
An Extension of OFL Model through Modi�ersDan Pesaru, Pierre Cresenzo, Philippe Lahiredan�s.utt.roPierre.Cresenzo�unie.frPhilippe.Lahire�unie.frFaulty of Automatis and Computer Siene,"Politehnia" University of Timisoara,Bd. V. Parvan no 2, 1900 Timisoara, ROMANIA,Laboratoire I3S (UNSA/CNRS), Projet OCL 2000,Route de Luioles, Les Algorithmes,Btiment Eulide B BP121 F-06903,Sophia-Antipolis CEDEX, FRANCENovember 10, 2003

Contents
1 Introdution 42 The OCL Language 63 The OFL Modi�ers 93.1 Component Modi�ers in Commerial Languages 93.1.1 Java language. 93.1.2 C++ language. 103.1.3 Ei�el language. 103.2 De�nition of an OFL-Modi�er . 103.3 Modi�ers Classi�ation Regarding OFL Implementation Issues . 133.3.1 Aess Control Modi�ers 133.3.2 Optimization Modi�ers 143.3.3 Servie Modi�ers . 143.3.4 Additional Modi�ers . 144 Basi Aess Control Modi�ers 154.1 Examples of Native Basi Aess Control Modi�ers 154.1.1 Java Language . 154.1.2 C++ Language . 164.1.3 Ei�el Language . 164.2 Basi Aess Control Modi�ers for Features 164.2.1 Modi�er Assertions . 164.2.2 Modi�er Ations . 184.3 Basi Aess Control Modi�ers for Desriptions 184.3.1 Modi�er Assertions . 184.3.2 Modi�er Ations . 205 Complex Aess Control Modi�ers 215.1 Examples of Native Complex Aess Control Modi�ers 215.1.1 Java Language. 215.1.2 C++ Language. 215.1.3 Ei�el Language. 215.2 Complex Aess Control Modi�ers for Methods 221

5.2.1 Modi�er Assertions. 225.2.2 Modi�er Ations. 225.3 Complex Aess Control Modi�ers for Attributes 225.3.1 Modi�er Assertions . 235.3.2 Modi�er Ations . 235.4 Complex Aess Control Modi�ers for Desriptions 235.4.1 Modi�er Assertions . 245.4.2 Modi�er Ations . 246 Optimization Modi�ers 256.1 Examples of Native Optimization Modi�ers 256.1.1 Java Language. 256.1.2 C++ Language. 266.1.3 Ei�el Language. 266.2 Optimization Modi�ers for Attributes 266.2.1 Modi�er Assertions . 266.2.2 Modi�er Ations . 276.3 Optimization Modi�ers for Methods 276.3.1 Modi�er Assertions . 276.3.2 Modi�er Ations . 276.4 Optimization Modi�ers for Desription 286.4.1 Modi�er Assertions . 286.4.2 Modi�er Ations . 287 Servie Modi�ers 297.1 Examples of Native Servie Modi�ers 297.1.1 Java Language. 297.1.2 C++ Language. 297.1.3 Ei�el Language. 297.2 Servie Modi�ers for Attributes 307.2.1 Modi�er Assertions . 307.2.2 Modi�er Ations . 307.3 Servie Modi�ers for Methods . 307.3.1 Modi�er Assertions . 307.3.2 Modi�er Ations . 307.4 Servie Modi�ers for Desriptions 317.4.1 Modi�er Assertions . 317.4.2 Modi�er Ations . 318 Additional Modi�ers 328.1 Examples of Native Additional Modi�ers 328.1.1 Java Language. 328.1.2 C++ Language. 328.1.3 Ei�el Language. 328.1.4 Modi�er Assertions . 338.1.5 Modi�er Ations . 332

9 Conlusion and perspetives 34

3

Chapter 1IntrodutionOFL model provides a ustomization of main aspets of the semantis of alanguage through ations and parameters, but the ustomization provided andeal only with features that are enough general for being appliable to mostexisting objet oriented programming languages1. Pratial experiene pointsout the neessity to apture more of the semantis of these languages. Toahieve that it is neessary to add new elements to the original OFL Model[Cre01, CL02℄.In order to preserve simpliity, a large part of the language rei�ation isnot ustomizable in the OFL Model philosophy. However, in order to ahieveaeptane in programmers' ommunity, some other ustomizations are needed.Generally, this additional semantis is handled by keywords (modi�ers) in ex-isting languages.One of main goal for introduing modi�ers is to limit the number of om-ponents within an OFL-language. Using modi�ers, it is not neessary anymoreto de�ne one di�erent omponent for eah di�erent ombination of parameters.For instane, instead of having both publi java-lass and pakage java-lassomponents di�erentiated only by one parameter (visibility), we an design justone java-lass omponent and something else (like modi�ers) in order to ensure(when it is neessary) that the aess is publi.Another goal of modi�ers is to improve the exibility of the meta-level byproviding a lean way to extend a language with new apabilities.Aording to that we propose a generi approah whih allows to de�ne rulesfor implementing aess ontrols or additional semantis for language ompo-nents. The general idea is to apply these rules to an appliation in order toprovide for example metris, error reporting, and design or debugging failities.Thanks to these rules we an had onstraints to language entities in order toenrih, when it is neessary, the expressiveness of a given language.Comparing with other approahes found in [ACL03, Sh02℄, we fous on ageneri tehnique independent from languages. Moreover, instead to de�ne a1For more information on the OFL Model, to read the thesis of Pierre Cresenzo [Cre01℄.4

formalism whih depits aess ontrol mehanisms, we propose an approahthat desribes how to implement these mehanisms at a meta-programminglevel.Following those goals we pay a speial attention to the onsisteny of thisapproah with the OFL model philosophy.Considering these issues we propose to add at the level of language ompo-nents the ability to de�ne di�erent kinds of modi�ers and to add the entitiesthat are neessary to their rei�ation.OFL modi�ers are used together with other language entities in order tohange protetion or other aspets of their semantis. Some of them orrespondto keywords that may be found in existing programming languages, while othersould be added in order to simplify some programming tasks.

