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RESUME.

ABSTRACT. Reusing Eiffel class libraries can be problematic. Modifying the existing source code
of classes, if is available and is not copyrighted, involves maintaining the entire class library.
Reverse inheritance class relationship offers several facilities for reorganizing Eiffel class hi-
erarchies: creating a common superclass, factoring common features, inserting a class into an
existing hierarchy. Using a new class relationship similar to ordinary inheritance with a sym-
metrical semantics will guarantee the expresiveness of the new class design without changing
the original source code of the reused classes.
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1. Introduction

Developping reusable components and frameworks [GAM 97] in object techno-
logy is hard [OPD 92]. In this paper we will present a new class relationship, named
reverse inheritance (RI), designed as a language extension, which makes easier the
reuse of Eiffel [MEY 02] class libraries, adaptation of existing class hierarchies for a
specific context and restricted evolution of hierarchies. The choice for Eiffel is moti-
vated in section 3. Modifying the source code of class libraries implies later maintai-
nance of the whole library. The problem is even more severe when the source code is
copyrighted or even worse, when it is unavailable. Reverse inheritance combined with
ordinary inheritance can help in class hierarchy reorganization as it will be shown in
section 2.

The idea of upward inheritance was born in the database world from the concept of
database schema generalization [SCH 88]. A type corresponding to a database schema
may be a generalization of several specialized ones. It is also the case of generaliza-
tion in a global multi database view which provides a homogeneous interface to a set
of heterogeneous databases. The basic idea of reverse inheritance class relationship
is the generalization abstraction [SMI 77], which enables a set of individual objects
to be thought generically as a single named object. It is considered to be one of the
most important mechanism for conceptualizing the real world : generalization helps
the goal of uniform treatment for objects of the models which are obtained. From the
development point of view of a software system, direct inheritance is a top-down ap-
proach of construction while reverse inheritance offers the possibility of constructing
software in a bottom-up manner. We adhere to the idea that it is more natural to first
create the subclasses, then to observe and analyze commonalities, and after that to de-
fine the superclasses [PED 89, SAK 02]. The autonomous design of class hierarchies
or database schema will give rise to inhomogeneities. Their reusability depends stron-
gly on their capabilities of adapting their local interface to a common global interface.
The reverse inheritance class relationship is also known as exheritance [SAK 02],
adoption [LAW 94], generalization [PED 89, UMLO04] or upward inheritance [SCH 88].
The source class of reverse inheritance is known as generalizing class [SAK 02] or as
foster class [LAW 94]. In the state of the art there are several approaches dealing with
reverse inheritance issues in domains like object-oriented programming and design,
databases, artificial intelligence. We start from the definition of reverse inheritance
given by Pedersen [PED 89, SAK 02] which states that a class G can be defined as
a generalization of A;, Ao, . . ., A, previously defined classes. If the value of n is 1
then we discuss about single generalization, otherwise about multiple generalization.
Informally it can be defined as another model of inheritance where the subclass exists
and the superclass is constructed afterwards.

The paper is structured as follows. In section two we will present how reverse in-
heritance can handle several use cases of class hierarchy reuse. Section three discusses
semantical elements of reverse inheritance. Section four presents some dynamic bin-
ding aspects in the context of reverse inheritance. In section five are presented ideas
about the feasibility of the approach and how the semantics of the reused system can
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be translated in an equivalent compilable source code. In section six related works are
presented and comparisons to other reuse mechanisms are discussed. In section seven
conclusions are drawn and future works are stated.

2. Reverse Inheritance Based Solutions

In this section we will present several situations in which reverse inheritance can
bring a substantial contribution to class library reuse.

2.1. Capturing Common Functionalities

In this use case we intend to address the situations in which we need to use in a
uniform manner several classes which come possibly from different class hierarchies
and have common operations. This will imply setting a new superclass for all the
selected subclasses. One possible solution is to use ordinary inheritance and to modify
the source code of the class hierarchies accordingly, in order to obtain the desired class
configuration. All the subclasses must be altered because the new superclass must be
listed. This approach involves maintaining later on all the libraries from which the
subclasses came from.

