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ABSTRACT
Orthogonal frequency division multiplexing (OFDM) has been shown
to be an effective technique to combat multipath fading in wireless 
communications. It has been successfully used for HF radio 
applications and has been chosen as the standard for digital audio 
broadcasting and digital terrestrial TV broadcasting in Europe and 
high-speed wireless local areas networks. In this tutorial, we present 
the basic principles of OFDM and discuss the problems, and some of 
the potential solutions, in implementing an OFDM system. Techniques 
for peak-to-average power ratio reduction, time and frequency 
synchronization, and channel estimation will be discussed. We 
conclude with a brief overview of current application areas
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INTRODUCTION

• Motivation

• Radio Environment 

• Brief History 



MOTIVATION

• High-bit-rate wireless applications

• Limitations caused by the radio environment

• OFDM can overcome these inherent bit rate 
limitations



PATH LOSS MODEL

• Path Loss

• Shadow Fading

• Multipath

• Flat fading

• Doppler spread

• Delay spread

• Interference



where Pr is the local mean received signal 

PATH LOSS MODEL

• Different, often complicated, models are 
used for different environments. 

• A simple model for path loss, L, is

The path loss exponent αααα = 2 in free space; 
2 ≤≤≤≤ αααα ≤≤≤≤ 4 in typical environments.

power, Pt is the transmitted power, and d is 
the transmitter receiver distance.
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SHADOW FADING

• The received signal is shadowed by  
obstructions such as hills and buildings. 

• This results in variations in the local mean 
received signal power,

• Implications 
– nonuniform coverage 
– increases the required transmit power
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MULTIPATH

Constructive and destructive interference
of arriving rays
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FLAT FADING

• The delay spread is small compared to the
symbol period. 

• The received signal envelope, r, follows a
Rayleigh or Rician distribution.

• Implications 
– increases the required transmit power
– causes bursts of errors

shadow fading

Rayleigh fading

path loss

log (distance)

Received 
Signal 
Power 
(dB)
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DOPPLER SPREAD

• A measure of the spectral broadening caused 
by the channel time variation.

• Implications 
– signal amplitude and phase decorrelate

after a time period ~ 1/fD

Example:  900 MHz, 60 mph, fD = 80 Hz
5 GHz, 5 mph, fD = 37 Hz

λλλλ
≤≤≤≤ vfD
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Bs = signal bandwidth ≈≈≈≈ 1/T
H(f)

Bs

1
2ττττ

f
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• large      frequency-selective fadingττττ
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The rms delay spread imposes a limit on the 
maximum bit rate.  For example, for QPSK

• ISI causes an irreducible error floor.

ττττ Maximum Bit Rate 
Mobile (rural) 25 µµµµsec 8 kbps 
Mobile (city) 2.5 µµµµsec 80 kbps 
Microcells 500 nsec 400 kbps 
Large Building 100 nsec 2 Mbps
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INTERFRENCE

• Frequencies are reused often to maximize spectral
efficiency.

• For interference-limited systems, the noise floor is
dominated by co-channel interference.

• Implications 
– high reuse efficiency requires interference

mitigation
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• Military HF radio (1950’s - 1960’s)
– Kineplex
– Kathryn

• Wireline modem (Telebit, Gandalf)
• Cellular modem (Telebit)
• Digital audio and terrestrial TV broadcasting 

(Europe)
• Asymmetric digital subscriber line (DMT)
• Wireless LANs

– IEEE802.11 - National Information 
Infrastructure

– HIPERLAN TYPE II

HISTORY
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BASIC CONCEPTS

• Multicarrier

• Basic OFDM

• Impairments

• Alternative forms



• The transmission bandwidth is divided into many  
narrow subchannels which are transmitted in  
parallel. 

• Ideally, each subchannel is narrow enough so  
that the fading it experiences is flat ⇒⇒⇒⇒ no ISI.

