Decidable Properties of 2D Cellular Automata

Alberto Dennunzio — Università di Milano–Bicocca Enrico Formenti — Université de Nice–Sophia Antipolis

This work has been supported by the Interlink/MIUR project "Cellular Automata: Topological Properties, Chaos and Associated Formal Languages", by the ANR Blanc "Projet Sycomore" and by the PRIN/MIUR project "Formal Languages and Automata: Mathematical and Applicative Aspects"

 \bullet infinite cells over a regular lattice ${\cal L}$

lattice $\mathcal{L} = \mathbb{Z}$

 \bullet infinite cells over a regular lattice ${\cal L}$

• each cell assumes a state from an alphabet A

		 -1	0	1	
configuration c $A^{\mathbb{Z}}$	E	 <i>c</i> ₋₁	<i>c</i> ₀	c_1	

 \bullet infinite cells over a regular lattice ${\cal L}$

• each cell assumes a state from an alphabet A

				-1	0	1	
configuration $A^{\mathbb{Z}}$	c	E	•••	c_{-1}	<i>c</i> ₀	c_1	•••

• a *r*-radius rule $f: A^{2r+1} \rightarrow A$ updates the state by looking at a neighborhood

 \bullet infinite cells over a regular lattice ${\cal L}$

• each cell assumes a state from an alphabet A

				-1	0	1	
configuration $A^{\mathbb{Z}}$	c	E	•••	c_{-1}	<i>c</i> ₀	c_1	•••

• a *r*-radius rule $f : A^{2r+1} \rightarrow A$ updates the state by looking at a neighborhood

• Global rule $F: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$: local, uniform, and synchronous update

 $\forall c \in A^{\mathbb{Z}}, \quad \forall i \in \mathbb{Z}, \quad F(c)_i = f(c_{i-r}, \dots, c_{i+r})$

1D CA as Discrete Dynamical Systems

The configuration set is usually equipped with the metric d

 $\forall c, c' \in A^{\mathbb{Z}}, \ d(c, c') = 2^{-n}, \ \text{where } n = \min\left\{i \ge 0 \ : \ c_i \neq c'_i \ \text{or } c_{-i} \neq c'_{-i}\right\}$.

• the global map $F: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is continuous w.r.t. d

1D CA as Discrete Dynamical Systems

The configuration set is usually equipped with the metric d

 $\forall c, c' \in A^{\mathbb{Z}}, \ d(c, c') = 2^{-n}, \ \text{where } n = \min\left\{i \ge 0 : c_i \neq c'_i \ \text{or } c_{-i} \neq c'_{-i}\right\}$.

• the global map $F: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is continuous w.r.t. d

So the pair $(A^{\mathbb{Z}}, F)$ is a Discrete Dynamical System.

If <u>A is finite</u>, the configuration set $A^{\mathbb{Z}}$ is compact.

Compactness is essential to prove the most important results on the basic and dynamical properties of CA.

Some Basic and Dynamical Properties

Surjectivity: F is a surjective map.

Openness:

for any open set $O \subseteq A^{\mathbb{Z}}$, F(O) is open.

For 1D CA with A finite, openness is equivalent to the following condition: all configurations have the same number of pre-images.

🔎 mi

mixing:

for any non empty open $O, O' \subseteq A^{\mathbb{Z}}$ there exists $n \in \mathbb{N}$ such that for all $t \ge n$ $F^t(O) \cap O' \neq \emptyset$.

Denseness of Periodic Orbits (DPO):

the set of all periodic points of F is dense in $A^{\mathbb{Z}}$.

1D Closing and Permutivity

- Left (resp., right) asymptotic configurations $c, c' \in A^{\mathbb{Z}}$: for some $n \in \mathbb{Z}$, $c_{(-\infty,n]} = c'_{(-\infty,n]}$ (resp. $c_{[n,\infty)} = c'_{[n,\infty)}$) $(-\infty, n]$: infinite integer interval of positions $i \leq n$.
- **Proof** Right (resp. left) closing: for any pair of distinct left (resp. right) asymptotic configurations $c, c' \in A^{\mathbb{Z}}$, $F(c) \neq F(c')$.
- Rightmost (resp. leftmost) permutivity:

 $\forall u \in A^{2r}$ (input block), $\forall \beta \in A$ (output symbol), $\exists \alpha \in A$ (input symbol) such that $f(u\alpha) = \beta$ (resp., $f(\alpha u) = \beta$).