5

Chapter 2The OCL LanguageStarting from the point that most of the OFL modi�ers relay on onstraints tobe applied to program entities, we hoose OCL as the language for speifyingthese onstraints. OCL is a formal language whih allows to express side e�et-free onstraints. The Objet Management Group (OMG) de�nes OCL (ObjetConstraint Language) [OMG00℄ as a part of UML 1.3 standard spei�ation.Main motivation regarding this hoie are the independene of OCL from pro-gramming languages and its general aeptane within many ommunities.OCL is designed to express side e�et-free onstraints. It was used by OMGin the UML Semantis doument to speify the rules of the UML meta-model.Eah rule in the stati semantis setions in the UML Semantis doumentontains an OCL expression, whih is an invariant for the involved lass.The usage of OCL is important beause in objet-oriented modeling a graph-ial model, like a lass model, is not enough for a preise and unambiguousspei�ation. There is a need to desribe additional onstraints about the ob-jets in the model. Suh onstraints are often desribed in natural language.Pratie has shown that this will always result in ambiguities. In order to writeunambiguous onstraints, so-alled formal languages have been developed. Thedisadvantage of traditional formal languages is that they are usable to personswith a strong mathematial bakground, but diÆult for the average businessor system modeler to use.OCL has been developed to �ll this gap. It is a formal language that remainseasy to read and write. It has been developed as a business modeling languagewithin the IBM Insurane division, and has its roots in the Syntropy method.OCL is a pure expression language. Therefore, an OCL expression is guar-anteed to be without side e�et; it annot hange anything in the model. Thismeans that the state of the system will never hange beause of an OCL ex-pression, even though an OCL expression an be used to speify a state hange,for example in a post-ondition. With other words, any �elds of any objets,inluding links, annot be modi�ed. Whenever an OCL expression is evaluated,it simply delivers a return value.OCL is not a programming language, so it is not possible to write program6

logi or ow ontrol in OCL.OCL is a typed language, so eah OCL expression has a type. OCL an beused for a number of di�erent purposes:� to speify invariant on lasses and types in a lass model,� to speify type invariant for UML stereotypes,� to desribe pre/post onditions on operations and methods,� to desribe Guards,� to speify onstraints on operations,� as a navigation language.We use OCL to desribe onstraints introdued by modi�ers. It an be alsoused to speify pre and post onditions for OFL-entities at the level of OFL-MLimplementation.As a notation onvention for this doument, the underlined word beforean OCL expression determines the ontext for the expression and the OCLexpression itself will be in itali.In OCL, a number of basi types are prede�ned and available at any time:Boolean, Integer, Real, String and Enumeration. Several operations are alsode�ned on these prede�ned types. In addition, all OFL-desriptions1 omingfrom the OFL Model are types in OCL whih are attahed to the model.The type Colletion, whih is prede�ned in OCL, plays an important roleaording to onstraint de�nitions. It inludes a large number of prede�nedoperations for the handling of olletions. Colletion operations are onsistentwith the de�nition of OCL as an expression language, they never modify theontents of olletions. They may return a olletion, but rather than hangingthe original olletion they put the result into a new one.Colletion is an abstrat type, with the onrete olletion types as its sub-types. OCL distinguishes three di�erent olletion types: Set, Sequene, andBag. A Set is the mathematial set ; it does not ontain dupliate elements.A Bag is like a set, whih may ontain dupliates, i.e. the same element maybe in a bag twie or more. A Sequene is like a Bag in whih the elements areordered. Both Bags and Sets have no order de�ned on them. Sets, Sequenesand Bags an be spei�ed by a literal in OCL.OCL de�nes a number of operators for olletion manipulation:� SELECT and REJECT - allows to speify a seletion from a spei� ol-letion ;� COLLECT - allows to speify a olletion whih is derived from some otherolletion, but whih ontains di�erent objets from the original olletion(i.e. it is not a sub-olletion) ;1An OFL-Desription or OFL-ComponentDesription is the name hosen in OFL for las-si�er. 7

� FORALL - allows to speify a Boolean expression, whih must be veri�edfor all objets in a olletion ;� EXISTS - allows to speify a Boolean expression whih must be veri�edfor at least one objet in a olletion ;� ITERATE - allows building one aumulation value by iterating over aolletion. It is a very generi operation. Rejet, Selet, forAll, Exists andCollet an all be desribed in terms of Iterate.

8

Chapter 3The OFL Modi�ersAn intuitive de�nition of a modi�er entity is the following: a modi�er is alanguage keyword that is used in omposition with other keywords in order tohange their semantis. An important issue is that a modi�er keyword have nostand-alone meaning.OFL-modi�ers are designed to reify those entities in order to ensure betterOFL ustomization for programming languages. Generally, modi�ers implyonstraints added to the appliation model in order to ahieve a �ne ontrol.Not all language modi�ers are intended to be rei�ed by OFL modi�ers.Semantis hanges indued by some of them are very deep and rely on severalOFL omponents. We name them omponent modi�ers. Following list presentsmodi�ers for three well known objet-oriented languages: Java [GJSB00℄, C++[Str97℄ and Ei�el [Mey02℄.3.1 Component Modi�ers in Commerial Lan-guagesThe modi�ers proposed in the following rely on several parameters or propertiesthat are mentioned.3.1.1 Java language.abstrat flass delarationg An abstrat lass is a lass that is inomplete,or to be onsidered inomplete. The rei�ation for a lass delared abstratin Java results in several OFL-ComponentDesription for abstrat lass,stati abstrat nested lass, abstrat inner lass and abstrat loal lass.All these omponents have the parameters generator and destrutor setto value false.�nal fattribute delarationg A �nal attribute may only be assigned one.When a �nal attribute has been assigned, it always ontains the same9

value. To model this kind of attribute in OFL we use anOFL-AtomAttributethat has property isConstant set to true.stati ffeature delarationg If a feature (attribute or method) is delaredstati, then it exists exatly one inarnation of the feature, no matterhow many instanes (possibly zero) of the lass whih may eventually bereated. A stati attribute, sometimes alled \lass variable", is inarnatedwhen the lass is initialized. A stati method, alled \lass method",is always invoked without referene to a partiular objet. The OFL-AtomAttribute and OFL-AtomMethod that rei�es these entities has theisDesriptionFeature property set to false.3.1.2 C++ language.stati fmember delarationg In C++ a variable that is part of a lass, butis not part of an objet of that lass, is delared as stati member. Thereis exatly one opy of a stati member instead of one opy per objet.Similarly, a funtion that needs aess to members of a lass, but whihdoesn't need to be invoked for a partiular objet, is alled a stati memberfuntion. The OFL rei�ation resides in OFL-AtomAttribute and OFL-AtomMethod entities, whih have the isDesriptionFeature property setto false.3.1.3 Ei�el language.expanded flass delarationg Delaring a lass as expanded means that anyof its instanes whih is addressed through a �eld of a given objet, is ex-panded (inluded) in this objet (by default a �eld ontains only a refer-ene to it). These lasses will be rei�ed by OFL-omponentDesriptionorresponding to expanding lass and generi expanding lass. Thoseomponents ould not be a target of neither aggregation relationship norgeneri derivation. But, they ould be a target of inheritane relationship,expanded lient relationship and expanded generially derivation.Figure 3.1 illustrates the OFL model extended with OFL-Modi�ers. We de�nefour kinds of modi�ers (one for eah type of entity whih is onerned by mod-i�er de�nition) : desription-modi�er, relation-modi�er, method-modi�er andattribute-modi�er. The OFL modi�ers omponents inherit from OFL-modi�ersand represent the rei�ation of language modi�ers.3.2 De�nition of an OFL-Modi�erAn OFL-modi�er is de�ned by a name, a ontext (the entity on whih it ap-plies), a keyword, assertions (OCL onstraints) and a set of assoiated ations(modi�ed OFL-ations). 10

