ers for basi
 a

ess
ontrol generally do not rede�ne any a
tions.But there are some ex
eption; for example let us
onsider the modi�er pro-te
ted applied to Java features. A
tion is needed in this
ase to express aparti
ular semanti
 presented in Figure 4.1. Method m of
lass C have a

essto prote
ted member f of B. This happens be
ause
lass A, whi
h de
lares themember f, and
lass C, belongs to the same pa
kage. To express this semanti
swe need to rewrite the a
tion lookup for features. This a
tion must allow thea

ess to prote
ted members for any feature that is de
lared by an an
estorbelonging to same pa
kage as the
lass whi
h a

esses to the feature.4.3 Basi
 A

ess Control Modi�ers for Des
rip-tions4.3.1 Modi�er AssertionsThe assertions of basi
 modi�ers dealing with the a

ess
ontrol of des
rip-tions are de�ned in OFL-relationship
omponents and also in OFL-des
ription
omponent. They should be tested ea
h time a relationship involving that de-s
ription is
reated and ea
h time an instan
e of it is
reated. The last situationdeals with relationships that enable polymorphism. A

ording to these assump-tions, the assertion asso
iated to su
h modi�er should be a post-
ondition ofthe OFL-a
tion lookup.The following example refers to the Java language semanti
s related to
lassa

ess
ontrol. Please note that this example does not
onsider interfa
es, ab-1The sour
e is the
lass whi
h de
lares the relationship. In Java, for an extends relationshipthis is the
lass whi
h de
lare the keyword extends.2the target is the
lass whi
h is addressed by the relationship. In Java, for an extendsrelationship this is the
lass whose name is mentioned after the keyword extends.18

Figure 4.1: Java prote
ted modi�er semanti
sstra
t
lasses and inner
lasses. the modi�ers asso
iated to
lasses that have tobe
onsidered are publi
 and pa
kage.
ontext ComponentJavaClassExtendsinv: self.sour
e.pa
kage = self.target.pa
kageOR(self.sour
e.pa
kage <> self.target.pa
kageimpliesself.sour
e.modifiers->in
ludes('publi
'))A
lass
an extend another
lass from the same pa
kage and a
lass
an extenda publi

lass from any other pa
kage.
ontext ComponentJavaAggregationinv: self.sour
e.pa
kage = self.target.pa
kageOR(self.sour
e.pa
kage <> self.target.pa
kageimpliesself.sour
e.modifiers->in
ludes('publi
'))The following assertion addresses dependen
ies between
lasses, whi
h are not
overed by OFL
ustomization.
ontext Des
ription::lookup(a

essed: Des
ription):Des
riptionpost: self.pa
kage = result.pa
kageORself.pa
kage <> result.pa
kageimpliesresult.modifiers->in
ludes('publi
')19

Then, we
onsider the Java language semanti
s for the a

ess
ontrol of inter-fa
es. The example does not take into a

ount inner interfa
es. The modi�erspubli
 and pa
kage are
onsidered for Java interfa
es.
ontext ComponentJavaInterfa
eExtendsinv: self.sour
e.pa
kage = self.target.pa
kageOR(self.sour
e.pa
kage <> self.target.pa
kageimpliesself.sour
e.modifiers->in
ludes('publi
'))An interfa
e
an extend another interfa
e from the same pa
kage and it mayalso extend a publi
 interfa
e from any other pa
kage.
ontext ComponentJavaImplementsinv: self.sour
e.pa
kage = self.target.pa
kageOR(self.sour
e.pa
kage <> self.target.pa
kageimpliesself.sour
e.modifiers->in
ludes('publi
'))A
lass
an implements any interfa
e from the same pa
kage but also a publi
interfa
e from any other pa
kage.
ontext ComponentJavaAggregationinv: self.sour
e.pa
kage = self.target.pa
kageOR(self.sour
e.pa
kage <> self.target.pa
kageimpliesself.sour
e.modifiers->in
ludes('publi
'))A
lass
an de
lare an attribute whose type is represented by interfa
e from thesame pa
kage and also by a publi
 interfa
e from any other pa
kage.To handle dependen
ies between
lasses and interfa
es we use the same post-
ondition as for the a
tion lookup previously de�ned for
lass modi�ers. A
tionlookup is de�ned in
omponents related to des
ription and relationships.4.3.2 Modi�er A
tionsFor the modi�ers mentioned above, assertions are also added in OFL-relationship
omponents in order to
ontrol the a