1D Closing and Permutivity

- Left (resp., right) asymptotic configurations $c, c' \in A^{\mathbb{Z}}$: for some $n \in \mathbb{Z}$, $c_{(-\infty,n]} = c'_{(-\infty,n]}$ (resp. $c_{[n,\infty)} = c'_{[n,\infty)}$) $(-\infty, n]$: infinite integer interval of positions $i \leq n$.
- **P** Right (resp. left) closing: for any pair of distinct left (resp. right) asymptotic configurations $c, c' \in A^{\mathbb{Z}}$, $F(c) \neq F(c')$.
- Rightmost (resp. leftmost) permutivity: $\forall u \in A^{2r} \text{ (input block), } \forall \beta \in A \text{ (output symbol), } \exists \alpha \in A \text{ (input symbol) such that}$ $f(u\alpha) = \beta \text{ (resp., } f(\alpha u) = \beta \text{).}$

Known Results for 1D CA. If A is a finite set:

- Closingness and Permutivity are decidable;
- Closing CA have DPO and are surjective;
- A CA is open iff it is both left and right closing;
- permutive CA have DPO, and are topologically mixing and surjective.

r-radius local rule $f : \mathcal{M}_r \to A$ \mathcal{M}_r : set of all the 2D $(2r+1) \times (2r+1)$ matrices with values in A

global rule $F: A^{\mathbb{Z}^2} \to A^{\mathbb{Z}^2}$: local, uniform and synchronous update

$$\forall c \in A^{\mathbb{Z}^2}, \, \forall \vec{x} \in \mathbb{Z}^2, \quad F(c)(\vec{x}) = f(M_r^{\vec{x}}(c))$$

 $M_r^{\vec{x}}(c) \in \mathcal{M}_r$ is the $(2r+1) \times (2r+1)$ matrix inside c centered in the position $\vec{x} \in \mathbb{Z}^2$.

۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲
۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲
۲	۲	۲	•	۲	۲	۲	۲	۲	۲	۲	۲	۲
۲	۲		r x e	۲	۲	۲	۲	۲	۲	۲	۲	۲
۲	۲	● ●	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲
۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲
۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲

2D CA as Discrete Dynamical Systems

The configuration set is usually equipped with the metric d

 $\forall c, c' \in A^{\mathbb{Z}^2}, \quad d(c, c') = 2^{-k} \quad \text{where} \quad k = \min\left\{ |\vec{x}| : \vec{x} \in \mathbb{Z}^2, c(\vec{x}) \neq c'(\vec{x}) \right\}$.

• the global map $F: A^{\mathbb{Z}^2} \to A^{\mathbb{Z}^2}$ is continuous *w.r.t.* d

So the pair $(A^{\mathbb{Z}^2}, F)$ is a Discrete Dynamical System.

If <u>A is finite</u>, the configuration set $A^{\mathbb{Z}}$ is compact.

We assume a finite alphabet A when dealing with 2D CA.

2D Closing

South-West (SW) asymptotic configurations $c, c' \in A^{\mathbb{Z}^2}$: there exists $q \in \mathbb{Z}$ such that $\forall \vec{x} \in \mathbb{Z}^2$ with $(1, 1) \cdot \vec{x} \leq q$ it holds that $c(\vec{x}) = c'(\vec{x})$.

Sorth-East (NE) closing: for any pair of distinct SW asymptotic configurations $c, c' \in A^{\mathbb{Z}^2}$,

 $F(c) \neq F(c')$

In a similar way, the notions of NW, SW, SE closing have been introduced.

<u>Result:</u> NE/NW/SE/SW closing are decidable properties.

2D Permutivity

NE permutivity:

for each pair of matrices $N, N' \in \mathcal{M}_r$ with $N(\vec{x}) = N'(\vec{x})$ in all vectors $\vec{x} \neq (r, r)$, it holds that $N(r, r) \neq N'(r, r)$ implies $f(N) \neq f(N')$. Equivalently,

In a similar way, the notions of NW, SW, SE permutivity have been introduced.

<u>**Result:**</u> NE/NW/SE/SW permutivity are decidable properties.