Figure 3.1: The extension of the OFL model through OFL-Modi�ersModi�er Name. The name is used to identify the modi�er. It should be alegal identi�er related with OFL and the language binding.Modi�er Context. Type of entity that aepts the modi�er is denoted byits ontext. The ontext ould be either one desription, one relationship, oneattribute or one method.Modi�er Keyword. The modi�er keyword represents the string representa-tion of the modi�er in the language syntax.Modi�er Assertions. We use OCL to speify the modi�er onstraints throughassertions.A �rst solution is to de�ne These onstraints in invariant for OFL ompo-nents or in pre and post onditions for OFL ations. Implementation of ontrolimplies assertions at the level of OFL entities reifying the orresponding meh-anisms. Indeed, they will be attahed to orresponding OFL-Components andOFL-Ations.Another solution is to de�ne the assertion within the OFL-Modi�er itselfbut the drawbak is that if assertion refers to other modi�ers then it has toknow about other modi�ers and this derease its reuse apabilities.The role of an OFL-Modi�er is to take into aount those remarks in orderto help the meta-programmer to manage and organize assertions.For assertions we use notation that have the same meaning as in OCL de�-nition [OMG00℄. The self keyword refers the urrent instane of the assoiatedomponent. The OCL modi�er assertions are written in the ontext of the OFL11

model de�nition; as a result of that, all types de�ned by the OFL model ouldbe used in assertions.Some omponent features orrespond to OCL olletion type and supportOCL olletion operators. For instane, \omponent.modi�ers! inludes('modi�ername')" that tests if the omponent has modi�er modi�er name attahed to itor not.Modi�er's Ations. Modi�er's ations are OFL-Ations rewritten to on-sider new semantis. The modi�er keeps referenes to all rewritten ation, help-ing meta-programmer to manage them. Ations play di�erent roles dependingon the omplexity of the onsidered modi�er. Most modi�ers do not need ationrewriting. They have just a set of assertions attahed to them.In order to build a omplex semantis from simpler ones and to extend mod-i�ers, we de�ne a modi�er omposition operator. This operator spei�es howto ombine assertions and ations that are spei�ed within omposed modi�ers.In the ontext of omposition operation we state the de�nition of "ompatiblemodi�ers" and "inompatible modi�ers". Two modi�ers de�ned in the sameontext are ompatible if they an be omposed. They are inompatible if theirations and assertions are not disjuntive. Ations and assertions are not dis-juntive if their semantis interfere. Aording to that we extent the de�nition ofOFL-Modi�er by adding a harateristi named inompatible modi�er set. Onemodi�er keeps in this set information about all modi�ers that are inompatiblewith it.In the omposition proess, two aspets of modi�ers are addressed: theassertions and the ations assoiated with it. For ompatible modi�ers all inter-ations will be just umulative. For the assertions, whih are OCL expressions,other onstraints an be omposed using the AND logial operator. BeauseOCL avoids side e�ets, omposition of assertions is ommutative. Ations maybe alled in a random order. Indeed, if there are some interations at the level ofation semantis, the modi�ers are inompatible and the omposition operatorannot be applied. To deal with inompatible modi�ers we de�ne an invariantin the OFL entity whih is the modi�er ontext.Following example onsiders the Java publi modi�er for attributes. For abetter understanding we onsider a 'pakage' modi�er whih replaes the defaultvisibility rule for attributes. The OFL rei�ation for an attribute is the OFL-AtomAttribute. At the time the modi�er is de�ned we attah an invariant tothis entity whih means : inompatible modi�ers set for publi is fproteted,private, pakageg.ontext AtomAttributeinv: self.modifiers->inludes('publi')impliesNOT (self.modifiers->inludes('private')ORself.modifiers->inludes('pakage')12

ORself.modifiers->inludes('proteted'))In order to over all situations a new de�nition of invariant should be madefor eah newly added modi�er.If we onsider the extension of a given language extension, we an distin-guish two kind of modi�ers. An OFL-modi�er an represent the rei�ation of amodi�er that belongs to the language binding - we name it native modi�er - orit an be a ustom modi�er added by the meta-programmer in order to enrihthe language semantis.The native modi�ers will have the same meaning (related to the languagebinding omponents), as in the original language. The meta-programming taskwill onsist in desribing the meaning and the behavior of modi�ers aordingto their de�nition. When a meta-programmer adds new extension for the lan-guage (new omponents) he has the responsibility to extend the de�nition ofthe modi�ers aording to the new entities.In the following setions we try to provide an orthogonal approah in orderto de�ne both native and ustom modi�ers.Next we present a lassi�ation based on the semantis whih is behindmodi�ers. The meaning of semantis in this ontext deals with the aspet ofentity semantis that is hanged by the modi�er. To evaluate semanti hanges,we onsider all the OFL-Ations that are involved.3.3 Modi�ers Classi�ation Regarding OFL Im-plementation IssuesAll the kinds of modi�ers presented in this setion will be addressed in detailwithin the next hapters.3.3.1 Aess Control Modi�ersThe importane of a systemati approah on aess ontrol mehanism rep-resents an atual topi of researh in the �eld of objet oriented tehnology[Aba98, Ard02, CNP89, Sny86℄. Even the UML standard [OMG03℄, whih wasplanned to be language independent, laks in de�ning protetion mehanisms.Flower and Sott emphasize this aspet [FS01℄:"When you are using visibility, use the rules of the language in whih youare working. When you are looking at UML model from elsewhere, be wary ofthe meaning of visibility markers, and be aware how those meanings an hangefrom language to language."OFL Model also laks in ustomization of aess ontrol mehanisms [PL03℄.Modi�ers represent a way to add this ustomization. Considering the OFL-Ations involved by the semantis we an split these modi�ers into two subat-egories: basi modi�ers and omplex modi�ers.13