ess to features. Post-
onditions are usedto �lter the result of the a
tion look-up. Those modi�ers do not rede�ne anya
tions.
20

Chapter 5Complex A

ess ControlModi�ersComplex a

ess
ontrol modi�ers de�ne prote
tion dealing with spe
ial rightssu
h as writing or reading an attribute,
alling or rede�ning a method andextending or instantiating a des
ription.5.1 Examples of Native Complex A

ess Con-trol Modi�ers5.1.1 Java Language.Java language does not in
lude
omplex a

ess
ontrol modi�ers for attributes.It in
ludes �nal modi�er for methods and
lasses and interfa
es. Modi�er �nalasso
iated to a method disallows the ability to rede�ne it. When Modi�er�nal is applied on
lasses or interfa
es it prevent from extending them. Otherlanguage me
hanisms (like making all
onstru
tors private)
ould be used to
ontrol instantiation of
lasses.5.1.2 C++ Language.C++ does not provide any spe
i�
 modi�ers to
ontrol the use of an entity(like �nal in Java). Changing a

ess rights of
onstru
tors does also
ontrol theability to
reate or not an instan
e of a given
lass, like in Java.5.1.3 Ei�el Language.Ei�el modi�ers Frozen and deferred
ould be
onsidered as belonging to this
ategory. Frozen, put before a feature name express that the de
laration is notsubje
t to rede�nition in des
endants. The modi�er Deferred also put before a21

feature allows the feature to not have any body or implementation. This trans-fers to des
endants the responsibility for providing an implementation througha new de
laration. This is
alled "e�e
ting" the feature.5.2 Complex A

ess Control Modi�ers for Meth-odsRights
on
erning method usage address me
hanisms like
alling or rede�ning.Modi�ers presented in the previous se
tion do not make distin
tion betweenthese me
hanisms.5.2.1 Modi�er Assertions.Implementation of
ontrol implies assertions in OFL entities reifying
orrespond-ing me
hanisms. Rede�nition me
hanism is rei�ed in OFL by rede�nedFeatures
hara
teristi
 of relationship
omponents. A

ess
ontrol is done by invariantfor these
omponents. Calling me
hanism is rei�ed in exe
ute a
tion. Assertiondealing with the right to
all a feature is implemented as a post-
ondition ofthis a
tion.The following example is an implementation of the modi�er �nal applied toJava methods.
ontext ComponentJavaClassExtendsinv: self.redefinedFeatures->forall(f:Feature |f.typeOfFeature = methodimpliesNOT f.modifiers->in
ludes('final'))The modi�er Final is
ompatible with following modi�ers : publi
, prote
ted,pa
kage and private. This means that Final
an be set simultaneously with anyof these modi�ers. Its invariant will be added to the invariant of the
orrespond-ing
omponent (for example Feature or more pre
isely method).5.2.2 Modi�er A
tions.Complex a

ess
ontrol modi�ers for methods require sometimes the rewritingof the OFL-A
tion exe
ute.5.3 Complex A

ess Control Modi�ers for At-tributesRights
on
erning attribute usage address the ability to read or write the
on-tent of �elds (de�ned by an attribute). Prote
tion on writing is a
hieved by apre-
ondition in OFL-A
tion assign. We
an
onsider here a proposal of Cookand Rumpe [CKMR99℄ for de�ning a read-only modi�er for attributes. They22