A different approach based on reverse inheritance will overcame this problem. By
creating a superclass using reverse inheritance there is no need to modify the source of
subclasses, because in the new superclass can be specified a list of all its subclasses.
In figure 1 we have such an example where classes RECTANGLE and ELLIPSE come
from different libraries but share a common feature draw(). Using ordinary inheri-
tance a new class TRIANGLE was created as a subclass of SHAPE, thus two class
hierarchies can be combined. The example in figure 1 is a simplified and an optimistic
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Figure 1. Capturing Common Functionalities

one. In practice there should be addressed problems like name conflicts and signature
incompatibilities. Name conflicts [PED 89, LAW 94] arise when two features having
the same semantics have different names - called lost friends [SAK 02] and when two
features having the same name but different semantics - called false friends. Signature



4 1r¢ gsoumission a LMO.

incompatibilities have to take into account parameter and return types, parameter num-
ber and order, assertions : preconditions, postconditions and invariants. These issues
will be addressed in section 3.

The benefits of the approach in this case is that we do not have to modify the
class hierarchy, we factored the common features into the superclass, we created a
common interface which helps manipulating the subclasses in an uniform manner and
we extended the hierarchy with a new subclass.

2.2. Inserting a Class Into an Existing Hierarchy

Another use case we address, refers to modifying class hierarchies which were
designed quickly and the result is not general enough. Also we address situations in
which unforseen changes have to be applied to an existing class hierarchy.

In figure 2 is presented a typical situation in which the design of an existing class
hierarchy have to be changed and a new class have to be inserted between already
existing two ones. To add retroactively a new layer of abstraction in a class hierarchy
is a natural practice when the model of an application has to be adapted to new contexts
or when the model evolves.

In the initial class hierarchy existed two classes : superclass SHAPE and subclass
RECTANGLE. Later a new class PARALLELOGRAM is needed which is more ge-
neral than class RECTANGLE is and it should be also a subclass of SHAPE. There
are several possibilities to reorganize the class hierarchy using ordinary inheritance,
but this implies modifications and thus maintenance of the original source code. The
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Figure 2. Inserting a Class Into an Existing Hierarchy

reverse inheritance solution implies creating class PARALLELOGRAM as a subclass
of SHAPE by ordinary inheritance and also as a superclass of RECTANGLE by re-
verse inheritance class relationship. Public and protected features are inherited from
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SHAPE superclass into PARALLELOGRAM class by ordinary inheritance and from
PARALLELOGRAM into RECTANGLE by reverse inheritance.

The gain of this method is preserving the original classes unmodified and still
refining the old class hierarchy. Because the source code of the original classes is not
altered, it is very easy to cancel the modifications.

3. Expressiveness of Exheritance

In this section we will present the main semantical elements of reverse inheri-
tance which helps class hierarchy reuse. First of all we have to choose a program-
ming language in which reverse inheritance can be naturally integrated. Several sta-
tical object-oriented languages were considered : Java, C++ and Eiffel. When adding
an extension to a language the philosophy of the language should be respected and
unnatural constructs should not be allowed. According to this and because of the sym-
metry which exists between ordinary and reverse inheritance, the latter should not
introduce class constructs which may not be built using ordinary inheritance only. In
Java because there is no multiple inheritance between classes only between interfaces,
the symmetry principle requires reverse inheritance to be allowed only for interfaces.
In C++ and Eiffel multiple ordinary inheritance will enable, symmetrically, multiple
reverse inheritance. Both Java and C++ do not have adaptation mechanisms for the
features in the sense Eiffel has renaming and covariant redefinition. C++ and Java
offer only non-variant redefinition for the implementation of methods. In Java and
C++ function overloading is allowed while in Eiffel each feature requires to have a
unique name. In Eiffel, features implemented by memory (attributes) or computation
(methods) are used in an uniform manner. The choice for Fiffel programming lan-
guage was taken because from our point of view the features that it provides and the
cleanness of the approach according to the points mentioned above makes possible
the definition of an expressive and orthogonal reverse inheritance relationship. In or-
der to respect the duality of ordinary inheritance of Eiffel, reverse inheritance can be
conforming or non-conforming. Conforming inheritance/reverse inheritance keeps the
type conformance relationship between subclass and superclass while non-conforming
does not.