Basi Aess Control Modi�ers. Some modi�ers add onstraints to somefaets of the language whih are ustomizable in OFL by setting values tosome of the parameters and harateristis built in the OFL Model. Toimplement these modi�ers, meta-programmer has to write assertions atthe level of one or several OFL-Components only. They do not imply anyation rewriting. We all them basi modi�ers.Complex Aess Control Modi�ers. Some other modi�ers address meha-nisms that are implemented in OFL through piees of ode wrote by ameta-programmer. To implement these modi�ers, he has to rewrite someof the OFL-Ations and/or to extend their assertions. Beause writingations is a more ompliated job, we all them omplex modi�ers.omplex modi�ers implies always protetion and some time they impliesalso visibility (ex. proteted-write [CKMR99℄).3.3.2 Optimization Modi�ersThese modi�ers have no impat at the level of appliation model semantis.They are used only to establish optimization strategies for ompilers or, moregenerally, translators (ex. in line, volatile, register et.). The orrespondingOFL-modi�ers are used only to allow the programmer to speify optimizationfor OFL Parser. This is partiularly important if he plans to run the resultingOFL-appliation.3.3.3 Servie Modi�ersServie modi�ers are used to introdue new kind of servies like ustom look-up,persisteny or onurreny; They ould have an impat at the level of modelsemanti or only at the level of ode generation. (ex. persistent, synhronisedet.)3.3.4 Additional Modi�ersIn addition to previous onsidered modi�ers, languages propose also other key-words used to inuene the semantis of program entities. The meaning ofthese additional modi�er is to fore ompiler to treat in a speial way the entitythat delare the modi�er. This ategory does not inlude modi�ers that modifythe rei�ation of onsidered entity (this subjet was disussed in se. 3). Themodi�ed semantis is handled by the native ompiler (ex. expliit, agent et.).
14

Chapter 4Basi Aess ControlModi�ersMost of aess-ontrol modi�ers add onstraints regarding the way featuresould be reahed by other entities that are onneted through di�erent kindsof relationships. They imply only onstraints related with mehanisms rei�edby OFL relationships (dynami relationships like the one that links an instaneto its lass ould also be onsidered). Aording to that they ould be on-sidered as basi modi�ers. Their implementation relies only on assertions inOFL-omponentDesriptions whih involve those relationships.4.1 Examples of Native Basi Aess ControlModi�ers4.1.1 Java LanguageJava [GJSB00℄ has several modi�ers used for basi aess ontrol: publi, pro-teted, private, and default (to be more expressive we name it pakage).Java lass members (attributes and methods) that are delared publi an beaessed from any lass whih an aess to the lass where they are delared.Members that are delared as proteted an be aessed from any lass ofthe pakage, and also from any sublasses, of the lass where they are delared.Members that are delared as private are only aessible from the lass inwhih they are de�ned (it means that sublasses are not allowed to).Class members that have no aess ontrol modi�er assoiated are onsideredto have default visibility. These members an be aessed only from lasses ofthe pakage where they are delared.A Java lass, an abstrat lass or an interfae whih is delared as publian be referened from outside its pakage. If a lass is not delared as publi,it an be referened only within its pakage.15

Classes and members that are not expliitly assoiated to a modi�er havethe default Java visibility, that it is to say that they are visible only within thepakage.4.1.2 C++ LanguageFor C++ language [Str97℄ the publi, proteted and private modi�ers have ameaning whih is slightly di�erent than in Java [Ard02℄. There is no "pakage"resolution but another kind of visibility denoted by friend.Using the friend keyword, a lass an grant aess to non-member funtionsor to another lass. These friend funtions and friend lasses are permitted toaess private and proteted lass members. The publi and proteted keywordsdo not apply to friend funtions, as the lass has no ontrol over the sope offriends.If a member of a C++ lass is private, its name an be used only by memberfuntions and friends of the lass in whih it is delared. A proteted memberan be used only by member funtions and friends of the lass in whih it isdelared and by member funtions and friends of lasses derived from this lass.A publi member an be used by any funtion. The default aess for C++lass members is private.These modi�ers ould be used to hange aess ontrol through inheritanebetween lasses. When preeding the name of a base lass, the publi keywordspei�es that the publi and proteted members of the base lass are publi andproteted members, respetively, of the derived lass. The proteted keywordused for inheritane spei�es that the publi and proteted members of the baselass are proteted members of its derived lasses. Finally, when preeding thename of a base lass, the private keyword spei�es that the publi and protetedmembers of the base lass are private members of the derived lass.4.1.3 Ei�el LanguageIn Ei�el [Mey02℄ there are two onstrutions that an deal with aess modi�ers;these are feature and export. In this language some of the protetion semantisare hidden in the language philosophy. For instane, the writing protetion hasno diret meaning for an attribute beause aess to an attribute from outsidelass is onsidered as a query (and it is not possible to write into a result of aquery).4.2 Basi Aess Control Modi�ers for Features4.2.1 Modi�er AssertionsThe assertions of basi aess ontrol modi�ers for features (attributes and meth-ods) are de�ned in OFL-Relationship omponents that manage export of thosefeatures. They should be tested eah time a relationship involving that featureis reated. An invariant in the desription to whih belongs the feature is not16