on
lude that it is useful to
onstraint the visibility of an attribute to be read-able, but not
hangeable. The
on
ept of a read-only modi�er is introdu
ed in
ombination with private and prote
ted modi�ers.5.3.1 Modi�er AssertionsAssertions for attribute
omplex modi�ers deal only with pre and post
onditionsadded to the OFL-a
tion assign.5.3.2 Modi�er A
tionsIt is ne
essary to rede�ne or rewrite OFL-a
tion only if the semanti
s asso
i-ated to the modi�er is enough
omplex. As an example we
onsider a modi�erthat implements a strong prote
tion against attribute modi�
ation. By strongprote
tion we mean to prote
t not only the referen
e of the obje
t against mod-i�
ation but also the internal state of the referred obje
t.A solution that la
ks in eÆ
ien
y is to use a
lone of the obje
t whi
h
ontains the �eld (
orresponding to the attribute) and to look if any
hangesappear; so that the a

ess is allowed or not. To ensure this
ontrol, the
all tothe OFL-a
tions whi
h deal with the a

ess to attribute should be embedded inthe following
ode://
loning the original obje
taux = deep_
lone(f)// original a
tion// (any kind of a
tion that may imply modifi
ation// of the internal state of attribute)*a
tion(aux)// test if the obje
t preserve same stateif (not deep_
ompare(f, aux))generate_error("Could not write attribute")end_ifdestroy_obje
t(aux)OFL-A
tions that permit the
hange of the internal state of attributes arethe following : evaluate-parameters, atta
h-parameters, deta
h- parameters, as-sign, exe
ute, et
.5.4 Complex A

ess Control Modi�ers for De-s
riptionsThe spe
i�
ation of an appli
ation may lead to the extension of des
riptions,to their use through the de
laration of features or to the
reation of instan
e ofthem. These situations involve di�erent kinds of relationships.23

5.4.1 Modi�er AssertionsThe extension is
ontrolled through invariant on OFL-ImportRelationship
om-ponents and the
ontrol of
lient-supplier relationship is made through invariantson OFL-UseRelationship
omponents.Let us
onsider the following example related to the Java modi�er �nalapplied to des
riptions. The invariant for the Java extends-relationship
he
kabsen
e of this modi�er in the target des
ription of the relationship.
ontext ComponentJavaClassExtendsinv: NOT self.target.modifiers->in
ludes('final')5.4.2 Modi�er A
tionsFor des
ription modi�ers, OFL-a
tions parti
ipate very mu
h to the
ontrol ofinstantiation. Some rewriting may be needed but most of the times a pre
ondi-tion in the OFL-a
tion
reate-instan
e is enough to ensure all semanti
s of the
ontrol.

24

Chapter 6Optimization Modi�ersOptimization modi�ers are used to transmit hints to the
ompiler in order togenerate a smaller or faster
ode. Be
ause these modi�ers have no impa
t onthe semanti
s of the appli
ation model they have only to be passed to �nal
ompiler.6.1 Examples of Native Optimization Modi�ers6.1.1 Java Language.Java has one optimization modi�er for attributes - volatile - two optimizationmodi�ers for methods - native and stri
tfp - and one optimization modi�er fordes
riptions - stri
tfp.An attribute whi
h is de
lared as volatile refers to obje
ts and primitivevalues that
an be modi�ed asyn
hronously by separate threads at runtime.They are treated in a spe
ial way by the
ompiler to
ontrol how they
an beupdated.A native method is a method written in a language other than Java. In away it is de
lared like an abstra
t method.The e�e
t of the stri
tfp modi�er is to make all
oat or double expressionswithin the method body be expli
itly FP-stri
t. Within a FP-stri
t expression,all intermediate values must be elements of the
oat value set or the double valueset, implying that the results of all FP-stri
t expressions must be those predi
tedby IEEE 754 arithmeti
 on operands represented with single and double formats.The e�e
t of the stri
tfp modi�er in
ontext of a
lass or an interfa
e is tomake all
oat or double expressions within the
lass or interfa
e de
laration beexpli
itly FP-stri
t. This implies that all methods de
lared in the
lass, and allnested types de
lared in the
lass, are impli
itly stri
tfp. Also all
oat or doubleexpressions within all variable initializers, instan
e initializers, stati
 initializersand
onstru
tors of the
lass will also be FP-stri
t.25

