
Simplifying the Utilization of
Grid Computation

using
Grid Wizard Enterprise

NA-MIC
National Alliance for Medical Image Computing
http://na-mic.org

• Typical computation intensive problems in research in computation
sciences:

1. Refinement of computational protocol.

Iteratively improve computational protocol by testing each
round of the applications against different algorithmic
parameters. (Parameter exploration).

2. Usage of released computational protocol applications.

Process large amounts of pathological inputs using the
particular application. (Dataset processing).

• Both of these are embarrassingly parallel problems.

Introduction

Embarrassingly Parallel Problem

• Embarrassingly parallel problem (EPP) is
the one faced when trying to execute in
parallel a collection of inter-independent
process invocations.

• Inter-independent processes are those
which don’t have any execution related
dependencies from each other.

• These processes are ideally suited to
execute in parallel by distributing their
execution across multiple processing units
such as clusters of computers.

• EPP is also known as “embarrassingly
parallel workload”.

Distributed Solution for EPP

• Solution: Distribute the execution of processes over an infrastructure consisting of
cluster(s) of computers, their resource managers (Condor, PBS, SGE) and
networked file systems (where inputs/outputs are/will be stored).

• To use this infrastructure, researchers required programming and system
administrator skills; which most of the time they don’t posses.

Distributed Solution for EPP

• Even with such skills the implementing this solution is non-trivial.

• Common tasks: describe processes, queue them for execution, prepare them,
monitor their progress, collect and consolidate their results, wrap them up.

• Users can take advantage of an easy to use solution that provides generic, cohesive
strategies to address common tasks.

GWE’s Solution

• GWE: Distributed system intended to ease the effort of executing in
parallel inter-independent processes across clusters.

• Low requirements! Only SSH enabled clusters and Java 1.5.

GWE Usage

• Quick Start Guide:

1. Install GWE on your machine.

2. Configure GWE installed with:

• Authentication information to access clusters and file systems.

• Description of computational grid as a collection of clusters.

3. Run “GWE daemons” installer utility.

4. Launch a GWE client.

5. Interact with your defined grid using your GWE client!

• Interaction features:

1. Queuing a set of process invocations described through P2EL.

2. Real time and on demand progress monitoring and result status.

3. Execution control: pause, resume, abort.

P2EL

• P2EL = Processes Parallel Execution Language.

• Language especially designed to allow a single statement to describe a
collection of inter-independent process invocations.

• Semantics to allow versatile permutations to generate process invocations.

• P2EL statement composition:

1. Variables. Set of variables each associated with a particular value set
(evaluated through a value set generator function invocation).

2. Process Invocations Template. Process invocation with variable to
value substitution expressions.

• Permutation of the variables values. Creates a set of all the unique variable
to value resolution combinations of a statement’s variables, respecting the
variables semantics (multidimensionality, co-dependency, etc).

• The full language specification (syntactic and semantic rules) is described
in the P2EL guide on the GWE’s project site.

P2EL Sample:
Dataset Processing

• “Free Surfer” Subject Cases Processor:

• This command instructs GWE to download all remote directories that
match a given pattern and execute the RunFreesurfer.sh script against
each one of them in parallel. That same command instructs GWE as
well to upload the directory generated by the script, to a remote host
with the given, parameterized name.

${PATH}=sftp://sourceHost/subjectsPath
${FILES}=$dir(${PATH},.*)
${SUBJ_ID}=$regExp(${FILES}, /, [^/]*, $)
${INPUT_DIR}=$in(${FILES})
${OUTPUT_DIR}=$out(${PATH}/results/${SUBJ_ID})

${SYSTEM.USER_HOME}/RunFreesurfer.sh ${INPUT_DIR} ${OUTPUT_DIR}

P2EL Sample:
Parameter Exploration

• Slicer’s BSpline Deformable Image Registration:

• This command instructs GWE to execute in parallel 700
BSplineDeformableRegistration parameter exploration type of
invocations and, upon completion, upload each result image to a
remote host with a given parameterized name.

${ITER}=$range(10,50,5)
${HIST}=$range(20,100,010)
${SAM}=$range(500,5000,0750)
${OUTPUT}=$out(sftp://destinationHost/path/out-${ITER}-${HIST}-${SAM}.nrrd)
${FILES_DIR}=http://www.na-mic.org/ViewVC/index.cgi/trunk/Libs/MRML/Testing/TestData
${FIXED}=$in(${FILES_DIR}/fixed.nrrd?view=co,fixed.nrrd)
${MOVING}=$in(${FILES_DIR}/moving.nrrd?view=co,moving.nrrd)

${SYSTEM.USER_HOME}/Slicer3/Slicer3 --launch
${SYSTEM.USER_HOME}/Slicer3/lib/Slicer3/Plugins/BSplineDeformableRegistration --
iterations ${ITER} --gridSize 5 --histogrambins ${HIST} --spatialsamples ${SAM}
--maximumDeformation 1 --default 0 --resampledmovingfilename ${OUTPUT} ${FIXED}
${MOVING}

• Programmatic, full
featured, API to access
“GWE Grid”s services
(interact with “GWE
daemons”).

