
Diniz, da Silva and Netto

Coefficient quantization

• During the approximation step, the coefficients of a digital filter are calculated with
the high accuracy inherent to the computer employed in the design.

• When these coefficients are quantized for practical implementations, commonly
using rounding, the time and frequency responses of the realized digital filter deviate
from the ideal response.

• In fact, the quantized filter may even fail to meet the prescribed specifications.

• The sensitivity of the filter response to errors in the coefficients is highly dependent
on the type of structure.

• This fact is one of the motivations for considering alternative realizations having low
sensitivity, such as those presented in Chapter 13.

145

Diniz, da Silva and Netto

Coefficient quantization

• Among the several sensitivity criteria that evaluate the effect of the fixed-point
coefficient quantization on the digital filter transfer function, the most widely used are

IS
H(z)
mi

(z) =
∂H(z)

∂mi
(125)

IIS
H(z)
mi

(z) =
1

H(z)

∂H(z)

∂mi
(126)

• For the floating-point representation, the sensitivity criterion must take into account
the relative variation of H(z) due to a relative variation in a multiplier coefficient. We
then must use

IIIS
H(z)
mi

(z) =
mi

H(z)

∂H(z)

∂mi
(127)

146

Diniz, da Silva and Netto

Coefficient quantization

• With such a formulation, it is possible to use the value of the multiplier coefficient to
determine IIIS

H(z)
m (z).

• A simple example illustrating the importance of this fact is given by the quantization
of the system

y(n) = (1 + m)x(n); for |m| ! 1 (128)

• Using equation (125), IS
H(z)
mi

(z) = 1, regardless of the value of m, while using

equation (127), IIIS
H(z)
mi

(z) = m/(m + 1), indicating that a smaller value for the
magnitude of m leads to a smaller sensitivity of H(z) with respect to m.

• This is true for the floating-point representation, as long as the number of bits in the
exponent is enough to represent the exponent of m.

147

Diniz, da Silva and Netto

Example 11.6

• Determine the possible pole positions for a direct-form second-order section with
denominator

D(z) = z2 + a1z + a2 (129)

when the filter coefficients a1 and a2 are represented with 6 bits, including the sign
bit, using standard binary representation.

• Repeat your analysis using a state-space structure characterized by
a11 = a22 = a and a21 = −a12 = ζ, when a and ζ are represented with 6 bits.
Such a structure, when the values of at least two different coefficients are dependent
on a single parameter, is referred to as a coupled-form state-space structure.

148

Diniz, da Silva and Netto

Example 11.6 - Solution

• Figure 22a depicts the possible pole placements in the first quadrant within the
z-domain unit circle for the direct-form second-order section.

• In the remaining quadrants, pole placements are symmetric mirrored copies of the
ones seen in this figure.

• As can be observed, the pole grid becomes very sparse around to the real axis,
particularly close to z = 0 or z = 1.

• This explains the implementation inaccuracy achieved by this section type in
applications with high sampling rate, since these cases often require a filter with
poles close to the real axis.

• The same phenomenon occurs if the poles are required to be close to z = 1 or
z = −1.

149

Diniz, da Silva and Netto

Example 11.6 - Solution

Real part

Im
ag

in
ar

y
pa

rt

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Real part

Im
ag

in
ar

y
pa

rt

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 22: Pole grid for second-order sections with 6-bit coefficients: (a) direct-form; (b)
state-space coupled form.

150

Diniz, da Silva and Netto

Example 11.6 - Solution

• For the coupled form, the denominator polynomial becomes

D(z) = z2 − 2az + a2 + ζ2 (130)

where a represents the real part of the complex conjugate poles and ζ their
imaginary part.

• The pole-placement analysis for the coefficient quantization in this structure is shown
in Figure 22b, where we observe a uniform grid distribution around the entire
quadrant.

• This result implies that there is no preferred region for this structure to place the
poles, which is an attractive feature obtained at the cost of four multiplier coefficients
to position a single pair of complex conjugate poles.

151

Diniz, da Silva and Netto

Deterministic sensitivity criterion

• In practice, one is often interested in the variation of the magnitude of the transfer
function, |H(ejω)|, with coefficient quantization. Taking into account the
contributions of all multipliers, a useful figure of merit related to this variation would
be

S(ejω) =

K∑

i=1

∣

∣

∣

∣

S
|H(e jω)|
mi

(ejω)

∣

∣

∣

∣

(131)

where K is the total number of multipliers in the structure, and S
|H(e jω)|
mi

(ejω) is
computed according to one of the equations (125)–(127), depending on the case.

• However, in general, the sensitivities of H(ejω) to coefficient quantization are much
easier to derive than the ones of |H(ejω)|, and thus it would be convenient if the first
one could be used as an estimate of the second.

152

Diniz, da Silva and Netto
Deterministic sensitivity criterion

• In order to investigate this possibility, we write the frequency response in terms of its
magnitude and phase as

H(ejω) =
∣

∣H(ejω)
∣

∣ ejΘ(ω) (132)

• Then the sensitivity measures, defined in equations (125)–(127), can be written as

∣

∣

∣IS
H(e jω)
mi

(ejω)
∣

∣

∣
=

√

(

IS
|H(e jω)|
mi (ejω)

)2

+ |H(ejω)|
2

(

∂Θ(ω)

∂mi

)2

(133)

∣

∣

∣IIS
H(e jω)
mi

(ejω)
∣

∣

∣
=

√

(

IIS
|H(e jω)|
mi

(ejω)
)2

+

(

∂Θ(ω)

∂mi

)2

(134)

∣

∣

∣IIIS
H(e jω)
mi

(ejω)
∣

∣

∣
=

√

(

IIIS
|H(e jω)|
mi

(ejω)
)2

+ |mi|2
(

∂Θ(ω)

∂mi

)2

(135)

• From equations (133)–(135), one can see that |SH(e jω)
mi

(ejω)| ≥ |S
|H(e jω)|
mi

(ejω)|.

153

Diniz, da Silva and Netto

Deterministic sensitivity criterion

• Thus, |SH(e jω)
mi

(ejω)| can be used as a conservative estimate of |S
|H(e jω)|
mi

(ejω)|,
in the sense that it guarantees that the transfer function variation will be below a
specified tolerance.

• Moreover, it is known that low sensitivity is more critical when implementing filters
with poles close to the unit circle, and, in such cases, for ω close to a pole frequency

ω0, we can show that |SH(e jω)
mi

(ejω)| ≈ |S
|H(e jω)|
mi

(ejω)|.

• Therefore, we can rewrite equation (131), yielding the following practical sensitivity
figure of merit:

S(ejω) =

K∑

i=1

∣

∣

∣
SH(e jω)

mi
(ejω)

∣

∣

∣
(136)

where, depending on the case, SH(e jω)
mi

(ejω) is given by one of the
equations (125)–(127).