6.1.2 C++ Language.C++ language
ontains also optimization modi�ers. The C++ spe
i�
ationde�nes inline for fun
tions and mutable and volatile for member attributes.The inline modi�er for a member fun
tion is a hint for the
ompiler whi
hensure that when it en
ounter a fun
tion
all it should rather generate the
ode
orresponding to the fun
tion body than the usual fun
tion
all me
hanisms.The mutable modi�er spe
i�es that a member attribute should be storedin a way that allows its update - even when it is a member of a
onst obje
t.In other words mutable means "
an never be
onst". De
laration of mutablemember is appropriate when only a part of the obje
t is allowed to
hange.A volatile spe
i�er is a hint to a
ompiler whi
h means that an attributemay
hange its value in a way not spe
i�ed by the language, so that aggressive
ompiler optimization must be avoided.6.1.3 Ei�el Language.Analyzing Ei�el we �nd also optimization modi�ers. Indexing and obsoletemodi�ers for a
lass
ould be
onsidered in this
ategory . The optional In-dexing parts have no dire
t e�e
t on the semanti
s of the
lass. They serve toasso
iate information to the
lass whi
h will be used by tools for ar
hiving andretrieving
lasses a

ording to their properties. This is parti
ularly importantin the approa
h to software
onstru
tion promoted by Ei�el, based on librariesof reusable
lasses: the designer of a
lass should help future users to �nd outabout the availability of
lasses ful�lling parti
ular needs. We
hoose to imple-ment that part like a modi�er be
ause OFL does not
ontain any
ustomizationa

ording to that. Be
ause indexing part
ould appear in two di�erent pla
es- one at the beginning and one at the end - we de�ne two di�erent modi�ersStartIndexing and EndIndexing.The obsolete
lause in a
lass indi
ates that the
lass does not meet
urrentstandards. The advi
e for developers is against
ontinuing to use it as supplieror parent but it does not prevent existing systems whi
h rely on this
lass, to
ompile and run. De
laring a
lass as Obsolete does not a�e
t its semanti
s.Instead, some language pro
essing tools may produ
e a warning when theypro
ess a
lass that relies, as
lient or des
endant, on an obsolete
lass. Thesame me
hanism exists for features.6.2 Optimization Modi�ers for AttributesOptimization modi�ers for attributes deal mainly with memory allo
ation andpersisten
y.6.2.1 Modi�er AssertionsAssertions for optimization modi�ers have to be written just to avoid usage ofin
ompatible modi�ers. No other
onstraints are ne
essary.26

If we
onsider Java modi�ers, volatile is in
ompatible with �nal. Be
ause�nal keyword has no rei�
ation in OFL (3) the assertion have to ensure thatthe propriety isConstant is set to false.
ontext AtomAttributeinv: self.modifiers->in
ludes('volatile')impliesself.isConstant = false6.2.2 Modi�er A
tionsIf an OFL translator is used in order to generate native
ode, it is only ne
essarythat OFL-a
tions ensure that these modi�ers are
opied to the �nal generated
ode. If we deal with an OFL-interpretor, it
ould
onsider dire
tly those mod-i�ers to make optimizations. Another possibility is to ignore these modi�ers ifthat optimizations are not
ompulsory.6.3 Optimization Modi�ers for MethodsOptimization modi�ers for methods are related i) to the need to get more eÆ-
ient me
hanism for
alling method and ii) to deal with methods written and
ompiled in other languages.6.3.1 Modi�er AssertionsAssertions for optimization modi�ers deal with in
ompatible modi�ers. No other
onstraint is ne
essary.In the
ase of the modi�er native in Java, it is in
ompatible with modi�ersyn
hronized. Moreover, a
onstru
tor method may not be de
lared as native.Not to be able to de
lare native
onstru
tors is an arbitrary design
hoi
e of thelanguage. It makes diÆ
ult an implementation of the virtual ma
hine whi
hverify that super
lass
onstru
tors are always properly invoked during obje
t
reation.
ontext AtomMethodinv: self.modifiers->in
ludes('native')implies self.isConstru
tor = falseandself.body->isEmpty()andNOT self.modifiers->in
ludes('syn
hronized')6.3.2 Modi�er A
tionsThese modi�ers needs the same kind of a
tions as the optimization modi�ersfor attributes. If it is de
ided to build an OFL
ompiler for the OFL language27