NE slicing of the plane:

NE slicing of the plane:

Consider the vector $(-1, 1) \in \mathbb{Z}^2$

NE slicing of the plane:

Consider the vector $(-1,1) \in \mathbb{Z}^2$

 L_0 is the integer line expressed in parametric form by $\vec{x} = t(1, -1)$ where $t \in \mathbb{Z}$

NE slicing of the plane:

Consider the vector $(-1,1) \in \mathbb{Z}^2$

 L_0 is the integer line expressed in parametric form by $\vec{x} = t(1, -1)$ where $t \in \mathbb{Z}$

 L_1 is the integer line expressed in parametric form by $\vec{x} = t(1, -1) + (1, 0)$ where $t \in \mathbb{Z}$

NE slicing of the plane:

Consider the vector $(-1,1) \in \mathbb{Z}^2$

 L_0 is the integer line expressed in parametric form by $\vec{x} = t(1, -1)$ where $t \in \mathbb{Z}$ L_1 is the integer line expressed in parametric form by $\vec{x} = t(1, -1) + (1, 0)$ where $t \in \mathbb{Z}$ L_i is the integer line expressed in parametric form by $\vec{x} = t(1, -1) + i(1, 0)$ where $t \in \mathbb{Z}$

- \mathcal{L} induces a partition of \mathbb{Z}^2

In this way, the NE slicing of configurations is obtained:

- a configuration $c \in A^{\mathbb{Z}^2}$ can be view as a mapping $c : \bigcup_{i \in \mathbb{Z}} L_i \mapsto A$.
- for every $i \in \mathbb{Z}$, the slice c_i over the line L_i of the configuration c is the mapping $c_i : L_i \to A$, which is the restriction of c to the set $L_i \subset \mathbb{Z}^2$.
- a configuration $c \in A^{\mathbb{Z}^2}$ can be expressed as the bi-infinite one-dimensional sequence $c = (..., c_{-2}, c_{-1}, c_0, c_1, c_2, ...)$ of its slices $c_i \in A^{L_i}$.

			 a _{i-2}	a _{i-1}	a_{i}	a_{i+1}	a _{<i>i</i>+2}	

Problem: for each *i* the slice c_i is an element of A^{L_i} . The components of *c* are not from the same alphabet!

Solution: by the parametric form of lines L_i ($\vec{x} = t(1, -1) + i(1, 0)$ where $t \in \mathbb{Z}$)

an element of $A^{\mathbb{Z}}$ is associated with any slice c_i .

a bi-infinite sequence $a = (\ldots, a_{-2}, a_{-1}, a_0, a_1, a_2, \ldots) \in (A^{\mathbb{Z}})^{\mathbb{Z}}$ is associated with $c = (\ldots, c_{-2}, c_{-1}, c_0, c_1, c_2, \ldots)$, via an isomorphism Ψ .

- ▶ the global map $F^* : (A^{\mathbb{Z}})^{\mathbb{Z}} \mapsto (A^{\mathbb{Z}})^{\mathbb{Z}}$ associates any configuration $a : \mathbb{Z} \mapsto A^{\mathbb{Z}}$ with a new configuration $F^*(a) : \mathbb{Z} \to A^{\mathbb{Z}}$.
- ▶ the 2*r*-radius local rule $f^* : (A^{\mathbb{Z}})^{4r+1} \to A^{\mathbb{Z}}$ takes a certain number of configurations of $A^{\mathbb{Z}}$ as input and produces a new configuration of $A^{\mathbb{Z}}$ as output.

- ▶ the global map $F^* : (A^{\mathbb{Z}})^{\mathbb{Z}} \mapsto (A^{\mathbb{Z}})^{\mathbb{Z}}$ associates any configuration $a : \mathbb{Z} \mapsto A^{\mathbb{Z}}$ with a new configuration $F^*(a) : \mathbb{Z} \to A^{\mathbb{Z}}$.
- ▶ the 2*r*-radius local rule $f^* : (A^{\mathbb{Z}})^{4r+1} \to A^{\mathbb{Z}}$ takes a certain number of configurations of $A^{\mathbb{Z}}$ as input and produces a new configuration of $A^{\mathbb{Z}}$ as output.