RF
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• Disadvantage:
- Requires filter bank at receiver
- Spectrally inefficient 



Horizontal slide here



• A guard interval can virtually eliminate ISI 

BASIC OFDM RECEIVER

• Subchannel separation 
– choose fn = f0 + n∆∆∆∆f, with ∆∆∆∆f = 

– integrate over NT, then d(m) = d(m)

1 
NT

^

(or, interblock interference) ⇒⇒⇒⇒ lower spectral
or power efficiency.

parallel
to

serial
converter
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DFT IMPLEMENTATION
TRANSMITTER

• Transmitted signal can be obtained 
using a Discrete Fourier Transform 

• If sampled at a rate of Ts /N,

• For orthogonality, ∆∆∆∆fTs = 1,

• Efficient FFT implementation
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DFT IMPLEMENTATION
RECEIVER
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• Coding across subchannels ⇒⇒⇒⇒ works best with 
large delay spread

• Adaptive loading 
– More bits/symbol where SNR is sufficient
– Could also adapt transmit power in each 

subchannel 
– Requires reliable feedback channel and 

accurate channel information

PERFORMANCE IMPROVEMENT

• Frequency equalization and coherent detection 
⇒⇒⇒⇒ requires accurate channel estimation



SAMPLE DESIGN

• Goal
– Transmit 1.2 Mbits/sec using QPSK with   

B=800 kHz bandwidth channel 
– Delay span up to 40 µµµµsec (max 5 kbaud for 

single carrier)

• Design
– Choose subchannel width so that there is no 

ISI in each subchannel ⇒⇒⇒⇒ ∆∆∆∆ f = 6.25 kHz ⇒⇒⇒⇒ N = 
B/∆∆∆∆f = 128 subchannels

– OFDM symbol duration Ts=1/∆∆∆∆f  = 160 µµµµsec
– Guard interval Tg = 40 µµµµsec
– OFDM block length: Tf = Ts + Tg = 200 µµµµsec
– Assuming 4 guard channels on each end, there 

are 120 data subchannels, each transmitting 2 
bits in 200 µµµµsec

sec/Mbits2.1
sec200
bits2x120Rb ====

µµµµ
====



IMPAIRMENTS

• Time-varying fading, frequency offset, and 
timing mismatch impair the orthogonality of 
the subchannels.

• Large amplitude fluctuations can be a serious 
problem when transmitting through a 
nonlinearity.



TIME-VARYING IMPAIRMENTS

• General expression:

• Frequency offset
– For a frequency offset between the 

transmitter and receiver,
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TIMING MISMATCH

• Timing offset smaller  than the guard 
interval results in a phase shift.

⇓⇓⇓⇓

a phase shift

• Otherwise, additional interference is 
generated.

• Best solution is to choose sufficient 
guard interval.
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DELAY SPREAD

• Assuming time-invariance, the
multipath channel results in a 
received signal at k-th subchannel

• Simple complex multiplicative
distortion

• For coherent detection, channel 
parameter estimation and tracking 
are required.
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NONLINEARITIES

• Large peak-to-average power ratio (PAPR)
• PAPR ~ number of subcarriers 

• Large PAPR ⇒⇒⇒⇒ inband distortion and spectral 
spreading 

• PAPR reduction techniques required



ALTERNATIVE FORMS

• Bandlimited OFDM:
– R.W. Chang (BSTJ, Dec. 1966)
– B.R. Saltzberg (IEEE Trans. on Comm. 

Tech., Dec. 1967)
– B. Hirosaki (IEEE Trans. on Comm., Jan. 

1980)

• Wavelet-Based OFDM:
– B. LeFloch (Proc. IEEE, June 1995)
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PAP RATIO REDUCTION

•PAPR properties

•Clipping and filtering

•Selective mapping

•Partial transmit sequences

•Coding

•Other techniques



• Superposition of a large number of subcarrier
signals results in a Rayleigh envelope.

• PAPR definition

For N=128, PAPR = 21 dB.

• However, these large peaks do not occur very 
often.

PAPR PROPERTIES
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PAPR PROPERTIES

• Large PAPR
– In band noise ⇒⇒⇒⇒ increases BER
– Spectral spreading ⇒⇒⇒⇒ ACI

• Possible Solutions
– Amplifier backoff
– Reduce PAPR of OFDM signal



• Deliberate clipping will reduce peak value, 
but will result in spectral spreading (ACI) 
and in-band distortion (BER).