3.1. Factoring Features, Exheriting Implementation and Renaming

When there are several features with the same semantics in the subclasses it is
natural to expect one, deferred or effective in the foster class. Implicitely the attributes
are factored as attributes in the foster class, while methods are better to be exherited as
deferred features. Feature factorization can be implicit or explicit using the keywords
ALL EXCEPT feature_list respectively NONE EXCEPT feature_list. In the first case
all features with compatible signatures are exherited automatically in the foster class,
exceptions can be listed if needed. In the second case only the listed features are
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exherited. Implementation of features can be selected from one of the subclasses if all
the dependent features are exherited [SAK 02] or redefined at the foster class level.

class RECTANGLE

feature
forecolor, bgcolor : INTEGER ;
draw is do ... end
floodfill is do ... end
perimeter : INTEGER is do ... end
print (xcenter, ycenter : INTEGER) is do ... end
display is
require forecolor > 64 and bgcolor < 192
do
end

end - class RECTANGLE

class ELLIPSE

feature
forecolor,bgcolor : INTEGER ;
draw is do ... end
floodfill is do ... end
circumference : INTEGER is do ... end
print(x1, yl, x2, y2, color : INTEGER) is do ... end
display is
require forecolor <> bgcolor
do
end

end - class ELLIPSE

foster class SHAPE
exherit

RECTANGLE ALL
undefine draw
undefine floodfill
rename perimeter as boundary
undefine boundary
adapt print

end

ELLIPSE ALL
undefine draw
move floodfill
rename circumference as boundary
undefine boundary
adapt print

end

feature

print(x1, y1, x2, y2 : INTEGER) is
require stronger

adapted
RECTANGLE. print ((x1+x2) /2, (y1+y2)/2)
ELLIPSE.print(x1,y1,x2,y2,0)

do
- possible implementation

end

end - class SHAPE

Figure 3. An illustration of the extension of reverse inheritance in Eiffel

In the example proposed in figure 3, classes RECTANGLE and ELLIPSE exist ori-
ginally and foster class SHAPE is created afterwards by reverse inheritance. Feature
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draw is factored as a deferred feature in the foster class. One may notice that it is
undefined on both reverse inheritance branches (these two clauses could be avoided
because it is the default) . Feature floodfill is factored and the implementation in the
foster class SHAPE is taken from class ELLIPSE, there is one clause undefine on the
exheritance branch coresponding to class RECTANGLE and one clause move on the
exheritance branch corresponding to class ELLIPSE. From this point of view reverse
inheritance is symmetrical with multiple inheritance when selecting the implemen-
tation for a multiply inherited/exherited feature. We assume also that all conditions
regarding implementation exheritance are respected. Renaming is performed on fea-
ture perimeter from class RECTANGLE and circumference from class ELLIPSE, so
that class SHAPE provides one corresponding deferred feature boundary.

Several restrictions regarding the foster class have to be taken into account. In
order to keep the behavior of the subclasses unchanged, it is not allowed to add new
features (attributes and methods) in the superclass; only the common ones can be
factored as deferred (abstract) from the subclasses. At the implementation level, when
an executable has to be built, some modifications in the code, if available, are possible,
still keeping the behavior unchanged.

