

Building a community grid for medical image analysis inside a hospital, a case study

Marko Niinimaki, Xin Zhou, Adrien Depeursinge (PhD Student), Antoine Geissbuhler and Henning Müller, Medical Informatics Service, Geneva University Hospitals and University of Geneva

- Motivation: Grid computing for medical image analysis
- Challenges inside hospitals
- Solution guidelines
- An application
- Conclusions

- Motivation: Grid computing for medical image analysis
- Challenges inside hospitals
- Solution guidelines
- An application
- Conclusions

- Computerized medical image analysis provides tools for radiologists inside hospitals
 - Content-based image retrieval (CBIR)
 - Find similar images/cases
 - Computer-aided diagnosis
 - Automatic detection of abnormal patterns

. . .

- Medical image analysis can be computationally intensive:
 - Modern hospitals produce enormous amount of medical images:
 - ~70'000 images/day in Geneva radiology in 2007
 - 2D to 4D high-resolution images
 - Using latest image processing and machine learning algorithms
 - 2D to 4D convolutions
 - High-dimensional feature spaces

- Grid computing for medical image analysis:
 - Most of image processing and machine learning algorithms are parallelizable
 - Offline feature extraction for CBIR over large image collections is easy to parallelize:

- Previously: feature extraction for the GNU image finding tool (GIFT) CBIR system was parallelized using external resources provided by the KnowARC project
- Goal: use local resources within hospitals
- Benefits:
 - Policy conformance for handling confidential data
 - Connect resources at different sites within the organisation
 - Interoperability with external resources: one unique interface

- Local resources at the University Hospitals of Geneva (HUG):
 - No central computing infrastructure for research
 - ~6000 desktop computers
 - Mainly used to access patient records from central databases

\Rightarrow High potential computing resources

- Motivation: Grid computing for medical image analysis
- Challenges inside hospitals
- Solution guidelines
- An application
- Conclusions

Challenges inside hospitals

- Low priority for research compared to clinical routine:
 - Do not exhaust hospitals network resources as people's lives can depend on them
 - Respect data security and confidentiality
 - Use solutions requiring little maintenance for the user
- Main challenges are categorized as:
 - Infrastructures (I)
 - Grid software (G)
 - Political problems (P)

Challenges inside hospitals

• Infrastructures (I)

- I1: Ports are blocked by a rigid firewall
 - Requirement: do not rely on external resources
- I2: Research applications and Grid middlewares are mostly running on Linux whereas hospitals desktops have Windows XP
 - Req.: do not assume a Linux environment

Challenges inside hospitals

- Grid software (G)
 - G1: Grid software can be hard to install and maintain
 - Req.: use external expertise and plan time for learning
 - G2: Certificates are difficult to obtain
 - Req.: use own certificates authority if needed
- Political problems (P)
 - P1: Grids are relatively unknown by hospitals ITs: rejection of technology
 - Req.:
 - Involve hospitals IT
 - Create a test bed
 - Create solutions that requires little IT personnel's involvement

- Motivation: Grid computing for medical image analysis
- Challenges inside hospitals
- Solution guidelines
- An application
- Conclusions

Solutions guidelines

- A test bed was created within the HUG
- Infrastructures (I)
 - A local Grid information system was employed
 - Installation package was created containing a virtual machine (VM) with:
 - Debian Linux and image processing software
 - A local resource management system (LRMS)
 - Installation package was distributed using existing software distribution of the hospitals
 - The user can start/stop the VM when desired

vmware

Solutions guidelines

• Screenshot of users's desktop:

Solutions guidelines

- Grid software (G)
 - The Advanced Resource Connector (ARC)
 Grid middleware and Condor LRMS were used

- Political problems (P)
 - A test bed of 20 PCs was created before deploying a larger scale Grid
 - The PCs gain their IP addresses from main hospital area's address pool
 - VM acquire a MAC address at installation, and the DHCP has allocated IP addresses for those

Computing

NORDIIGRID

Grid Solution for Wide Are

©2008 University Hospitals of Geneva

- Motivation: Grid computing for medical image analysis
- Challenges inside hospitals
- Solution guidelines
- An application
- Conclusions

An application

- Offline feature extraction for the GIFT system was parallelized
 - N packages containing images and their processing instructions are sent to computing nodes
 - results are recovered from the nodes

An application

 Comparison of execution times for 50 packages of 1000 images:

Local server	709 min
37 CPUs remote clusters (KnowARC resources)	537 min
Local cluster, 10 CPUs	240 min

- Execution time was reduced
- Though the local cluster had less CPU's, the results were better – less transfer and queue time (no waiting time with local resources)

An application

• Local (a) versus remote (b) execution:

- Overhead was reduced from 10 min per package to 1 min
- Higher constancy of the execution times

- Motivation: Grid computing for medical image analysis
- Challenges inside hospitals
- Solution guidelines
- An application
- Conclusions

Conclusions

- A desktop Grid-like infrastructure was deployed inside the hospitals
- Infrastructures, Grid software and political problems were identified
- Little manual intervention was required because of virtualization and automatic software distribution
- Efficiency was improved compared to using external resources