154

Diniz, da Silva and Netto

Example 11.7

• Design a lowpass elliptic filter with the following specifications:

Ap = 1.0 dB

Ar = 40 dB

ωp = 0.3π rad/sample

ωr = 0.4π rad/sample






(137)

• Perform the fixed-point sensitivity analysis for the direct-order structure, determining
the variation on the ideal magnitude response for an 11-bit quantization of the
fractional part, including the sign bit.

155

Diniz, da Silva and Netto

Example 11.7 - Solution

• The coefficients of the lowpass elliptic filter are given in Table 1.

Table 1: Filter coefficients for the specifications (137).

Numerator Denominator

coefficients coefficients
b0 = 0.028 207 76 a0 = 1.000 000 00

b1 = −0.001 494 75 a1 = −3.028 484 73

b2 = 0.031 747 58 a2 = 4.567 772 20

b3 = 0.031 747 58 a3 = −3.900 153 49

b4 = −0.001 494 75 a4 = 1.896 641 38

b5 = 0.028 207 76 a5 = −0.418 854 19

156

Diniz, da Silva and Netto

Example 11.7 - Solution

• For the general direct-form structure described by

H(z) =
B(z)

A(z)
=

b0 + b1z−1 + · · · + bNz−N

1 + a1z−1 + · · · + aNz−N
(138)

it is easy to find that the sensitivities as defined in equation (125) with respect to the
numerator and denominator coefficients are given by

IS
H(z)
bi

(z) =
z−i

A(z)
; IS

H(z)
ai

(z) = −
z−iH(z)

A(z)
(139)

respectively.

• The magnitude of these functions for the designed fifth-order elliptic filter are seen in
Figure 23.

157

Diniz, da Silva and Netto

Example 11.7 - Solution

(a)
0 0.5 1 1.5 2 2.5 3

0

10

20

30

40

50

60

Frequency [rad/sample]

| S
 b i(ω

)
 |

(b)
0 0.5 1 1.5 2 2.5 3

0

10

20

30

40

50

60

Frequency [rad/sample]

| S
 a i(ω

)
 |

Figure 23: Magnitudes of the sensitivity functions of H(z) with respect to: (a) numerator
coefficients bi; (b) denominator coefficients ai.

158

Diniz, da Silva and Netto
Example 11.7 - Solution

• The figure of merit S(ejω), as given in equation (136), for the general direct-form
realization can be written as

S(ejω) =
(N + 1) + N|H(z)|

|A(z)|
(140)

• For this example, the function is depicted in Figure 24a.

• We can then estimate the variation of the ideal magnitude response using the
approximation

∆|H(ejω)| ≈ ∆miS(ejω) (141)

• For a fixed-point 11-bit rounding quantization, including the sign bit,
max{∆mi} = 2−11.

• In this case, Figure 24b depicts the ideal magnitude response of a fifth-order elliptic
filter, satisfying the specifications in equation (137), along with the corresponding
worst-case margins due to the coefficient quantization.

159

Diniz, da Silva and Netto
Example 11.7 - Solution

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

500

600

Frequency [rad/sample]

S(
 e jω

)

0 0.5 1 1.5 2 2.5 3
–70

–60

–50

–40

–30

–20

–10

0

Frequency [rad/sample]

M
ag

ni
tu

de
 re

sp
on

se
 [d

B]

(a) (b)

Figure 24: Finite-precision analysis: (a) sensitivity measurement S(ejω); (b) worst-case
variation of |H(ejω)| with an 11-bit fixed-point quantization.

160

Diniz, da Silva and Netto

Deterministic sensitivity criterion

• It is worth noting that the sensitivity measurement given by equation (136) is also
useful as a figure of merit if one uses the so-called pseudo-floating-point
representation, that consists of implementing multiplication between a signal and a
coefficient with small magnitude in the following form, as depicted in Figure 25

[x × mi]Q = [(x × mi × 2L) × 2−L]Q (142)

where L is the exponent of mi when represented in floating point.

• Note that in the pseudo-floating-point scheme, all operations are actually performed
using fixed-point arithmetic.

161

Diniz, da Silva and Netto

Deterministic sensitivity criterion

–m i
2 L 2 –L

y(n)x(n)

✕

Figure 25: Implementation of a multiplication in a pseudo-floating-point representation.

162

Diniz, da Silva and Netto

Statistical forecast of the wordlength

• In the previous subsection we computed the worst case variation in the frequency
response of a digital filter with the quantization of coefficients. By worst case we
meant the supposition that quantization made all the coefficients to vary the
maximum possible amount, and in the worst direction.

• However, since it is unlikely that all coefficients will undergo a worst-case
quantization error, and their quantization effects will accumulate in the worst possible
way with respect to the resulting frequency response.

• Thus, it is useful to perform a more realistic, statistical analysis of the deviation in the
frequency response.

163

Diniz, da Silva and Netto

Statistical forecast of the wordlength

• In this subsection we perform a statistical forecast of the wordlength necessary for a
filter to satisfy a given specification.

• Suppose we have designed a digital filter with frequency response H(ejω), and that
the ideal magnitude response is Hd(ejω), with a tolerance given by ρ(ω).

• When the filter coefficients are quantized, we can express the resulting magnitude
response as

∣

∣HQ(ejω)
∣

∣ =
∣

∣H(ejω)
∣

∣+ ∆
∣

∣H(ejω)
∣

∣ (143)

164

Diniz, da Silva and Netto

Statistical forecast of the wordlength

• Obviously, for a meaningful design, |HQ(ejω)| must not deviate from Hd(ejω) by
more than a frequency-dependent tolerance ρ(ω), that is
∣

∣

(∣

∣HQ(ejω)
∣

∣− Hd(ejω)
)∣

∣ =
∣

∣

∣

∣H(ejω)
∣

∣+ ∆
∣

∣H(ejω)
∣

∣− Hd(ejω)
∣

∣ ≤ ρ(ω)

(144)

or, more strictly,
∣

∣∆
∣

∣H(ejω)
∣

∣

∣

∣ ≤ ρ(ω) −
∣

∣

∣

∣H(ejω)
∣

∣− Hd(ejω)
∣

∣ (145)

• The variation in the magnitude response of the digital filter due to the variations in the
multiplier coefficients mi can be approximated by

∆
∣

∣H(ejω)
∣

∣ ≈
K∑

i=1

∂ |H(ejω)|

∂mi
∆mi (146)

165

Diniz, da Silva and Netto

Statistical forecast of the wordlength

• If we consider that:

– the multiplier coefficients are rounded;

– the quantization errors are statistically independent;

– all ∆mi are uniformly distributed;

then the variance of the error in each coefficient, based on equation (54), is given by

σ2
∆mi

= σ2
∆m =

2−2b

12
, for i = 1, 2, . . ., K (147)

where b is the number of bits not including the sign bit.