rei�
ation, attention must be payed to make a
orre
t linking with the external
ode.6.4 Optimization Modi�ers for Des
riptionOptimization modi�ers for des
riptions are used for version and do
umentationmanagement. They
ould be used also to organize library of
lasses.6.4.1 Modi�er AssertionsNo assertion are needed.6.4.2 Modi�er A
tionsA
tions
ould be designed to generate errors or warnings in
ase of version
on
i
ts or to generate
lass do
umentation. These a
tions
ould be exe
utedby modeling tools or by translators or
ompilers. Spe
ial tools
ould also runthem in order to �nd desired
lasses in libraries or to
he
k
ompatibilities.

28

Chapter 7Servi
e Modi�ers7.1 Examples of Native Servi
e Modi�ers7.1.1 Java Language.Java has two modi�ers that
ould be
onsidered as servi
e modi�ers. These aresyn
hronized for methods and transient for attributes.Java virtual ma
hine
an support many threads simultaneously at runtime.Threads may be supported by having many hardware pro
essors, by time-sli
inga single hardware pro
essor, or by time-sli
ing many hardware pro
essors. Tohelp programmer to use threads, Java provide me
hanisms for syn
hronizingthe
on
urrent a
tivity of threads through the keyword syn
hronized. A Javasyn
hronized method is a method that must a
quire a lo
k on an obje
t or on a
lass before it
an be exe
uted. For a (stati
) method, this is the lo
k asso
iatedwith the obje
t Class
orresponding to the
lass (whi
h de
lare the method),whi
h is used. For an instan
e method, this is the lo
k asso
iated with this (theobje
t for whi
h the method was invoked), whi
h is used.An attribute whi
h is de
lared as transient is not saved as part of an obje
twhen the obje
t is serialized. The transient keyword identi�es an attribute thatdoes not maintain a persistent state.7.1.2 C++ Language.We do not identify any native servi
e modi�er in C++ language.7.1.3 Ei�el Language.Ei�el also does not in
lude any servi
e modi�er.
29

7.2 Servi
e Modi�ers for AttributesServi
e modi�ers for attributes address servi
es that deal with obje
ts state (likepersisten
y).7.2.1 Modi�er AssertionsMost of the assertions for these modi�ers deal just with in
ompatible modi-�ers. A parti
ular situation result from the fa
t that OFL does not provideany
ustomization for attributes. All attributes are rei�ed with the same setof properties (see OFL-AtomAttribute). To
over this situation, modi�er asser-tion has to test if the usage of the
onsidered servi
e is permitted or not in the
ontext of the des
ription whi
h de
lares the attribute.7.2.2 Modi�er A
tionsServi
e modi�er a
tions will implement the servi
e or will make link with
om-ponents that provide the
onsidered servi
e. this are OFL-A
tions added tothe list proposed in [Cre01℄ or modi�ed by the meta-programmer in order tosupport a new servi
e. It may be interesting to dis
us about the possibility tolet meta-programmer to add new kind of a
tions.7.3 Servi
e Modi�ers for MethodsServi
e modi�ers for methods address servi
es whi
h deal with exe
ution (ex.
on
urren
y).7.3.1 Modi�er AssertionsServi
e modi�er assertions has to ensure that a parti
ular kind of method (ex: a
onstru
tor or a destru
tor) support or not a given servi
e. In the same way asfor attributes, OFL does not provide
ustomization for methods. All methodsare rei�ed with the same set of properties (seeOFL-AtomMethod). Additionally,in
ompatible modi�ers have to be
onsidered.7.3.2 Modi�er A
tionsServi
e modi�er a
tions will implement the
onsidered servi
e. Most of thosea
tions will be dynami
 a
tions integrated at
ompiling time. This a
tionsshould
onsider at runtime the usage of parti
ular hardware (e.g. a
tions thatsupport
on
urren
y) or the usage of external resour
es (e.g. a database in
aseof persistent a
tions).
30