neessary (basi modi�ers do not protet features against the desription itself).Independently of the language syntax we an onsider three possibilities: i) thefeature belongs to urrent lass ii) it is inherited through an inheritane rela-tionship from a diret or indiret anestor or iii) it is aessed through an userelationship (urrent lass is a lient of the desription whih owns the feature).In the last situation we onsider that the urrent desription an aess to thesupplier one. Indeed, this aspet is overed by aess ontrol handled at thelevel of desriptions. By urrent desription we mean the one that aesses tothe feature.If we onsider the Java syntax, features belonging to a lass or inherited bythe lass, are aessed using the keyword this as quali�er. This keyword ouldbe expliit or impliit (non-quali�ed features). Features aessed through anuse relationship are expliitly quali�ed with the supplier name. To onsider allsituations, an invariant is needed for all OFL-omponents, dealing with bothimport relationship and use relationship, whih are de�ned for a given language.The following example presents invariants for the extends Java inter-lassrelationship and the Java aggregation relationship. In Java, basi modi�ersrelated to features are publi, proteted, private, pakage.ontext ComponentJavaClassExtendsinv: self.shownFeatures->forall(f:Feature |f.modifiers->inludes('publi')ORf.modifiers->inlude('proteted'))inv: self.redefinedFeatures->forall(f:Feature |f.modifiers->inludes('publi')ORf.modifiers->inlude('proteted'))inv: self.hiddenFeatures->forall(f:Feature |f.modifiers->inludes('private'))The invariant says that all shown and rede�ned features through an extendrelationship should have modi�ers publi or proteted attahed. All hidden fea-tures have private modi�er. It has to be noted that in OFL, shownFeatures,rede�nedFeatures and hiddenFeatures are olletions of features whih partii-pates to the rei�ation of a relationship.ontext ComponentJavaAggregationinv: self.shownFeatures->forall(f:Feature |f.modifiers->inludes('publi')OR((f.modifiers->inlude('pakage') ORf.modifiers->inlude('proteted'))ANDself.soure.pakage = self.target.pakage)))inv: self.hiddenFeatures->forall(f:Feature |f.modifiers->inludes('private')17

OR((f.modifiers->inlude('pakage') ORf.modifiers->inlude('proteted'))ANDself.soure.pakage <> self.target.pakage)))In addition to previous assertion, this one tests also information about thepakages to whih belong the desriptions; it onsiders the desriptions whih aresoure1 and target2 of the instane of the OFL-relationship omponent (self).All these modi�ers are inompatible. When the feature is a method, the setof inompatible modi�ers ontains also the modi�er abstrat.4.2.2 Modi�er AtionsInterferene with OFL-ations (ations whih are de�ned in the OFL model)is minimal. Assertions are added (see above), in order to ontrol the aessto features through relationships and no ation rewriting is neessary. Indeed,modi�ers for basi aess ontrol generally do not rede�ne any ations.But there are some exeption; for example let us onsider the modi�er pro-teted applied to Java features. Ation is needed in this ase to express apartiular semanti presented in Figure 4.1. Method m of lass C have aessto proteted member f of B. This happens beause lass A, whih delares themember f, and lass C, belongs to the same pakage. To express this semantiswe need to rewrite the ation lookup for features. This ation must allow theaess to proteted members for any feature that is delared by an anestorbelonging to same pakage as the lass whih aesses to the feature.4.3 Basi Aess Control Modi�ers for Desrip-tions4.3.1 Modi�er AssertionsThe assertions of basi modi�ers dealing with the aess ontrol of desrip-tions are de�ned in OFL-relationship omponents and also in OFL-desriptionomponent. They should be tested eah time a relationship involving that de-sription is reated and eah time an instane of it is reated. The last situationdeals with relationships that enable polymorphism. Aording to these assump-tions, the assertion assoiated to suh modi�er should be a post-ondition ofthe OFL-ation lookup.The following example refers to the Java language semantis related to lassaess ontrol. Please note that this example does not onsider interfaes, ab-1The soure is the lass whih delares the relationship. In Java, for an extends relationshipthis is the lass whih delare the keyword extends.2the target is the lass whih is addressed by the relationship. In Java, for an extendsrelationship this is the lass whose name is mentioned after the keyword extends.18

Figure 4.1: Java proteted modi�er semantisstrat lasses and inner lasses. the modi�ers assoiated to lasses that have tobe onsidered are publi and pakage.ontext ComponentJavaClassExtendsinv: self.soure.pakage = self.target.pakageOR(self.soure.pakage <> self.target.pakageimpliesself.soure.modifiers->inludes('publi'))A lass an extend another lass from the same pakage and a lass an extenda publi lass from any other pakage.ontext ComponentJavaAggregationinv: self.soure.pakage = self.target.pakageOR(self.soure.pakage <> self.target.pakageimpliesself.soure.modifiers->inludes('publi'))The following assertion addresses dependenies between lasses, whih are notovered by OFL ustomization.ontext Desription::lookup(aessed: Desription):Desriptionpost: self.pakage = result.pakageORself.pakage <> result.pakageimpliesresult.modifiers->inludes('publi')19

Then, we onsider the Java language semantis for the aess ontrol of inter-faes. The example does not take into aount inner interfaes. The modi�erspubli and pakage are onsidered for Java interfaes.ontext ComponentJavaInterfaeExtendsinv: self.soure.pakage = self.target.pakageOR(self.soure.pakage <> self.target.pakageimpliesself.soure.modifiers->inludes('publi'))An interfae an extend another interfae from the same pakage and it mayalso extend a publi interfae from any other pakage.ontext ComponentJavaImplementsinv: self.soure.pakage = self.target.pakageOR(self.soure.pakage <> self.target.pakageimpliesself.soure.modifiers->inludes('publi'))A lass an implements any interfae from the same pakage but also a publiinterfae from any other pakage.ontext ComponentJavaAggregationinv: self.soure.pakage = self.target.pakageOR(self.soure.pakage <> self.target.pakageimpliesself.soure.modifiers->inludes('publi'))A lass an delare an attribute whose type is represented by interfae from thesame pakage and also by a publi interfae from any other pakage.To handle dependenies between lasses and interfaes we use the same post-ondition as for the ation lookup previously de�ned for lass modi�ers. Ationlookup is de�ned in omponents related to desription and relationships.4.3.2 Modi�er AtionsFor the modi�ers mentioned above, assertions are also added in OFL-relationshipomponents in order to ontrol the aess to features. Post-onditions are usedto �lter the result of the ation look-up. Those modi�ers do not rede�ne anyations.
20