• Filtering is required to minimize spectral 
spreading. ⇒⇒⇒⇒ peak regrowth

CLIPPING AND FILTERING



CLIPPING AND FILTERING
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• Multiply data signal by M different sequences, 
r1,… rM,

• Convert each data sequence into the time-
domain with an N-point IFFT

• Select sequence for transmission with the 
smallest PAPR

SELECTIVE MAPPING



• Divide the OFDM tones into M clusters

• Convert each cluster into the time-domain 
using an N-point IFFT

• Combine the M output sequences to 
minimize the PAPR

PARTIAL TRANSMIT SEQUENCE



Using the same redundancy, PTS can achieve a 
lower PAPR at the expense of more complexity. 

PERFORMANCE



• Nonlinear
– Map transmitted sequence into a larger 

sequence where high-peak sequences 
are not used

– Good performance with little overhead
– Requires table look-up ⇒⇒⇒⇒ only applicable 

for small number of subchannels
– Error propagation

• Current work searching for systematic 
implementation with some error correction 
capability

CODING
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TIME AND FREQUENCY 
SYNCHRONIZATION

•Timing offset estimation

•Frequency offset estimation

•Joint offset estimation



TIMING OFFSET ESTIMATION

•Pilot-based methods
– Non-OFDM-based pilot symbols
– OFDM-based pilot symbols

•Non-pilot based methods



PILOT-BASED TIMING
Non-OFDM Pilot Symbols

Use a null signal inserted at the start of each 
group of OFDM blocks

OFDM OFDM OFDM OFDM OFDM OFDM
Null
Symbol

Null
Symbol

time

. . .



PILOT-BASED TIMING
OFDM Pilot Symbols

Design special OFDM block for estimation (Moose, 
Schmidl)

. . .

Cyclic
prefix

= time

frequency

N tones

First Half of Symbol      Second Half of Symbol 



PILOT-BASED TIMING
Performance
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NON-PILOT BASED TIMING

Use redundancy in the cyclic prefix to 
estimate the time offset
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FREQUENCY OFFSET ESTIMATION

•Pilot-based methods
– Non-OFDM-based pilot symbols
– OFDM-based pilot symbols

•Non-pilot based methods



OFDM symbol
with pilots OFDM symbol OFDM symbol OFDM symbol

with pilots

D-1 OFDM symbols

time

Frequency domain of an OFDM pilot symbol

...

...

Pilot tones spaced every 4 tones. Pilot tone

FREQUENCY OFFSET ESTIMATION
Pilot-Based

An OFDM-based pilot scheme for coarse and fine 
frequency synchronization



FREQUENCY OFFSET ESTIMATION
Performance
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JOINT ESTIMATION

Based on shortened Moose pilot symbol
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JOINT ESTIMATION

Based on a 16-sample cyclic prefix
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CHANNEL ESTIMATION

•Differential and coherent detection

•Decision-directed estimation

•Pilot-symbol-aided estimation



DIFFERENTIAL AND COHERENT 
DETECTION

• 3-dB SNR degradation for differential detection

• Differential
– in time ⇒⇒⇒⇒ sensitive to Doppler shift
– in frequency ⇒⇒⇒⇒ sensitive to delay spread

• Coherent detection requires channel 
information



DECISION-DIRECTED ESTIMATION

• Use sliced data for estimating channel 
parameters

• Obtain an MMSE or robust estimator using the
correlations of the channel parameters in time 
and/or frequency.



DECISION-DIRECTED ESTIMATION
MMSE Estimator

•Using time and frequency correlations

•Estimator coefficients

•Estimator structure
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DECISION-DIRECTED ESTIMATION
Robust Estimator

•Why robust estimation?
– A large performance degradation is 

possible if MMSE estimator is not matched 
to the channel. 

•Robust design
– Match rectangular spectrum in time and 

frequency domains
– Good performance for almost all channels
– Relatively insensitive to Doppler and delay 

profiles



PILOT-SYMBOL-AIDED ESTIMATION

• Pilot symbol grid

• Obtain an estimate of the channel at the pilot 
symbol positions.

• Obtain estimates at other frequencies and 
times by interpolation.