7.4 Servi
e Modi�ers for Des
riptionsServi
e modi�ers for des
riptions have to deal with all kinds of servi
es.7.4.1 Modi�er AssertionsAssertion will have to ensure that all relationships whi
h involve the
urrentdes
ription are
ompatible with the provided servi
e. If we
onsider persisten
y,a relationship implementing obje
t
omposition
ould imply that the targetof relationship (in fa
t the referen
ed obje
t) should be also persistent if thesour
e (the obje
t whi
h
ontains the referen
e), is persistent. In other words,assertions have to verify that both obje
ts are persistent or that both are not.7.4.2 Modi�er A
tionsServi
e modi�er a
tions will implement the servi
e. Most of these a
tions willspe
ialize a
tions of modi�ers for attributes and methods.

31

Chapter 8Additional Modi�ersWe
onsider in this
hapter all modi�ers that
ould not be in
luded in previous
ategories. These modi�ers are used to
hange the semanti
s of the related entitywhen it is non-
ustomizable in OFL. Semanti
s modi�
ation implied by nativemodi�ers is handled by a native
ompiler of the
orresponding language. Whenan OFL appli
ation model is translated in native language
ode these modi�ersare just written into the generated sour
e
ode. A
ustom OFL
ompiler for the
onsidered language binding must take
are to generate the
orre
t semanti
 fornative modi�ers.8.1 Examples of Native Additional Modi�ers8.1.1 Java Language.For Java language we do not identify any modi�ers that
ould be
onsidered inthis
ategory.8.1.2 C++ Language.In this
ategory, C++ has modi�ers like
onst for methods and expli
it for
onstru
tors (that are also a kind of method). The
onst modi�er used fora method indi
ates that the method do not modify the state of an obje
t.In C++, expli
it
onstru
tors will be invoked only expli
itly. This disallowsimpli
it
onversions.8.1.3 Ei�el Language.Ei�el
ontains agent keyword that modify the semanti
s of a method parameter.The keyword agent is used to pass a routine as a parameter of another routine.It avoids the
onfusion with an a
tual routine
all when e�e
tive parameter is
omputed. Indeed, when a routine is passed as an agent to another routine itis not
alled but only transmit to it. 32

8.1.4 Modi�er AssertionsAssertions have to deal with in
ompatible modi�ers for all additional modi�ers.Be
ause this
ategory is a very general one, no other assumptions
ould be maderegarding other ne
essary assertions.8.1.5 Modi�er A
tionsWe
an assume that all modi�ers from this
ategory involve hard a
tion writing.Ea
h of them address a very spe
i�
 semanti
. Meta-programmer has to identify�rst how OFL a
tions are involved in expressing the
onsidered semanti
s.As example, if we
onsider the native C++ modi�er expli
it, the semanti
s isdes
ribed in following OFL-A
tions : before-
reate-instan
e and
reate-instan
e.

33

Chapter 9Con
lusion and perspe
tivesIn this paper we proposed to extend the OFL Model. The main goal of thisextension was to improve the
ustomization of the a

ess
ontrol me
hanismand of additional non-
overed semanti
s. We introdu
ed the notion of OFLmodi�er to provide a
lean way to
ontrol implementation. For providing abetter understanding of the
on
ept, se
tions 4 and 5 present examples of severalnative modi�ers rei�
ation.As future work we proposed to add support for OFL modi�ers and to inte-grate them in all OFL tools. We also plan to extend the modi�ers with high levela
tions. The OFL modeling tool will exe
ute these a
tions to ensure automati
model
onsisten
y.