Chapter 5Complex Aess ControlModi�ersComplex aess ontrol modi�ers de�ne protetion dealing with speial rightssuh as writing or reading an attribute, alling or rede�ning a method andextending or instantiating a desription.5.1 Examples of Native Complex Aess Con-trol Modi�ers5.1.1 Java Language.Java language does not inlude omplex aess ontrol modi�ers for attributes.It inludes �nal modi�er for methods and lasses and interfaes. Modi�er �nalassoiated to a method disallows the ability to rede�ne it. When Modi�er�nal is applied on lasses or interfaes it prevent from extending them. Otherlanguage mehanisms (like making all onstrutors private) ould be used toontrol instantiation of lasses.5.1.2 C++ Language.C++ does not provide any spei� modi�ers to ontrol the use of an entity(like �nal in Java). Changing aess rights of onstrutors does also ontrol theability to reate or not an instane of a given lass, like in Java.5.1.3 Ei�el Language.Ei�el modi�ers Frozen and deferred ould be onsidered as belonging to thisategory. Frozen, put before a feature name express that the delaration is notsubjet to rede�nition in desendants. The modi�er Deferred also put before a21

feature allows the feature to not have any body or implementation. This trans-fers to desendants the responsibility for providing an implementation througha new delaration. This is alled "e�eting" the feature.5.2 Complex Aess Control Modi�ers for Meth-odsRights onerning method usage address mehanisms like alling or rede�ning.Modi�ers presented in the previous setion do not make distintion betweenthese mehanisms.5.2.1 Modi�er Assertions.Implementation of ontrol implies assertions in OFL entities reifying orrespond-ing mehanisms. Rede�nition mehanism is rei�ed in OFL by rede�nedFeaturesharateristi of relationship omponents. Aess ontrol is done by invariantfor these omponents. Calling mehanism is rei�ed in exeute ation. Assertiondealing with the right to all a feature is implemented as a post-ondition ofthis ation.The following example is an implementation of the modi�er �nal applied toJava methods.ontext ComponentJavaClassExtendsinv: self.redefinedFeatures->forall(f:Feature |f.typeOfFeature = methodimpliesNOT f.modifiers->inludes('final'))The modi�er Final is ompatible with following modi�ers : publi, proteted,pakage and private. This means that Final an be set simultaneously with anyof these modi�ers. Its invariant will be added to the invariant of the orrespond-ing omponent (for example Feature or more preisely method).5.2.2 Modi�er Ations.Complex aess ontrol modi�ers for methods require sometimes the rewritingof the OFL-Ation exeute.5.3 Complex Aess Control Modi�ers for At-tributesRights onerning attribute usage address the ability to read or write the on-tent of �elds (de�ned by an attribute). Protetion on writing is ahieved by apre-ondition in OFL-Ation assign. We an onsider here a proposal of Cookand Rumpe [CKMR99℄ for de�ning a read-only modi�er for attributes. They22

onlude that it is useful to onstraint the visibility of an attribute to be read-able, but not hangeable. The onept of a read-only modi�er is introdued inombination with private and proteted modi�ers.5.3.1 Modi�er AssertionsAssertions for attribute omplex modi�ers deal only with pre and post onditionsadded to the OFL-ation assign.5.3.2 Modi�er AtionsIt is neessary to rede�ne or rewrite OFL-ation only if the semantis assoi-ated to the modi�er is enough omplex. As an example we onsider a modi�erthat implements a strong protetion against attribute modi�ation. By strongprotetion we mean to protet not only the referene of the objet against mod-i�ation but also the internal state of the referred objet.A solution that laks in eÆieny is to use a lone of the objet whihontains the �eld (orresponding to the attribute) and to look if any hangesappear; so that the aess is allowed or not. To ensure this ontrol, the all tothe OFL-ations whih deal with the aess to attribute should be embedded inthe following ode:// loning the original objetaux = deep_lone(f)// original ation// (any kind of ation that may imply modifiation// of the internal state of attribute)*ation(aux)// test if the objet preserve same stateif (not deep_ompare(f, aux))generate_error("Could not write attribute")end_ifdestroy_objet(aux)OFL-Ations that permit the hange of the internal state of attributes arethe following : evaluate-parameters, attah-parameters, detah- parameters, as-sign, exeute, et.5.4 Complex Aess Control Modi�ers for De-sriptionsThe spei�ation of an appliation may lead to the extension of desriptions,to their use through the delaration of features or to the reation of instane ofthem. These situations involve di�erent kinds of relationships.23

5.4.1 Modi�er AssertionsThe extension is ontrolled through invariant on OFL-ImportRelationship om-ponents and the ontrol of lient-supplier relationship is made through invariantson OFL-UseRelationship omponents.Let us onsider the following example related to the Java modi�er �nalapplied to desriptions. The invariant for the Java extends-relationship hekabsene of this modi�er in the target desription of the relationship.ontext ComponentJavaClassExtendsinv: NOT self.target.modifiers->inludes('final')5.4.2 Modi�er AtionsFor desription modi�ers, OFL-ations partiipate very muh to the ontrol ofinstantiation. Some rewriting may be needed but most of the times a preondi-tion in the OFL-ation reate-instane is enough to ensure all semantis of theontrol.

24

Chapter 6Optimization Modi�ersOptimization modi�ers are used to transmit hints to the ompiler in order togenerate a smaller or faster ode. Beause these modi�ers have no impat onthe semantis of the appliation model they have only to be passed to �nalompiler.6.1 Examples of Native Optimization Modi�ers6.1.1 Java Language.Java has one optimization modi�er for attributes - volatile - two optimizationmodi�ers for methods - native and stritfp - and one optimization modi�er fordesriptions - stritfp.An attribute whih is delared as volatile refers to objets and primitivevalues that an be modi�ed asynhronously by separate threads at runtime.They are treated in a speial way by the ompiler to ontrol how they an beupdated.A native method is a method written in a language other than Java. In away it is delared like an abstrat method.The e�et of the stritfp modi�er is to make all oat or double expressionswithin the method body be expliitly FP-strit. Within a FP-strit expression,all intermediate values must be elements of the oat value set or the double valueset, implying that the results of all FP-strit expressions must be those preditedby IEEE 754 arithmeti on operands represented with single and double formats.The e�et of the stritfp modi�er in ontext of a lass or an interfae is tomake all oat or double expressions within the lass or interfae delaration beexpliitly FP-strit. This implies that all methods delared in the lass, and allnested types delared in the lass, are impliitly stritfp. Also all oat or doubleexpressions within all variable initializers, instane initializers, stati initializersand onstrutors of the lass will also be FP-strit.25