166

Diniz, da Silva and Netto

Statistical forecast of the wordlength

• With the assumptions above, the mean of ∆|H(ejω)| is zero and its variance is
given by

σ2
∆|H(e jω)| ≈ σ2

∆m

K∑

i=1

(

∂ |H(ejω)|

∂mi

)2

= σ2
∆mS2(ejω) (148)

where S2(ejω) is given by equations (125) and (136).

• If we further assume that ∆ |H(ejω)| is Gaussian, we can estimate the probability of
∆ |H(ejω)| being less than or equal to xσ∆|H(e jω)| by

Pr
{∣
∣∆H(ejω)

∣

∣ ≤ xσ∆|H(e jω)|

}
=

2√
π

∫ x√
2

0

e−x′2

dx′ (149)

167

Diniz, da Silva and Netto

Statistical forecast of the wordlength

• To guarantee that equation (145) holds with a probability less than or equal to the
one given in equation (149), it suffices that

xσ∆mS(ejω) ≤ ρ(ω) −
∣

∣

∣

∣H(ejω)
∣

∣− Hd(ejω)
∣

∣ (150)

• Now, assume that the wordlength, including the sign bit, is given by

B = I + F + 1 (151)

where I and F are the numbers of bits in the integer and fractional parts, respectively.

• The value of I depends on the required order of magnitude of the coefficient, and F

can be estimated from equation (150) to guarantee that equation (145) holds with
probability as given in equation (149).

168

Diniz, da Silva and Netto

Statistical forecast of the wordlength

• To satisfy the inequality in (150), the value of 2−b, from equation (147), should be
given by

2−b =
√

12 min
ω∈C

{∣
∣

∣

∣

ρ(ω) − ||H(ejω)| − Hd(ejω)|

xS(ejω)

∣

∣

∣

∣

}

(152)

where C is the set of frequencies not belonging to the filter transition bands.

• Then, an estimate for F is

F ≈ b = − log2

(√
12 min

ω∈C

{∣
∣

∣

∣

ρ(ω) − ||H(ejω)| − Hd(ejω)|

xS(ejω)

∣

∣

∣

∣

})

(153)

169

Diniz, da Silva and Netto

Statistical forecast of the wordlength

• This method for estimating the wordlength is also useful in iterative procedures to
design filters with minimum wordlength.

• An alternative procedure that is widely used in practice to evaluate the design of
digital filters with finite-coefficient wordlength, is to design the filters with tighter
specifications than required, quantize the coefficients, and check if the prescribed
specifications are still met.

• Obviously, in this case, the success of the design is highly dependent on the
designer’s experience.

170

Diniz, da Silva and Netto

Example 11.8

• Determine the total number of bits required for the filter designed in Example 11.3 to
satisfy the following specifications, after coefficient quantization:

Ap = 1.2 dB

Ar = 39 dB

ωp = 0.3π rad/sample

ωr = 0.4π rad/sample






(154)

171

Diniz, da Silva and Netto

Example 11.8 - Solution

• Using the specifications in equation (154), we determine

δp = 1–10−Ap/20 = 0.1482 (155)

δr = 10−Ar/20 = 0.0112 (156)

and define

ρ(ω) =






δp, for 0 ≤ ω ≤ 0.3π

δr, for 0.4π ≤ ω ≤ π
(157)

Hd(ejω) =






1, for 0 ≤ ω ≤ 0.3π

0, for 0.4π ≤ ω ≤ π
(158)

172

Diniz, da Silva and Netto

Example 11.8 - Solution

• A reasonable certainty margin is about 90%, yielding, from equation (149),

x√
2

= erfinv(0.9) = 1.1631 ⇒ x = 1.6449 (159)

• We use the filter designed in Example 11.3 as H(ejω), with the corresponding
sensitivity function S(ejω), as given in equation (140) and depicted in Figure 24a.

• Based on these values, we can compute the number of bits F for the fractional part,
using equation (153), resulting in F ≈ 12.0993, which we round to F = 12 bits.

• From Table 1, we observe that I = 3 bits are necessary to represent the integer part
of the filter coefficients which fall in the range −4 to +4. Therefore, the total number
of bits required, including the sign bit, is

B = I + F + 1 = 16 (160)

173

Diniz, da Silva and Netto

Example 11.8 - Solution

• Table 2 shows the filter coefficients after quantization.

Table 2: Quantized filter coefficients for specifications (154).

Numerator Denominator

coefficients coefficients

b0 = 0.028 320 31 a0 = 1.000 000 00

b1 = −0.001 464 84 a1 = −3.028 564 45

b2 = 0.031 738 28 a2 = 4.567 871 09

b3 = 0.031 738 28 a3 = −3.900 146 48

b4 = −0.001 464 84 a4 = 1.896 728 52

b5 = 0.028 320 31 a5 = −0.418 945 31

174

Diniz, da Silva and Netto
Example 11.8 - Solution

• Table 3 includes the resulting passband ripple and stopband attenuation for several
values of F, from which we can clearly see that using the predicted F = 12, the
specifications in equation (154) are satisfied, even after quantization of the filter
coefficients.

Table 3: Filter characteristics as a function of the number of fractional bits F.

F Ap [dB] Ar [dB]

15 1.0100 40.0012
14 1.0188 40.0106
13 1.0174 40.0107
12 1.1625 39.7525
11 1.1689 39.7581
10 1.2996 39.7650
9 1.2015 40.0280
8 2.3785 40.2212

175

Diniz, da Silva and Netto

Limit cycles

• A serious practical problem that affects the implementation of recursive digital filters
is the possible occurrence of parasitic oscillations.

• These oscillations can be classified, according to their origin, as either granular or
overflow limit cycles, as presented below.

176

Diniz, da Silva and Netto

Granular limit cycles

• Any stable digital filter, if implemented with idealized infinite-precision arithmetic,
should have an asymptotically decreasing response when the input signal becomes
zero after a given instant of time n0T .

• However, if the filter is implemented with finite-precision arithmetic, the noise signals
generated at the quantizers become highly correlated from sample to sample and
from source to source.

• This correlation can cause autonomous oscillations, referred to as granular limit
cycles, originating from quantization performed in the least significant signal bits, as
indicated in the example that follows.

177

Diniz, da Silva and Netto

Example 11.9

• Suppose the filter of Figure 26 has the following input signal:

x(n) =






0.111, for n = 1

0.000, for n '= 1
(161)

where the numbers are represented in two’s complement. Determine the output
signal in the case when the quantizer performs rounding, for n = 1, 2, . . ., 40.

178

Diniz, da Silva and Netto

Example 11.9

0. 111 = a

1. 001 = b

[Q]

z –1

z –1

+� y(n)x(n)

✕

✕

Figure 26: Second-order section with a quantizer.

179

Diniz, da Silva and Netto

Example 11.9 - Solution

• The output in the time domain, assuming that the quantizer rounds the signal, is
given in Table 4, where one can easily see that an oscillation is sustained at the
output, even after the input becomes zero.