PILOT-SYMBOL-AIDED ESTIMATION
Grid Selection

• 2-D spectrum of channel parameters at pilot 
symbol positions

• Non-rectangular pilot symbol grids are better



SIMULATION PARAMETERS

• 800 kHz bandwidth

• Number of subchannels N = 128 
subchannels (4 guard subchannels at 
each end)

• OFDM block duration Tf = 200 µsec (with 
40-µsec guard interva)

• (40,20) R-S code, which corrects 10 
erasures, based on signal strength, and 
correct 5 random errors



WORD ERROR RATE
Typical Urban Channel



WORD ERROR RATE
Hilly Terrain Channel
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APPLICATIONS

•Asymmetric digital subscriber line

•Digital audio and terrestrial TV
broadcasting

•Wireless LAN’s

•High-speed cellular data



DIGITAL AUDIO BROADCASTING

• Broadcasting standard in Europe

• Single frequency network

• Bandwidth = 7 MHz

• Useful bit rate = 5.6 Mbits/sec

• N = 448 subchannels

• Tf = 80 µµµµsec, Tf = 64 µµµµsec, and Tg = 16 µµµµsec 

• Rate-1/4 conv. coding with constraint length 7

• Time interleaving: 16 X 24 msec

• Pilot symbols for channel estimation



WIRELESS LANS

• IEEE802.11(a)
– New NII spectrum at about 5 GHz
– Indoor applications

OFDM

Convolution K=7, R=1/2 or R=3/4
inter-carrier interleave

Modulation scheme

DBPSK, 16 QAM in each subchannelSub-carrier Modulation

48 Subchannels out of 64Number of subchannels

5 Mbps (BPSK, R=1/2)Data rates

Coding

10 Mbps (QPSK, R=1/2)

15 Mbps (QPSK, R=3/4))

20 Mbps (16QAM, R=1/2)

30 Mbps (16QAM, R=3/4)



WIRELESS LANS

48, 32, 24, 16 and 8 MbpsInformation data rate

• HIPERLAN: High Performance Radio Local 
Area Network

– Standard in Europe at 5.2 GHz
– HIPERLAN Type I: single carrier 

GSMK with equalization
– HIPERLAN Type II: COFDM

OFDM with 16-QAM, QPSK or BPSKModulation

Convolutional 3/4 or 1/2Coding rate

48Coding

3 µµµµsOFDM symbol duration

600 nsGuard interval

600 nsTprefix

75 nsTpostfix

416.666 kHzSubchannel spacing

0.025Roll-off factor

25 MHzChannel Spacing

20 MHzOccupied -3 dB Bandwidth



Band Division Multiple Access (BDMA)

• Proposal by Sony, Japan
• Combination of TDMA, OFDM and cluster 

hopping

HIGH SPEED CELLULAR

• Parameters
– number of tones per cluster: Nc = 24
– tone spacing: ∆∆∆∆f = 4.17 kHz
– symbol duration: Ts = 1/∆∆∆∆f = 240 µsec
– guard interval: Tg = 38.8 µsec
– ramp time: Tr = 10 µsec
– block length: Tf = Ts+ Tr + Tg = 288.5 µsec
– cluster width: Bc = Nc ∆∆∆∆f = 100 kHz



HIGH SPEED CELLULAR

• Goal to provide wide-area Internet service 
to mobile subscribers

• Combines OFDM with multiple transmitter 
and receiver antennas and coding

• Parameters
– total bandwidth: B = 800 kHz
– number of tones: N = 192
– tone spacing: ∆∆∆∆f = B/N = 4.17 kHz
– symbol duration: Ts = 1/∆∆∆∆f = 240 µµµµsec
– guard interval: Tg = 48.5 µµµµsec
– block length: Tf = Ts + Tg = 288.5 µµµµsec
– rate-1/2 R-S code across subchannels

Advanced Cellular  Internet Service (ACIS)
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• High-bit-rate wireless data is desirable, but 
the radio environment puts an upper limit 
on the achievable bit rate.

• OFDM, by transmitting data over many 
narrow subchannels, can overcome the bit 
rate limit.

• However, to realize an OFDM system, 
several practical issues must be addressed, 
including PAPR, frequency offset and 
timing mismatch, and channel estimation.

• Several promising solutions have been 
proposed for all of these problems.

• OFDM is currently a very popular choice for 
future wireless applications, including 
wireless LANs, cellular and PCS data, and 
possibly Fourth Generation systems.

SUMMARY
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