3.2. Parameter Adaptations

Because signatures of semantically equivalent features are not always compatible
we can use the renaming mechanism discussed in the previous section to get a common
name. We think that it is not enough and some adaptations have to be performed on
parameters also. In [LAW 94] a simple and straightforward syntax is presented for
parameter reordering. The example of figure 3 presents a way for adapting features
with not the same number of parameters. In foster class SHAPE a feature print has four
parameters of type INTEGER ; it is factored from class RECTANGLE and ELLIPSE
where it has respectively two and five parameters. It is necessary to adapt the signature
in order to handle the case where an instance of RECTANGLE or ELLIPSE is used
through a reference of type SHAPE. When calling feature print from RECTANGLE its
two parameters must be computed from the four parameters provided by the signature
of the foster class. In the same way, calling feature print from ELLIPSE needs to fill
five parameters so one more than print from foster class.

3.3. Assertion Adaptations

In [LAW 94] the authors analyse the problems of assertion adaptation. The pre-
condition in the foster class is proposed to be created by applying the logical AND
operator on the preconditions in the subclasses, respectively the postcondition is ob-
tained by applying the OR logical operator on the postconditions and invariants of
the subclasses. In practice not all features are factored, so assertions containing them,
can be adapted by replacing the missing features with the neutral values of the logical
operators. To guarantee statically that the precondition in the foster class is stronger
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than all the preconditions in the subclasses is a NP-complete problem, so keywords
are used for making the programmer aware of his responsablity for defining them cor-
rectly. Possibly, he may redefine the assertion ; he ensures implicitly that the assertion
satisfies the constraint infered by the keyword weaker or stronger depending on the
type of assertion. For postconditions the problem is in theory not so severe because a
postcondition can be always replaced with true, which is the weakest postcondition.
Anyway, if there is no suitable assertion then for safety reason non-conforming reverse
inheritance should be chosen.

In example of figure 3, feature display in both subclasses is equipped with pre-
conditions. The two features involved in the assertions forecolor and bgcolor are im-
plicitely exherited from the subclasses into the foster class with the same names. The
precondition in the foster class is built from the two preconditions defined in the sub-
classes using the AND logical operator and the require stronger keywords denoting
that the consistency of the precondition is under the responsability of the programmer.
For postconditions this is ensure weaker that would be used.

4. Exheritance from the Runtime Point of View

4.1. Dynamic Binding and Exheritance Clause Combinations

In the example of figure 2 the type conformance between PARALLELOGRAM
and SHAPE respectively RECTANGLE and PARALLELOGRAM is achieved by the
combination of ordinary and reverse inheritance. Thanks to it, the same feature draw
is available in all the classes of the hierarchy.

Depending on the clause combinations the implementation of draw in PARAL-
LELOGRAM may come from one of the three classes. Let us study some interesting
needs :

— The suitable implementation of feature draw is the one of class SHAPE ; we sup-
pose that it is effective. It is obtained implicitly by the ordinary inheritance relationship
set between PARALLELOGRAM and SHAPE. The version from class RECTANGLE
must be undefined if it is also effective.

— Class PARALLELOGRAM needs to own the implementation of draw, then it is
necessary to redefine the one of class SHAPE whereas the version from class REC-
TANGLE has to be undefined.

— The suitable implementation is the one of class RECTANGLE. It is obtained
by moving (through the reverse inheritance relationship set between RECTANGLE
and PARALLELOGRAM), the implementation of draw in PARALLELOGRAM. The
version from SHAPE must be undefined or redefined if is effective.