• In many practical applications, where the signal levels in a digital filter can be
constant or very low, even for short periods of time, limit cycles are highly
undesirable, and should be eliminated or at least have their amplitude bounds strictly
limited.

180

Diniz, da Silva and Netto
Example 11.9 - Solution

Table 4: Output signal of network shown in Figure 26.

n y(n)

1 0.111
2 Q(0.110001+0.000000) = 0.110
3 Q(0.101010+1.001111) = 1.111
4 Q(1.111001+1.010110) = 1.010
5 Q(1.010110+0.000111) = 1.100
6 Q(1.100100+0.101010) = 0.010
7 Q(0.001110+0.011100) = 0.101
8 Q(0.100011+1.110010) = 0.011
9 Q(0.010101+1.011101) = 1.110

10 Q(1.110010+1.101011) = 1.100
11 Q(1.100100+0.001110) = 1.110
12 Q(1.110010+0.011100) = 0.010
13 Q(0.001110+0.001110) = 0.100
14 Q(0.011100+1.110010) = 0.010
15 Q(0.001110+1.100100) = 1.110
16 Q(1.110010+1.110010) = 1.100
17 Q(1.100100+0.001110) = 1.110
18 Q(1.110010+0.011100) = 0.010
19 Q(0.001110+0.001110) = 0.100
20 Q(0.011100+1.110010) = 0.010
21 Q(0.001110+1.100100) = 1.110
22 Q(1.110010+1.110010) = 1.100...

...

181

Diniz, da Silva and Netto

Overflow limit cycles

• Overflow limit cycles can occur when the magnitudes of the internal signals exceed
the available register range.

• In order to avoid the increase of the signal wordlength in recursive digital filters,
overflow nonlinearities must be applied to the signal.

• Such nonlinearities influence the most significant bits of the signal, possibly causing
severe distortion.

• An overflow can give rise to self-sustained, high-amplitude oscillations, widely known
as overflow limit cycles.

• Overflow can occur in any structure in the presence of an input signal, and
input-signal scaling is crucial to reduce the probability of overflow to an acceptable
level.

182

Diniz, da Silva and Netto

Example 11.10

• Consider the filter of Figure 27 with a = 0.9606 and b = 0.9849, where the
overflow nonlinearity employed is the two’s complement with 3-bit quantization (see
Figure 27).

• Its analytic expression is given by

Q(x) =
1

4
[((4x − 0.5) + 4) mod 8] − 1 (162)

where (x) means the smallest integer larger than or equal to x.

• Determine the output signal of such a filter for zero input, given the initial conditions
y(−2) = 0.50 and y(−1) = −1.00.

183

Diniz, da Silva and Netto

Example 11.10

x 3 –1 –3 1

1

–1

Q(x)

+

Z –1

Z –1

X

X

y(n) x(n)

a

b

Figure 27: Second-order section with an overflow quantizer.

184

Diniz, da Silva and Netto

Example 11.10 - Solution

• With a = 0.9606, b = −0.9849, y(−2) = 0.50 and y(−1) = −1.00, we have
that

y(0)=Q[1.9606(−1.00) − 0.9849(0.50)] = Q[−2.4530] = −0.50

y(1)=Q[1.9606(−0.50) − 0.9849(−1.00)] = Q[0.0046] = 0.00

y(2)=Q[1.9606(0.00) − 0.9849(−0.50)] = Q[0.4924] = 0.50

y(3)=Q[1.9606(0.50) − 0.9849(0.00)] = Q[0.9803] = −1.00
...

(163)

• Since y(2) = y(−2) and y(3) = y(−1), we have that, although there is no
excitation, the output signal in nonzero and periodic with a period of 4, thus indicating
the existence of overflow limit cycles.

185

Diniz, da Silva and Netto

Overflow limit cycles

• A digital filter structure is considered free from overflow limit cycles if the error
introduced in the filter after an overflow decreases with time in such a way that the
output of the nonlinear filter (including the quantizers) converges to the output of the
ideal linear filter.

• In practice a quantizer incorporates nonlinearities corresponding to both granular
quantization and overflow.

• Figure 28 illustrates a digital filter using a quantizer that implements rounding as the
granular quantization and saturation arithmetic as the overflow nonlinearity.

• Note that although this overflow nonlinearity is different from the one depicted in
Figure 27, both are classified as overflow.

186

Diniz, da Silva and Netto

Overflow limit cycles

a

b

z–1

z–1

1–1 x

Q (x)

y(n)x(n)

✕

✕

Figure 28: Second-order section with a rounding and saturating quantizer.

187

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• A general IIR filter can be depicted as in Figure 29a, where the linear N-port network
consists of interconnections of multipliers and adders.

• In a recursive filter implemented with fixed-point arithmetic, each internal loop
contains a quantizer.

• Assuming that the quantizers are placed at the delay inputs (the state variables), as
shown in Figure 29b, we can describe the digital filter, including the quantizers, using
the following state-space formulation:

x(n + 1) = [Ax(n) + bu(n)]Q

y(n) = cTx(n) + du(n)
(164)

where [x]Q indicates the quantized value of x, A is the state matrix, b is the input
vector, c is the output vector, and d represents the direct connection between the
input and output of the filter.

188

Diniz, da Silva and Netto
Elimination of zero-input limit cycles

(a)

z–1 z–1 z–1

N21

Linear N-port y(n)u(n)

x1(n + 1) x2(n + 1) xN(n + 1)x1(n) x2(n) xN(n)

…

(b)

[[[

]]]

Q Q Q

N21

Linear N-port y(n)u(n)

z–1 z–1 z–1
x1(n + 1)

x'1(n + 1)

x2(n + 1)

x'2(n + 1)

xN(n + 1)

x'N(n + 1)

x1(n) x2(n) xN(n)

…

Figure 29: Digital filter networks: (a) ideal; (b) with quantizers at the state variables.

189

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• In order to analyze zero-input limit cycles, it is sufficient to consider the recursive part
of the state equation given by

x(k + 1) = [Ax(k)]Q = [x′(k + 1)]Q (165)

where the quantization operations [·]Q are nonlinear operations such as truncation,
rounding, or overflow.

190

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• The basis for the elimination of nonlinear oscillations is given by Theorem 11.1 below.

• Theorem: If a stable digital filter has a state matrix A and, for any N × 1 vector x̂
there exists a diagonal positive-definite matrix G, such that

x̂T(G− ATGA)x̂ ≥ 0 (166)

then the granular zero-input limit cycles can be eliminated if the quantization is
performed through magnitude truncation.