6.1.2 C++ Language.C++ language ontains also optimization modi�ers. The C++ spei�ationde�nes inline for funtions and mutable and volatile for member attributes.The inline modi�er for a member funtion is a hint for the ompiler whihensure that when it enounter a funtion all it should rather generate the odeorresponding to the funtion body than the usual funtion all mehanisms.The mutable modi�er spei�es that a member attribute should be storedin a way that allows its update - even when it is a member of a onst objet.In other words mutable means "an never be onst". Delaration of mutablemember is appropriate when only a part of the objet is allowed to hange.A volatile spei�er is a hint to a ompiler whih means that an attributemay hange its value in a way not spei�ed by the language, so that aggressiveompiler optimization must be avoided.6.1.3 Ei�el Language.Analyzing Ei�el we �nd also optimization modi�ers. Indexing and obsoletemodi�ers for a lass ould be onsidered in this ategory . The optional In-dexing parts have no diret e�et on the semantis of the lass. They serve toassoiate information to the lass whih will be used by tools for arhiving andretrieving lasses aording to their properties. This is partiularly importantin the approah to software onstrution promoted by Ei�el, based on librariesof reusable lasses: the designer of a lass should help future users to �nd outabout the availability of lasses ful�lling partiular needs. We hoose to imple-ment that part like a modi�er beause OFL does not ontain any ustomizationaording to that. Beause indexing part ould appear in two di�erent plaes- one at the beginning and one at the end - we de�ne two di�erent modi�ersStartIndexing and EndIndexing.The obsolete lause in a lass indiates that the lass does not meet urrentstandards. The advie for developers is against ontinuing to use it as supplieror parent but it does not prevent existing systems whih rely on this lass, toompile and run. Delaring a lass as Obsolete does not a�et its semantis.Instead, some language proessing tools may produe a warning when theyproess a lass that relies, as lient or desendant, on an obsolete lass. Thesame mehanism exists for features.6.2 Optimization Modi�ers for AttributesOptimization modi�ers for attributes deal mainly with memory alloation andpersisteny.6.2.1 Modi�er AssertionsAssertions for optimization modi�ers have to be written just to avoid usage ofinompatible modi�ers. No other onstraints are neessary.26

If we onsider Java modi�ers, volatile is inompatible with �nal. Beause�nal keyword has no rei�ation in OFL (3) the assertion have to ensure thatthe propriety isConstant is set to false.ontext AtomAttributeinv: self.modifiers->inludes('volatile')impliesself.isConstant = false6.2.2 Modi�er AtionsIf an OFL translator is used in order to generate native ode, it is only neessarythat OFL-ations ensure that these modi�ers are opied to the �nal generatedode. If we deal with an OFL-interpretor, it ould onsider diretly those mod-i�ers to make optimizations. Another possibility is to ignore these modi�ers ifthat optimizations are not ompulsory.6.3 Optimization Modi�ers for MethodsOptimization modi�ers for methods are related i) to the need to get more eÆ-ient mehanism for alling method and ii) to deal with methods written andompiled in other languages.6.3.1 Modi�er AssertionsAssertions for optimization modi�ers deal with inompatible modi�ers. No otheronstraint is neessary.In the ase of the modi�er native in Java, it is inompatible with modi�ersynhronized. Moreover, a onstrutor method may not be delared as native.Not to be able to delare native onstrutors is an arbitrary design hoie of thelanguage. It makes diÆult an implementation of the virtual mahine whihverify that superlass onstrutors are always properly invoked during objetreation.ontext AtomMethodinv: self.modifiers->inludes('native')implies self.isConstrutor = falseandself.body->isEmpty()andNOT self.modifiers->inludes('synhronized')6.3.2 Modi�er AtionsThese modi�ers needs the same kind of ations as the optimization modi�ersfor attributes. If it is deided to build an OFL ompiler for the OFL language27

rei�ation, attention must be payed to make a orret linking with the externalode.6.4 Optimization Modi�ers for DesriptionOptimization modi�ers for desriptions are used for version and doumentationmanagement. They ould be used also to organize library of lasses.6.4.1 Modi�er AssertionsNo assertion are needed.6.4.2 Modi�er AtionsAtions ould be designed to generate errors or warnings in ase of versiononits or to generate lass doumentation. These ations ould be exeutedby modeling tools or by translators or ompilers. Speial tools ould also runthem in order to �nd desired lasses in libraries or to hek ompatibilities.

28

Chapter 7Servie Modi�ers7.1 Examples of Native Servie Modi�ers7.1.1 Java Language.Java has two modi�ers that ould be onsidered as servie modi�ers. These aresynhronized for methods and transient for attributes.Java virtual mahine an support many threads simultaneously at runtime.Threads may be supported by having many hardware proessors, by time-sliinga single hardware proessor, or by time-sliing many hardware proessors. Tohelp programmer to use threads, Java provide mehanisms for synhronizingthe onurrent ativity of threads through the keyword synhronized. A Javasynhronized method is a method that must aquire a lok on an objet or on alass before it an be exeuted. For a (stati) method, this is the lok assoiatedwith the objet Class orresponding to the lass (whih delare the method),whih is used. For an instane method, this is the lok assoiated with this (theobjet for whih the method was invoked), whih is used.An attribute whih is delared as transient is not saved as part of an objetwhen the objet is serialized. The transient keyword identi�es an attribute thatdoes not maintain a persistent state.7.1.2 C++ Language.We do not identify any native servie modi�er in C++ language.7.1.3 Ei�el Language.Ei�el also does not inlude any servie modi�er.
29

7.2 Servie Modi�ers for AttributesServie modi�ers for attributes address servies that deal with objets state (likepersisteny).7.2.1 Modi�er AssertionsMost of the assertions for these modi�ers deal just with inompatible modi-�ers. A partiular situation result from the fat that OFL does not provideany ustomization for attributes. All attributes are rei�ed with the same setof properties (see OFL-AtomAttribute). To over this situation, modi�er asser-tion has to test if the usage of the onsidered servie is permitted or not in theontext of the desription whih delares the attribute.7.2.2 Modi�er AtionsServie modi�er ations will implement the servie or will make link with om-ponents that provide the onsidered servie. this are OFL-Ations added tothe list proposed in [Cre01℄ or modi�ed by the meta-programmer in order tosupport a new servie. It may be interesting to disus about the possibility tolet meta-programmer to add new kind of ations.7.3 Servie Modi�ers for MethodsServie modi�ers for methods address servies whih deal with exeution (ex.onurreny).7.3.1 Modi�er AssertionsServie modi�er assertions has to ensure that a partiular kind of method (ex: aonstrutor or a destrutor) support or not a given servie. In the same way asfor attributes, OFL does not provide ustomization for methods. All methodsare rei�ed with the same set of properties (seeOFL-AtomMethod). Additionally,inompatible modi�ers have to be onsidered.7.3.2 Modi�er AtionsServie modi�er ations will implement the onsidered servie. Most of thoseations will be dynami ations integrated at ompiling time. This ationsshould onsider at runtime the usage of partiular hardware (e.g. ations thatsupport onurreny) or the usage of external resoures (e.g. a database in aseof persistent ations).
30

7.4 Servie Modi�ers for DesriptionsServie modi�ers for desriptions have to deal with all kinds of servies.7.4.1 Modi�er AssertionsAssertion will have to ensure that all relationships whih involve the urrentdesription are ompatible with the provided servie. If we onsider persisteny,a relationship implementing objet omposition ould imply that the targetof relationship (in fat the referened objet) should be also persistent if thesoure (the objet whih ontains the referene), is persistent. In other words,assertions have to verify that both objets are persistent or that both are not.7.4.2 Modi�er AtionsServie modi�er ations will implement the servie. Most of these ations willspeialize ations of modi�ers for attributes and methods.