— Finally, if the feature draw is expected to be deferred then both implementations
(from classes SHAPE and RECTANGLE) have to be undefined.
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Figure 4, shows how polymorphism works on foster class : an attribute of type PA-
RALLELOGRAM may receive an object of type RECTANGLE but the reverse is false
and an attribute of type SHAPE may receive an object of type PARALLELOGRAM
or RECTANGLE. The version of feature draw which is used using dynamic binding
depends on the cases presented above. Please note that for space reason we did not
address repeated inheritance (see next section for some details).

sref : SHAPE;
pref, pobj : PARALLELOGRAM ;
robj : RECTANGLE ;

create pobj; create robj;

- wersion of draw depends on the clause combination
pref = robj; pref.draw

sref = robj; sref.draw

Figure 4. Possible use of classes of figure 2 in a client class

4.2. Some Problems to be Addressed

The body of feature draw in class RECTANGLE may contain the keyword precur-
sor (its semantics is close form the keyword super of Java). This needs to be taken
into account according to the cases mentioned above. If the implementation comes
from class SHAPE, meaning that feature draw is undefined on the reverse inheritance
branch, then the precursor is the same as without reverse inheritance and that is cor-
rect. If the implementation of the feature is exherited from RECTANGLE into class
PARALLELOGRAM by undefining the version inherited from SHAPE, the precursor
will call the aproppriate draw version from class SHAPE. But, if the feature has a new
implementation in class PARALLELOGRAM the behavior of the subclass is changed,
so this kind of situations must not be allowed. Moreover when feature draw is undefi-
ned in the foster class, the subclass will have no precursor implementation available,
so this situation has also to be forbidden.

When building diamond class configuration with class A as root base class, sub-
classes B and C as descendants of A, and class D as a descendant of B and C it is
possible to use ordinary and reverse inheritance and to insert the classes in the hierar-
chy in different orders. When sharing repeatedly inherited features through different
inheritance paths created by ordinary and reverse inheritance there is no dynamic bin-
ding problem, because there is one copy of the feature. When features are replicated
and class A is created last using reverse inheritance the selection of the feature for
class D must be specified in class A, like "select f_final in D". When class D is created
last, any combination of reverse and/or ordinary inheritance between the rest of the
classes, designed for replication, will use the classic selection mechanism of Eiffel.
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5. From Inheritance/Exheritance Hierarchies to Pure Inheritance

In order to point that our approach is feasible we will show that each semantical
construct discussed earlier can be expressed using a pure Eiffel language. The inter-
mediate compilable code may contain a modified copy of the original source code.
Modifications are mostly performed at syntactical level, leaving the behavior unchan-
ged.

In example of figure 5, we present how feature related to reverse inheritance detai-
led in the example of figure 3, can be translated into equivalent Eiffel code.

First we must mention that deferred class SHAPE is now superclass of both REC-
TANGLE and ELLIPSE subclasses. The feature draw is deferred in the superclass and
effective in the subclasses. The implementation of feature floodfill is copied from sub-
class ELLIPSE.

In this example we present also how parameter adaptation mechanism can be im-
plemented. The main ideea proposed is to rename the original feature display in each
subclass (copy of the original subclass source code) and then to add the new feature
print with four parameters. In each subclass the new feature will contain an adapted
delegation call to the original feature.

The precondition of feature display in superclass SHAPE is implemented using the
AND logical operator on the corresponding preconditions in the subclasses.

Any diamond class combination created by ordinary and reverse inheritance can
be implemented using just ordinary inheritance. In the case of feature replication, the
select clause from the foster class must be moved into the last subclass.

In example of figure 6 we show how the class hierarchy defined in figure 2 can be
implemented in pure Eiffel language and that the two class hierarchies are equivalent.

It can be noticed that the three classes are put in the same hierarchy in their na-
tural order. Feature draw in classPARELLELOGRAM is redefined and has its own
implementation. The new implementation will not affect the behavior of the subclass
because in RECTANGLE there is a different version available. Type conformance bet-
ween classes of the original class hierarchy still holds in the equivalent implementa-
tion.

6. Related Works

In this section we analyze several works related to class hierarchy reorganization,
class reuse mechanisms, software adaptation and evolution.