• Proof: Consider a non-negative pseudo-energy Lyapunov function given by

p(x(n)) = xT(n)Gx(n) (167)

191

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• The energy variation in a single iteration can be defined as

∆p(n+1) = p(x(n + 1)) − p(x(n))

= xT(n + 1)Gx(n + 1) − xT(n)Gx(n)

= [x′T(n + 1)]QG[x′(n + 1)]Q − xT(n)Gx(n)

= [Ax(n)]TQG[Ax(n)]Q − xT(n)Gx(n)

= [Ax(n)]TG[Ax(n)] − xT(n)Gx(n)

−

N∑

i=1

(x′2
i (n + 1) − x2

i (n + 1))gi

= xT(n)[ATGA− G]x(n) −

N∑

i=1

(x′2
i (n + 1) − x2

i (n + 1))gi(168)

where gi are the diagonal elements of G.

192

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• If quantization is performed through magnitude truncation, then the errors due to
granular quantization and overflow are such that

|xi(n + 1)| ≤ |x′
i(n + 1)| (169)

for all i and n. Therefore, if equation (166) holds, from equation (168), we have that

∆p(n + 1) ≤ 0 (170)

• If a digital filter is implemented with finite-precision arithmetic, within a finite number
of samples after the input signal becomes zero, the output signal will become either a
periodic oscillation or zero.

193

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• Periodic oscillations, with nonzero amplitude, can not be sustained if
∆p(n + 1) ≤ 0, as shown above.

• Therefore, equations (166) and (169) are sufficient conditions to guarantee the
elimination of granular zero-input limit cycles on a recursive digital filter.

• Note that the condition given in equation (166) is equivalent to requiring that F be
positive semidefinite, where

F = (G− ATGA) (171)

• It is worth observing that for any stable state matrix A, its eigenvalues are inside the
unit circle, and there will always be a positive-definite and symmetric matrix G such
that F is symmetric and positive semidefinite.

194

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• However, if G is not diagonal, the quantization process required to eliminate
zero-input limit cycles is extremely complicated, as the quantization operation in each
quantizer is coupled to the others.

• On the other hand, if there is a matrix G which is diagonal and positive definite such
that F is positive semidefinite, then zero-input limit cycles can be eliminated by
simple magnitude truncation.

• In the following theorem, we will state more specific conditions regarding the
elimination of zero-input limit cycles in second-order systems.

195

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• Theorem: Given a 2 × 2 stable state matrix A, there is a diagonal positive-definite
matrix G, such that F is positive semidefinite, if and only if

a12a21 ≥ 0 (172)

or

a12a21 < 0

|a11 − a22| + det(A) ≤ 1





(173)

196

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• Proof: Let G = (T−1)2 be a diagonal positive-definite matrix, such that T is a
diagonal nonsingular matrix.

• Therefore, we can write F as

F = T−1T−1 − ATT−1T−1A (174)

and then

TTFT = TTT−1T−1T− TTATT−1T−1AT

= I− (T−1AT)T(T−1AT)

= I− M (175)

with M = (T−1AT)T(T−1AT), as TT = T.

• Since the matrix (I− M) is symmetric and real, its eigenvalues are real.

197

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• This matrix is then positive semidefinite if and only if its eigenvalues are
non-negative, or, equivalently, if and only if its trace and determinant are
non-negative. We then have that

det{I− M}=1 + det{M} − tr{M} = 1 + (det{A})2 − tr{M} (176)

tr{I− M}=2 − tr{M} (177)

• For a stable digital filter, it is easy to verify that det{A} < 1, and then

tr{I− M} > det{I− M} (178)

• Hence, the condition det{I− M} ≥ 0 is necessary and sufficient to guarantee that
(I− M) is positive semidefinite.

198

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• From the definition of M, and using α = t22/t11, then

det{I− M} = 1 + (det{A})2 −

(

a2
11 + α2a2

12 +
a2

21

α2
+ a2

22

)

(179)

• By calculating the maximum of the equation above with respect to α, we get an
optimal α! such that

(α!)2 =

∣

∣

∣

∣

a21

a12

∣

∣

∣

∣

(180)

and then

det!{I− M} = 1 + (det{A})2 − (a2
11 + 2|a12a21| + a2

22)

= (1 + det{A})2 − (tr{A})2 + 2(a12a21 − |a12a21|) (181)

where det! denotes the maximum value of the respective determinant.

199

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• We now analyze two separate cases to guarantee that det!{I− M} ≥ 0.

– If

a12a21 ≥ 0 (182)

then

det!{I− M} = (1 + det{A})2 − (tr{A})2

= (1 + α2)2 − (−α1)2

= (1 + α1 + α2)(1 − α1 + α2) (183)

where α1 = −tr{A} and α2 = det{A} are the filter denominator coefficients. It
can be verified that, for a stable filter, (1 + α1 + α2)(1 − α1 + α2) > 0, and
then equation (182) implies that (I− M) is positive definite.

200

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• (cont.)

– If

a12a21 < 0 (184)

then

det!{I− M} = 1 + (det{A})2 − (a2
11 − 2a12a21 + a2

22)

= (1 − det{A})2 − (a11 − a22)2 (185)

This equation is greater than or equal to zero, if and only if

|a11 − a22| + det{A} ≤ 1 (186)

201

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• Therefore, either equation (182) or equations (184) and (186) are the necessary and
sufficient conditions for the existence of a diagonal matrix

T = diag {t11 t22} (187)

with

t22

t11
=

√

∣

∣

∣

∣

a21

a12

∣

∣

∣

∣

(188)

such that F is positive semidefinite.

202

Diniz, da Silva and Netto

Elimination of zero-input limit cycles

• It is worth observing that the above theorem gives the conditions for the matrix F to
be positive semidefinite for second-order sections.

• In the example below, we illustrate the limit-cycle elimination process by showing,
without resorting to Theorem 11.2, that a given second-order structure is free from
zero-input limit cycles.

• The reader is encouraged to apply the theorem to show the same result.

203

Diniz, da Silva and Netto

Example 11.11

• Examine the possibility of eliminating limit cycles in the network of Figure 30.

+ +

+
+

+ +
+ z –1 z –1 +

P 4
P 3 C 0

y BP (n)

y N (n)

C 1 C 2 P 5

–1 y HP (n)

–m 2 –m 1

P 2 P 1

x 2 (n)
x 1 (n)

y LP (n)

y(n)

✕

✕ ✕

✕ ✕

Figure 30: General-purpose network.

204

Diniz, da Silva and Netto
Example 11.11 - Solution

• The structure in Figure 30 realizes lowpass, bandpass, and highpass transfer
functions simultaneously (with subscripts LP, BP, and HP, respectively).

• The structure also realizes a transfer function with zeros on the unit circle, using the
minimum number of multipliers.

• The characteristic polynomial of the structure is given by

D(z) = z2 + (m1 − m2)z + m1 + m2 − 1 (189)

• In order to guarantee stability, the multiplier coefficients m1 and m2 should fall in
the range

m1 > 0

m2 > 0

m1 + m2 < 2





(190)

205

Diniz, da Silva and Netto

Example 11.11 - Solution

• Figure 31 depicts the recursive part of the structure in Figure 30, including the
quantizers.