34

Bibliography[Aba98℄ M. Abadi. Prote
tion in Programming Language Translation. InAutomata, Languages and Programming: 25th International Collo-quium, ICALP'98, Springer-Verlag, July 1998.[ACL03℄ G. Ardourel, P. Cres
enzo, and P. Lahire. Lamp : vers un Langagede de�nition de Me
anismes de Prote
tion pour les langages de pro-grammation a objets. In LMO 2003, Vannes, Fran
e, February2003.[Ard02℄ G. Ardourel. Modelisation des Me
hanismes de Prote
tiondans les Langages a Objets. Phd thesis, University of Mont-pellier, Fran
e, De
ember 2002. http://www.lirmm.fr/ ar-dourel/
v/theseArdourel.pdf.[CKMR99℄ S. Cook, A. Kleppe, R. Mit
hell, and R. Rumpe. The AmsterdamManifesto on OCL. Te
hni
al Report TUM-I9925, Te
hni
al Uni-versity of Mun
hen, Germany, 1999.[CL02℄ P. Cres
enzo and P. Lahire. Customisation of Inheritan
e. InSpringer Verlag, LNCS series, ECOOP'2002 (The Inheritan
eWorkshop) and Pro
eedings of the Inheritan
e Workshop at ECOOP2002, University of Jyvskyl, Finlande, page 7, June 2002.[CNP89℄ L. Cardelli, E. J. Neuhold, and M. Paul. Typefull Programming. InIFIP Advan
ed Seminar on Formal Methods in Programming Lan-gage Semanti
s, Le
ture Notes in Computer S
ien
e. Springer Ver-lag, 1989.[Cre01℄ P. Cres
enzo. OFL: un Modele pour Parameter la Semantique Op-erationnele des Langages a Objets - Appli
ation aux Relations inter-
lasses. Phd. thesis, University of Ni
e, Sophia Antipolis, Fran
e,De
ember 2001. http://www.
res
enzo.nom.fr/.[FS01℄ K. Flower and K. S
ott. UML Distilled Se
ond Edition. Addison-Wesley, 2001.[GJSB00℄ J. Gosling, B. Joy, G. Steele, and G. Bra
ha. The Java LanguageSpe
i�
ation Se
ond Edition. Addison-Wesley, 2000.35

[Mey02℄ B. Meyer. Ei�el: The Language. http://www.inf.ethz.
h/ meyer/,2002.[OMG00℄ Obje
t Management Group OMG. Obje
t Constraint LanguageSpe
i�
ation. Version 1.3, Mar
h 2000. http://www.omg.org.[OMG03℄ Obje
t Management Group OMG. Uni�ed Modelling Lan-guage Spe
i�
ation, version 1.5, 1st ed., Mar
h 2003.http://www.omg.org.[PL03℄ D. Pes
aru and P. Lahire. Modi�ers in OFL: An Approa
h for A
-
ess Control Customization. In The 9th International Conferen
eson Obje
t-Orinted Information Systems - OOIS'03, WEAR work-shop, Geneva, Swizerland, September 2003.[S
h02℄ N. S
hirmer. Analasyng the Java Pa
kage/A

ess Con
epts in Is-abelle/HOL. In ECOOP Workshop on Formal Te
hniques for Java-like Programs (FTfJP'2002), Malaga, Spain, June 2002.[Sny86℄ A. Snyder. En
apsulation and Inheritan
e in Obje
t-Oriented Pro-gramming Languages. In Pro
eedings of OOPSLA '86, Obje
t-Oriented Programming Systems, Languages, and Appli
ations.,November 1986.[Str97℄ B. Stroustrup. The C++ Programming Language. Addison-Wesley,third edition, 1997.

36