In [GAM 97] are presented several design patterns which are a collection of ge-
neral solutions to commonly occuring problems. The class reorganization schemes
are either applied at the design time or they are applied afterwards, but this requires
changing the original code.
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deferred class SHAPE

feature
forecolor, bgcolor : INTEGER ;
draw is deferred ... end
floodfill is
do
- copy implementation of feature floodfill from class Ellipse
end
boundary is deferred ... end
print(x1, yl, x2, y2, color : INTEGER) is do ... end
display is
require forecolor > 64 and bgcolor < 192 forecolor <> bgcolor
do
end

end - class SHAPE

class RECTANGLE
inherit
SHAPE
rename boundary as perimeter
rename print as old_print
end
feature
draw is do ... end
floodfill is do ... end
perimeter : INTEGER is do ... end
old_print(xcenter, ycenter : INTEGER) is do ... end
print(x1, y1, x2, y2 : INTEGER) is
do
old_print ((x1+x2)/2, (yl+y2)/2)
end
display is
require else forecolor > 64 and bgcolor < 192
do
end
end - class RECTANGLE

class ELLIPSE
inherit

SHAPE
rename boundary as circumference
rename print as old_print

end

feature

draw is do ... end

floodfill is do ... end

circumference : INTEGER is do ... end

old_print(x1l, y1, x2, y2, color : INTEGER) is do ... end

print(x1l, y1, x2, y2 : INTEGER) is

do
old_print(x1l, y1, x2, y2, 0)

end

display is
require else forecolor <> bgcolor

do

end

end - class RECTANGLE

Figure 5. Example of figure 3 using ordinary inheritance only
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class SHAPE
feature
draw is do ... end
end - class SHAPE

class PARALLELOGRAM
inherit
SHAPE
redefine draw
end
feature
draw is do ... end
end - class PARALLELOGRAN

class RECTANGLE
inherit
PARALLELOGRAM
redefine draw
end
feature
draw is do ... end
end - class RECTANGLE

Figure 6. Example of figure 2 using ordinary inheritance only

In [OPD 93] is described a manual method of reorganizing class hierarchies by
creating a new abstract superclass for a set of subclasses. It is explained step by step
the process of creating an abstract superclass : adding function signatures to the super-
class, making function bodies compatible, moving variables and migrating common
code to the superclass. In our work dedicated to Eiffel we encapsuled all these opera-
tions in the semantics of reverse inheritance.

In [FOW 99] are presented several techniques of restructuring code by altering its
internal structure without changing external behavior. This philosophy was used in our
work when we expressed the semantics of reverse inheritance in terms of equivalent
pure language constructs.

In [DAO 02] is presented an algorithm that reorganizes class hierarchies based on
Galois lattice for optimizing factorization of features. In this work the changes are
intended to avoid the flaws regarding factorization. Modifications of attributes to all
occurences is considered time consuming and error prone. Moreover, multiple unne-
cessary declarations of features makes the hierarchy less understandable and usable.

In [SCH 02, SCH 03] is presented the trait model which can be viewed as a class
reusing mechanism because traits are reusable and composable parts of a class. This
approach can be applied only if traits are already defined while reverse inheritance can
be applied to any class hierarchy written in Eiffel.
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7. Conclusion and Future Work

We showed that reverse inheritance can help Eiffel class reusability by redesigning
existing class hierarchies. We thought about the main problems and we brought some
solutions. The new class relationship is built symetrically from ordinary inheritance
and is equipped with a specific adaptation mechanisms, which does not represent a
severe deviation from the philosophy of the language. The semantical elements were
analysed from two perspectives : static behavior (definition, adaptations) and dynamic
behavior (dynamic binding). There were provided two examples trying to increase the
interest of using reverse inheritance. We showed also that the approach is feasible by
providing compilable code with equivalent semantics.

One of the perspectives regarding the semantics of reverse inheritance is to fully
integrate it into Eiffel programming language. In order to achieve this goal, a formal
model for the foster class must be proposed. This will allow designers to use foster
classes in their hierarchies. Next, a translator must be built in order to generate com-
pilable Eiffel code. The integration of the translator into an industrial development
environment like Eclipse would automate the class library reuse.
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