+

+

+
z –1 z –1

[Q] [Q]
x1(n + 1) x2(n + 1)

x'1(n + 1)

x1(n)

–x 2 (n)

–1

–m 2 –m 1

✕ ✕

Figure 31: Recursive part of the network in Figure 30.

206

Diniz, da Silva and Netto

Example 11.11 - Solution

• The zero-input state-space equation for the structure in Figure 31 is

x′(n + 1) =





x′
1(n + 1)

x′
2(n + 1)



 = A





x1(n)

x2(n)



 (191)

with

A =





(1 − m1) m2

−m1 (m2 − 1)



 (192)

• By applying quantization to x′(n + 1), we find

x(n + 1) = [x′(n + 1)]Q = [Ax(n)]Q (193)

207

Diniz, da Silva and Netto

Example 11.11 - Solution

• A quadratic positive-definite function can be defined as

p(x(n)) = xT(n)Gx(n) =
x2

1

m2
+

x2
2

m1
(194)

with

G =





1
m2

0

0 1
m1



 (195)

which is positive definite, since from equation (190), m1 > 0 and m2 > 0.

208

Diniz, da Silva and Netto

Example 11.11 - Solution

• An auxiliary energy increment is then

∆p0(n + 1) = p(x′(n + 1)) − p(x(n))

= x′T(n + 1)Gx′(n + 1) − xT(n)Gx(n)

= xT(n)[ATGA − G]x(n)

= (m1 + m2 − 2)

(

x1(n)

√

m1

m2
− x2(n)

√

m2

m1

)2

(196)

209

Diniz, da Silva and Netto

Example 11.11 - Solution

• Since from equation (190), m1 + m2 < 2, then

∆p0(n + 1) = 0, for x1(n) = x2(n)
m2

m1

∆p0(n + 1) < 0, for x1(n) '= x2(n)
m2

m1





(197)

• Now, if magnitude truncation is applied to quantize the state variables, then
p(x(n)) ≤ p(x′(n)), which implies that

∆p(x(n)) = p(x(n + 1)) − p(x(n)) ≤ 0 (198)

and then p(x(n)) is a Lyapunov function.

• Overall, when no quantization is applied in the structure of Figure 30, no
self-sustained oscillations occur if the stability conditions of equation (190) are
satisfied.

210

Diniz, da Silva and Netto

Example 11.11 - Solution

• If, however, quantization is applied to the structure, as shown in Figure 31,
oscillations may occur.

• Using magnitude truncation, then |xi(n)| ≤ |x′
i(n)|, and under these

circumstances, p(x(n)) decreases during the subsequent iterations, and eventually
the oscillations disappear, with

x(n) =





0

0



 (199)

being the only possible equilibrium point.

211

Diniz, da Silva and Netto

Elimination of constant-input limit cycles

• As seen above, the sufficient conditions for the elimination of zero-input limit cycles
are well established.

• However, if the system input is a nonzero constant, limit cycles may still occur.

• It is worth observing that the response of a stable linear system to a constant input
signal should also be a constant signal.

• In the associated literature, a theorem is presented that establishes how
constant-input limit cycles can also be eliminated in digital filters in which zero-input
limit cycles are eliminated. This theorem is as follows.

212

Diniz, da Silva and Netto

Elimination of constant-input limit cycles

• Theorem: Assume that the general digital filter in Figure 29b does not sustain
zero-input limit cycles and that

x(n + 1) = [Ax(n) + Bu(n)]Q

y(n) = CTx(n) + du(n)





(200)

• Constant-input limit cycles can also be eliminated, by modifying the structure in
Figure 29b, as shown in Figure 32, where

p = [p1 p2 · · ·pn]T = (I− A)−1B (201)

and pu0 must be representable in the machine wordlength, where u0 is a constant
input signal.

213

Diniz, da Silva and Netto

Elimination of constant-input limit cycles

z–1 z –1 z –1

–1–1–1

[[[

]]]

Q Q Q
+ + +

+++

P1 P2 PN

Linear N-port

N21

y(n)u(n)

✕ ✕ ✕

Figure 32: Modified Nth-order network for the elimination of constant-input limit cycles.

214

Diniz, da Silva and Netto

Elimination of constant-input limit cycles

• Proof: Since the structure of Figure 29b is free from zero-input limit cycles, the
autonomous system

x(n + 1) = [Ax(n)]Q (202)

is such that

lim
n→∞

x(n) = [0 0 . . . 0]T (203)

• If p is as given in equation (201), the modified structure of Figure 32 is described by

x(n + 1) = [Ax(n) − pu0 + Bu0]Q + pu0

= [Ax(n) − I(I− A)−1Bu0 + (I− A)(I− A)−1Bu0]Q + pu0

= [A(x(n) − pu0)]Q + pu0 (204)

215

Diniz, da Silva and Netto

Elimination of constant-input limit cycles

• Defining

x̂(n) = x(n) − pu0 (205)

then, from equation (204), we can write that

x̂(n + 1) = [Ax̂(n)]Q (206)

• Which is the same as equation (202), except for the transformation in the state
variable. Hence, as pu0 is machine representable (that is, pu0 can be exactly
calculated with the available wordlength), equation (206) also represents a stable
system free from constant-input limit cycles.

• If the quantization of the structure depicted in Figure 29b is performed using
magnitude truncation, the application of the strategy of Theorem 11.3 leads to the
so-called controlled rounding method.

216

Diniz, da Silva and Netto

Elimination of constant-input limit cycles

• The constraints imposed by requiring that pu0 be machine representable reduce the
number of structures in which the technique described by Theorem 11.3 applies.

• However, there are a large number of second-order sections and wave digital filter
structures in which these requirements are automatically met.

• In fact, a large number of research papers have been published proposing new
structures which are free from zero-input limit cycles, and free from constant-input
limit cycles.

• However, the analysis procedures for the generation of these structures are not
unified and here we have aimed to provide a unified framework leading to a general
procedure to generate structures which are free from granular limit cycles.

217

Diniz, da Silva and Netto

Example 11.12

• Show that by placing the input signal at the point denoted by x1(n), the structure in
Figure 30 is free from constant-input limit cycles.

218

Diniz, da Silva and Netto

Example 11.12 - Solution

• The second-order section of Figure 30, with a constant input x1(n) = u0, can be
described by

x(n + 1) = Ax(n) +





−m1

−m1



u0 (207)

with p such that

p =





m1 −m2

m1 2 − m2





−1 



−m1

−m1



 =





−1

0



 (208)

• Therefore, pu0 is clearly machine representable, for any u0, and the constant-input
limit cycles can be eliminated, as depicted in Figure 33.

219

Diniz, da Silva and Netto

Example 11.12 - Solution

+

+ +

+ + +
z –1 z –1

[Q] [Q]

x 1 (n) –1

–1

u 0 –m 2 –m 1

✕ ✕

Figure 33: Elimination of constant-input limit cycles in the structure of Figure 30.