31

Chapter 8Additional Modi�ersWe onsider in this hapter all modi�ers that ould not be inluded in previousategories. These modi�ers are used to hange the semantis of the related entitywhen it is non-ustomizable in OFL. Semantis modi�ation implied by nativemodi�ers is handled by a native ompiler of the orresponding language. Whenan OFL appliation model is translated in native language ode these modi�ersare just written into the generated soure ode. A ustom OFL ompiler for theonsidered language binding must take are to generate the orret semanti fornative modi�ers.8.1 Examples of Native Additional Modi�ers8.1.1 Java Language.For Java language we do not identify any modi�ers that ould be onsidered inthis ategory.8.1.2 C++ Language.In this ategory, C++ has modi�ers like onst for methods and expliit foronstrutors (that are also a kind of method). The onst modi�er used fora method indiates that the method do not modify the state of an objet.In C++, expliit onstrutors will be invoked only expliitly. This disallowsimpliit onversions.8.1.3 Ei�el Language.Ei�el ontains agent keyword that modify the semantis of a method parameter.The keyword agent is used to pass a routine as a parameter of another routine.It avoids the onfusion with an atual routine all when e�etive parameter isomputed. Indeed, when a routine is passed as an agent to another routine itis not alled but only transmit to it. 32

8.1.4 Modi�er AssertionsAssertions have to deal with inompatible modi�ers for all additional modi�ers.Beause this ategory is a very general one, no other assumptions ould be maderegarding other neessary assertions.8.1.5 Modi�er AtionsWe an assume that all modi�ers from this ategory involve hard ation writing.Eah of them address a very spei� semanti. Meta-programmer has to identify�rst how OFL ations are involved in expressing the onsidered semantis.As example, if we onsider the native C++ modi�er expliit, the semantis isdesribed in following OFL-Ations : before-reate-instane and reate-instane.

33

Chapter 9Conlusion and perspetivesIn this paper we proposed to extend the OFL Model. The main goal of thisextension was to improve the ustomization of the aess ontrol mehanismand of additional non-overed semantis. We introdued the notion of OFLmodi�er to provide a lean way to ontrol implementation. For providing abetter understanding of the onept, setions 4 and 5 present examples of severalnative modi�ers rei�ation.As future work we proposed to add support for OFL modi�ers and to inte-grate them in all OFL tools. We also plan to extend the modi�ers with high levelations. The OFL modeling tool will exeute these ations to ensure automatimodel onsisteny.

34

Bibliography[Aba98℄ M. Abadi. Protetion in Programming Language Translation. InAutomata, Languages and Programming: 25th International Collo-quium, ICALP'98, Springer-Verlag, July 1998.[ACL03℄ G. Ardourel, P. Cresenzo, and P. Lahire. Lamp : vers un Langagede de�nition de Meanismes de Protetion pour les langages de pro-grammation a objets. In LMO 2003, Vannes, Frane, February2003.[Ard02℄ G. Ardourel. Modelisation des Mehanismes de Protetiondans les Langages a Objets. Phd thesis, University of Mont-pellier, Frane, Deember 2002. http://www.lirmm.fr/ ar-dourel/v/theseArdourel.pdf.[CKMR99℄ S. Cook, A. Kleppe, R. Mithell, and R. Rumpe. The AmsterdamManifesto on OCL. Tehnial Report TUM-I9925, Tehnial Uni-versity of Munhen, Germany, 1999.[CL02℄ P. Cresenzo and P. Lahire. Customisation of Inheritane. InSpringer Verlag, LNCS series, ECOOP'2002 (The InheritaneWorkshop) and Proeedings of the Inheritane Workshop at ECOOP2002, University of Jyvskyl, Finlande, page 7, June 2002.[CNP89℄ L. Cardelli, E. J. Neuhold, and M. Paul. Typefull Programming. InIFIP Advaned Seminar on Formal Methods in Programming Lan-gage Semantis, Leture Notes in Computer Siene. Springer Ver-lag, 1989.[Cre01℄ P. Cresenzo. OFL: un Modele pour Parameter la Semantique Op-erationnele des Langages a Objets - Appliation aux Relations inter-lasses. Phd. thesis, University of Nie, Sophia Antipolis, Frane,Deember 2001. http://www.resenzo.nom.fr/.[FS01℄ K. Flower and K. Sott. UML Distilled Seond Edition. Addison-Wesley, 2001.[GJSB00℄ J. Gosling, B. Joy, G. Steele, and G. Braha. The Java LanguageSpei�ation Seond Edition. Addison-Wesley, 2000.35

[Mey02℄ B. Meyer. Ei�el: The Language. http://www.inf.ethz.h/ meyer/,2002.[OMG00℄ Objet Management Group OMG. Objet Constraint LanguageSpei�ation. Version 1.3, Marh 2000. http://www.omg.org.[OMG03℄ Objet Management Group OMG. Uni�ed Modelling Lan-guage Spei�ation, version 1.5, 1st ed., Marh 2003.http://www.omg.org.[PL03℄ D. Pesaru and P. Lahire. Modi�ers in OFL: An Approah for A-ess Control Customization. In The 9th International Confereneson Objet-Orinted Information Systems - OOIS'03, WEAR work-shop, Geneva, Swizerland, September 2003.[Sh02℄ N. Shirmer. Analasyng the Java Pakage/Aess Conepts in Is-abelle/HOL. In ECOOP Workshop on Formal Tehniques for Java-like Programs (FTfJP'2002), Malaga, Spain, June 2002.[Sny86℄ A. Snyder. Enapsulation and Inheritane in Objet-Oriented Pro-gramming Languages. In Proeedings of OOPSLA '86, Objet-Oriented Programming Systems, Languages, and Appliations.,November 1986.[Str97℄ B. Stroustrup. The C++ Programming Language. Addison-Wesley,third edition, 1997.

36