• Secured RPC
communications layer
using RMI over SSH
Tunnels.

• “GWE Client”s are
applications built on top
of this API.

• Samples: GWE Terminal
GWE Commands and
GSlicer3.

GWE Client API

Tool Integration - GSlicer3:
Architecture

• “Slicer3” and “GWE Client API”
are two independent products.

• The goal of the integration
effort is to provide Slicer3 with
grid computing capabilities out
of the box through GWE.

• This effort consists on merging
a Slicer3 distribution, a “GWE
Client API” distribution and
“GWE CLM Proxys” (CLMP).

• The result is a “GWE Client”
application we call GSlicer3.

• The integration effort also
includes a utility that generates
GSlicer3 bundles out of Slicer3
and GWE distributions.

GWE Client

Slicer3 Slicer3 CLMs

Slicer3 Core

GWE Grid

GWE Client System

CLM

1

CLM

2
...

CLM

‘n’

Tool Integration - GSlicer3:
Architecture

• GWE CLM Proxys (CLMP):
Slicer3 CLMs which will proxy
into another (proxied CLM) to
provide a “GWE Powered”
version of the proxied CLM.

• Technology Requirements:
Out of all CLMs discovered in a
Slicer3 distribution; only those
complying with the “Standard
Execution Model” specification
will be able to have an
automatic CLMP created for
them.

GWE Grid

GSlicer3 GSlicer3 CLMs

GWE Client System

CLM

Proxy

1

CLM

Proxy

2

…

CLM

Proxy

‘n’

Slicer3 Core
CLM

1

CLM

2
...

CLM

‘n’

Tool Integration - GSlicer3:
CLM Proxy Flow

• Gathers proxied CLM “xml” and enhance it to add GWE support.

• Generate P2EL commands based on GUI input and meta parameter values.

• Submit GWE order representing the group of proxied CLM invocations (P2EL).

GSlicer3

GWE Client SystemCLM ‘x’

GWE Grid

GWE Network

(RMI over SSH Tunnels)

GWE Grid

GWE CLM Proxy ‘x’

Slicer3

...CLM invocation

P2EL command

(CLM invocations)

Progress

calculations

CLMP

invocation

CLM “xml” XML

CLMP “xml”
Enhanced

XML

Output

<filter> tags

Queue order & register listener

Events

CLM ‘x’ CLM ‘x’ CLM ‘x’

Results

Tool Integration - GSlicer3:
CLM Proxy Flow

• Monitors the execution on the user’s grid of the localized proxied CLM invocations.

• Keeps track of the CLMP progress as the percentage of invocations executed.

• Notifies Slicer3 of the CLMP progress using Slicer3’s XML based progress API.

GSlicer3

GWE Client SystemCLM ‘x’

GWE Grid

GWE Network

(RMI over SSH Tunnels)

GWE Grid

GWE CLM Proxy ‘x’

Slicer3

...CLM invocation

P2EL command

(CLM invocations)

Progress

calculations

CLMP

invocation

CLM “xml” XML

CLMP “xml”
Enhanced

XML

Output

<filter> tags

Queue order & register listener

Events

CLM ‘x’ CLM ‘x’ CLM ‘x’

Results

Tool Integration - GSlicer3:
Registered Modules

Slicer3

• Standalone
CLMs.

Tool Integration - GSlicer3:
Registered Modules

GSlicer3:

• Standalone
CLMs.

• 1 autogenerated
GWE CLM
Proxy for each
standalone CLM
discovered
(which complies
with the
Standard
Execution
Model).

Tool Integration - GSlicer3:
CLM Proxy Parameters

New section. Captures
GWE parameters to
learn how to execute

invocations of this
module on the grid.

Proxied CLM
specific arguments
tweaked to accept
P2EL semantics

P2EL iteration variables

Clusters described in
${SLICER_HOME}/gwe/conf/gwe-grid.xml

GWE level authentication

Location of Slicer in the grid
(soon to be deprecated)

• Project site with a great wealth of information including detailed guides
and GWE’s source code:

http://www.gridwizardenterprise.org/

• Users mailing list to receive project news and announcements:

gwe-users@nbirn.net

• Project community forum:

http://groups.google.com/group/gwe-forum?hl=en

• Project team email address (questions, requests and/or feedback):

gwe-support@nbirn.net

More Information

Thanks!