220

Diniz, da Silva and Netto

Example 11.13

• For the second-order state-variable realization as given in Figure 4.23 of the book,
discuss the elimination of constant-input limit-cycles in a distributed arithmetic
implementation as the one in Section 11.4.

221

Diniz, da Silva and Netto

Example 11.13 - Solution

• In a regular implementation, as the one in Figure 11, to eliminate zero-input limit
cycles in the state-space realization, the state variables x1(n) and x2(n) must be
calculated by ALU1 and ALU2 in double precision, and then properly quantized,
before being loaded into the shift-registers SR2 and SR3.

• However, it can be shown that no double-precision computation is necessary to avoid
zero-input limit cycles when implementing the state-space realization with the
distributed arithmetic approach.

• To eliminate constant-input limit cycles, the state-space realization shown in
Figure 34 requires that the state variable x1(n) must be computed by ALU1 in
double precision, and then properly quantized to be subtracted from the input signal.

222

Diniz, da Silva and Netto

Example 11.13 - Solution

• To perform this subtraction, register A in Figure 9 must be multiplexed with another
register that contains the input signal x(n), in order to guarantee that the signal
arriving at the adder, at the appropriate instant of time, is the complemented version
of x(n), instead of a signal coming from the memory.

• In such a case, the content of the ROM of ALU1 must be generated as

s′1j = a11x1j(n) + a12x2j(n) + a11xj(n); for the ROM of the ALU1 (209)

while ALU3 is filled in the same fashion as given in equation (52) and for ALU2 the
content is the same as in equation (51) with b2 replaced by a21.

223

Diniz, da Silva and Netto

Example 11.13 - Solution

x1(n)

c1

c2

a12

a22

a21

y (n)x(n)

d

a 11

z –1

z –1

1

1
–1

[Q]

[Q]

Figure 34: State-space realization immune to constant-input limit cycles.

224

Diniz, da Silva and Netto

Forced-response stability of digital filters with nonlinearities due to
overflow

• The stability analysis of the forced response of digital filters that include nonlinearities
to control overflow must be performed considering input signals for which in the ideal
linear system the overflow level is never reached after a given instant n0.

• In this way, we can verify whether the real system output will recover after an
overflow has occurred before instant n0.

• Although the input signals considered are in a particular class of signals, it can be
shown that if the real system recovers for these signals, it will also recover after each
overflow, for any input signal, if the recovery period is shorter than the time between
two consecutive overflows.

• Consider the ideal linear system as depicted in Figure 35a and the real nonlinear
system as depicted in Figure 35b.

225

Diniz, da Silva and Netto
Forced-response stability of digital filters with nonlinearities due to

overflow

(a)

N21

Linear N-port y(n)u1(n)

z–1 z–1 z–1
f1(n) x1(n) f2(n) x2(n) fN(n) xN(n)

…

(b)

[[[

]]]

0 0 0

N21

Linear N-port y(n)u2(n)

z–1 z–1 z–1

f'1(n) f'2(n) f'N(n)

x'1(n) x'2(n) x'N(n)

Q Q Q

x'1(n + 1) x'2(n + 1) x'N(n + 1)

…

Figure 35: General digital filter networks: (a) ideal; (b) with quantizers at the state vari-
ables.

226

Diniz, da Silva and Netto

Forced-response stability of digital filters with nonlinearities due to
overflow

• The linear system illustrated in Figure 35a is described by the equations

f(n) = Ax(n) + Bu1(n) (210)

x(n) = f(n − 1) (211)

and the nonlinear system illustrated in Figure 35b is described by the equations

f′(n) = Ax′(n) + Bu2(n) (212)

x′(n) = [f′(n − 1)]Q0
(213)

where [u]Q0
denotes quantization of u, in the case where an overflow occurs.

• We assume that the output signal of the nonlinear system is properly scaled so that
no oscillation due to overflow occurs if it does not occur at the state variables.

227

Diniz, da Silva and Netto

Forced-response stability of digital filters with nonlinearities due to
overflow

• The response of the nonlinear system of Figure 35b is stable if, when
u1(n) = u2(n), the difference between the outputs of the linear N-port system of
Figure 35a, f(n), and the outputs of the linear N-port system of Figure 35b, f′(n),
tends to zero as n → ∞.

• In other words, if we define an error signal e(n) = f′(n) − f(n), then

lim
n→∞

e(n) = [0 0 . . . 0]T (214)

• If the difference between the output signals of the two linear N-port systems
converges to zero, this implies that the difference between the state variables of both
systems will also tend to zero.

228

Diniz, da Silva and Netto

Forced-response stability of digital filters with nonlinearities due to
overflow

• This can be deduced from equations (210) and (212), which yield

e(n) = f′(n) − f(n) = A[x′(n) − x(n)] = Ae′(n) (215)

where e′(n) = x′(n) − x(n) is the difference between the state variables of both
systems.

• Equation (215) is equivalent to saying that e(n) and e′(n) are the output and input
signals of a linear N-port system described by matrix A, which is the transition
matrix of the original system.

• Then, from equation (214), the forced-response stability of the system in Figure 35b
is equivalent to the zero-input response of the same system, regardless of the
quantization characteristics [·]Q0

.

229

Diniz, da Silva and Netto

Forced-response stability of digital filters with nonlinearities due to
overflow

• Substituting equations (211) and (213) in equation (215), we have that

e′(n) = [f′(n−1)]Q0
− f(n−1) = [e(n−1)+ f(n−1)]Q0

− f(n−1) (216)

• By defining the time-varying vector v(e(n), n) as

v(e(n), n) = [e(n) + f(n)]Q0
− f(n) (217)

equation (216) can be rewritten as

e′(n) = v(e(n − 1), (n − 1)) (218)

• The nonlinear system described by equations (215)–(218) is depicted in Figure 36.

230

Diniz, da Silva and Netto

Forced-response stability of digital filters with nonlinearities due to
overflow

z –1 z –1z –1

2

V

N

V

e (n)
2

1

V

e (n)
1

e' (n)1 e' (n)2 e (n)
N

e' (n)N

Linear N-port

…

Figure 36: Nonlinear system relating the signals e′(n) and e(n).

231

Diniz, da Silva and Netto

Forced-response stability of digital filters with nonlinearities due to
overflow

• As we saw in Subsection 11.8.3, a system such as the one in Figure 36 is free from
zero-input nonlinear oscillations if the nonlinearity v(·, n) is equivalent to the
magnitude truncation, that is

|v(ei(n), n)| < |ei(n)|, for i = 1, 2, . . ., N (219)

• If we assume that the internal signals are such that |fi(n)| ≤ 1, for n > n0, then it
can be shown that equation (219) remains valid whenever the quantizer Q0 has
overflow characteristics within the hatched region of Figure 37.

232

Diniz, da Silva and Netto

Forced-response stability of digital filters with nonlinearities due to
overflow

1

Q 0 (x i (n))

x i (n)

–1

–1 1 2 3
–2

–3

Figure 37: Region for the overflow nonlinearity which guarantees forced-response stability
in networks which satisfy Theorem 11.1.