- ▶ the global map $F^* : (A^{\mathbb{Z}})^{\mathbb{Z}} \mapsto (A^{\mathbb{Z}})^{\mathbb{Z}}$ associates any configuration $a : \mathbb{Z} \mapsto A^{\mathbb{Z}}$ with a new configuration $F^*(a) : \mathbb{Z} \to A^{\mathbb{Z}}$.
- ▶ the 2*r*-radius local rule $f^* : (A^{\mathbb{Z}})^{4r+1} \to A^{\mathbb{Z}}$ takes a certain number of configurations of $A^{\mathbb{Z}}$ as input and produces a new configuration of $A^{\mathbb{Z}}$ as output.

- ▶ the global map $F^* : (A^{\mathbb{Z}})^{\mathbb{Z}} \mapsto (A^{\mathbb{Z}})^{\mathbb{Z}}$ associates any configuration $a : \mathbb{Z} \mapsto A^{\mathbb{Z}}$ with a new configuration $F^*(a) : \mathbb{Z} \to A^{\mathbb{Z}}$.
- ▶ the 2*r*-radius local rule $f^* : (A^{\mathbb{Z}})^{4r+1} \to A^{\mathbb{Z}}$ takes a certain number of configurations of $A^{\mathbb{Z}}$ as input and produces a new configuration of $A^{\mathbb{Z}}$ as output.

- ▶ the global map $F^* : (A^{\mathbb{Z}})^{\mathbb{Z}} \mapsto (A^{\mathbb{Z}})^{\mathbb{Z}}$ associates any configuration $a : \mathbb{Z} \mapsto A^{\mathbb{Z}}$ with a new configuration $F^*(a) : \mathbb{Z} \to A^{\mathbb{Z}}$.
- ▶ the 2*r*-radius local rule $f^* : (A^{\mathbb{Z}})^{4r+1} \to A^{\mathbb{Z}}$ takes a certain number of configurations of $A^{\mathbb{Z}}$ as input and produces a new configuration of $A^{\mathbb{Z}}$ as output.

- ▶ the global map $F^* : (A^{\mathbb{Z}})^{\mathbb{Z}} \mapsto (A^{\mathbb{Z}})^{\mathbb{Z}}$ associates any configuration $a : \mathbb{Z} \mapsto A^{\mathbb{Z}}$ with a new configuration $F^*(a) : \mathbb{Z} \to A^{\mathbb{Z}}$.
- ▶ the 2*r*-radius local rule $f^* : (A^{\mathbb{Z}})^{4r+1} \to A^{\mathbb{Z}}$ takes a certain number of configurations of $A^{\mathbb{Z}}$ as input and produces a new configuration of $A^{\mathbb{Z}}$ as output.

The following diagram commutes:

- the map Ψ^{-1} is continuous
- **P** the 2D CA F is a factor of the 1D CA F^* on the infinite alphabet $A^{\mathbb{Z}}$

<u>Result</u>: If a 2D CA F is NE permutive then the 1D CA F^* is right permutive.

<u>**Result:**</u> If a 2D CA F is NE permutive then it is topologically mixing. proof (idea):

- if F is NE permutive then F^* is right permutive.
- right permutivity implies mixing also for CA with infinite alphabet, so F^* is mixing.
- since F is a factor of F^* , then F is mixing too.

Slicing plus finite alphabet

For any 2D CA F we can build an associated 1D sliced version F^* with finite alphabet.

- **fix a vector** $\vec{v} \perp (1,1)$
- let $\sigma^{\vec{v}}: A^{\mathbb{Z}^2} \to A^{\mathbb{Z}^2}$ the shift map of vector \vec{v}
- \checkmark consider the set $S_{\vec{v}}$ of configurations c such that $\sigma^{\vec{v}}(c) = c$ (translation invariant)

Slicing construction on $S_{\vec{v}}$:

<u>**Result:**</u> $(S_{\vec{v}}, F)$ is top. conjugated to the 1D CA $(B^{\mathbb{Z}}, F^*)$ on the finite alphabet $B = A^{|\vec{v}|}$. proof (idea):the slices of configurations in $S_{\vec{v}}$ are in one-to-one correspondence with symbols of the alphabet B.

Consequences

Results:

- NE (or NW, or SE, or SW) closing 2D CA have DPO and are surjective
- 2D CA which are closing w.r.t. all the 4 directions are open
- NE (resp., NW, resp., SE, resp., SW) permutivity implies NE (resp., NW, resp., SE, resp., SW) closing and then DPO.

Future Works

Continue the study of 2D CA by means of the slicing constructions!