233

Diniz, da Silva and Netto
Forced-response stability of digital filters with nonlinearities due to

overflow

• Figure 37 can be interpreted as follows:

– If −1 ≤ xi(n) ≤ 1, then there should be no overflow.

– If 1 ≤ xi(n) ≤ 3, then the overflow nonlinearity should be such that
2 − xi(n) ≤ Q0(xi(n)) ≤ 1.

– If −3 ≤ xi(n) ≤ −1, then the overflow nonlinearity should be such that
−1 ≤ Q0(xi(n)) ≤ −2 − xi(n).

– If xi(n) ≥ 3 or xi(n) ≤ −3, then −1 ≤ Q0(xi(n)) ≤ 1.

• It is important to note that the overflow nonlinearity of the saturation type
(equation (162)) satisfies the requirements in Figure 37.

• Summarizing the above reasoning, one can state that a digital filter which is free of
zero-input limit cycles, according to the condition of equation (166), is also
forced-input stable, provided that the overflow nonlinearities are in the hatched
regions of Figure 37.

234

Diniz, da Silva and Netto

Do-it-yourself: Finite-precision digital signal processing

• Experiment 11.1: Let us play around digital representation in MATLAB. We
concentrate our efforts here in the case −1 < x < 0, which yields different
(n + 1)-bit standard, one’s-complement, two’s-complement, and CSD
representations.

• The standard sign-magnitude binary representation xbin can be obtained making
sx = 1 and following the procedure performed in equation (12), such that
x = abs(x); xbin = [1 zeros(1,n)];
for i=2:n+1,

x = 2*x;
if x >= 1,

xbin(i) = 1; x = x-1;
end;

end;

235

Diniz, da Silva and Netto

Do-it-yourself: Finite-precision digital signal processing

• The one’s-complement xbin1 representation of x can be determined as
xbin1 = [1 ˜xbin(2:n+1)];
where the ˜x operator determines the binary complement of x in MATLAB.

• For the two’s-complement representation xbin2, we must add 1 to the least
significant bit of xbin1. This can be performed, for instance, by detecting the last
0-bit in xbin1, which indicates the final position of the carry-over bit, such that
xbin2 = xbin1;
b = max(find(xbin1 == 0));
xbin2(b:n+1) = ˜xbin2(b:n+1);

236

Diniz, da Silva and Netto

Do-it-yourself: Finite-precision digital signal processing

• We can then obtain the CSD representation xCSD from xbin2, following the
algorithm described in Subsection 11.2.2:
delta = zeros(1,n+2); theta = zeros(1,n+1); xCSD =
theta;
x2aux = [xbin2(1) xbin2 0];
for i = n:-1:1,

theta(i) = xor(x2aux(i+1),x2aux(i+2));
delta(i) = and(˜delta(i+1),theta(i));
xCSD(i) = (1-2*x2aux(i))*delta(i);

end;

237

Diniz, da Silva and Netto

Do-it-yourself: Finite-precision digital signal processing

• Using n = 7 and x = −0.6875 with the scripts above, results in the numerical
representations seen in Table 5.

Table 5: Numerical 8-digit representations of x = −0.6875 in Experiment 11.1.

Numerical Format [x]

Standard binary 1.1011000

One’s complement 1.0100111

Two’s complement 1.0101000

CSD 10101000

238

Diniz, da Silva and Netto

Do-it-yourself: Finite-precision digital signal processing

• Experiment 11.2: Consider the digital filter structure depicted in Figure 38, whose
state-space description is given by

x(n + 1) =





(1−m1) −m2

m1 (m2−1)



 x(n) +





(2−m1−m2)

−(2−m1−m2)



u(n) (220)

y(n) =
[

−m1 −m2

]

x(n) + (1−m1−m2)u(n)(221)

239

Diniz, da Silva and Netto

Do-it-yourself: Finite-precision digital signal processing

Figure 38: Digital filter structure.

240

Diniz, da Silva and Netto

Do-it-yourself: Finite-precision digital signal processing

• The corresponding transfer function is

H(z) =
[

−m1 −m2

]





(z−1+m1) m2

−m1 (z−m2+1)





−1 



(2−m1−m2)

−(2−m1−m2)





+(1−m1−m2) (222)

which, after some cumbersome algebraic development, becomes

H(z) =
N(z)

D(z)
= −

(m1 + m2 − 1)z2 + (m1 − m2)z + 1

z2 + (m1 − m2)z + (m1 + m2 − 1)
(223)

corresponding to an all-pass second-order block.

241

Diniz, da Silva and Netto

Do-it-yourself: Finite-precision digital signal processing

• The transfer function from the filter input to the −m1 multiplier is given by

F1(z) =
z2 + 2(1 − m2)z + 1

z2 + (m1 − m2)z + (m1 + m2 − 1)
(224)

and the transfer function from the filter input to the −m2 multiplier is

F2(z) =
z2 + 2(m1 − 1)z + 1

z2 + (m1 − m2)z + (m1 + m2 − 1)
(225)

242

Diniz, da Silva and Netto

Do-it-yourself: Finite-precision digital signal processing

• Determining the L2 norm for each scaling transfer function in a closed form is quite
computationally intensive. Using MATLAB, however, this can be done numerically
using few commands, such as:
m1 = 0.25; m2 = 1.25;
N1 = [1 2*(1-m2) 1]; N2 = [1 2*(m1-1) 1];
D = [1 (m1-m2) (m1+m2-1)];
np = 1000;
[F1,f] = freqz(N1,D,np); F1_2 =
sqrt((sum(abs(F1).ˆ2))/np);
[F2,f] = freqz(N2,D,np); F2_2 =
sqrt((sum(abs(F2).ˆ2))/np);

243

Diniz, da Silva and Netto

Do-it-yourself: Finite-precision digital signal processing

• As a result, F1_2 and F2_2 are equal to 1.7332 and 1.1830, respectively.

• Then, we should scale the filter input by a factor of

λ =
1

max
i=1,2

[‖Fi(z)‖2]
=

1

max [1.7332, 1.1830]
= 0.5770 (226)

and compensate for this by multiplying the filter output by g = 1
λ = 1.7332.

244

Diniz, da Silva and Netto

Do-it-yourself: Finite-precision digital signal processing

• The transfer functions from the outputs of both multipliers −m1 and −m2 to the
filter output are expressed as

G1(z) = G2(z) = H(z) (227)

such that

‖G1(z)‖2 = ‖G2(z)‖2 = 1 (228)

as H(z) represents an all-pass filter with unit gain.

• Therefore, considering the scaling operation performed as above, the output noise
variance is given by

σ2
y = 3g2σ2

e + σ2
e = 10.0120σ2

e (229)

where the factor 3 accounts for the noise sources in the input scaling, −m1, and
−m2 multipliers.

245

