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• Global rule F : AZ → AZ: local, uniform, and synchronous update

∀c ∈ AZ, ∀i ∈ Z, F (c)i = f(ci−r, . . . , ci+r)
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1D CA as Discrete Dynamical Systems

The configuration set is usually equipped with the metric d

∀c, c′ ∈ AZ, d(c, c′) = 2−n, where n = min
{
i ≥ 0 : ci 6= c′i or c−i 6= c′−i

}
.

the global map F : AZ → AZ is continuous w.r.t. d
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1D CA as Discrete Dynamical Systems

The configuration set is usually equipped with the metric d

∀c, c′ ∈ AZ, d(c, c′) = 2−n, where n = min
{
i ≥ 0 : ci 6= c′i or c−i 6= c′−i

}
.

the global map F : AZ → AZ is continuous w.r.t. d

So the pair (AZ, F ) is a Discrete Dynamical System.

If A is finite, the configuration set AZ is compact.

Compactness is essential to prove the most important results on the basic and dynamical
properties of CA.
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Some Basic and Dynamical Properties

Surjectivity:

F is a surjective map.

Openness:

for any open set O ⊆ AZ, F (O) is open.

For 1D CA with A finite, openness is equivalent to the following condition:
all configurations have the same number of pre-images.

mixing:

for any non empty open O, O′ ⊆ AZ there exists n ∈ N such that for all t ≥ n

F t(O) ∩ O′ 6= ∅.

Denseness of Periodic Orbits (DPO):

the set of all periodic points of F is dense in AZ.
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1D Closing and Permutivity

Left (resp., right) asymptotic configurations c, c′ ∈ AZ:

for some n ∈ Z, c(−∞,n] = c′
(−∞,n]

(resp. c[n,∞) = c′
[n,∞)

)

(−∞, n]: infinite integer interval of positions i ≤ n.

Right (resp. left) closing:

for any pair of distinct left (resp. right) asymptotic configurations c, c′ ∈ AZ,
F (c) 6= F (c′).

Rightmost (resp. leftmost) permutivity:

∀u ∈ A2r (input block), ∀β ∈ A (output symbol), ∃α ∈ A (input symbol) such that
f(uα) = β (resp., f(αu) = β).
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(−∞, n]: infinite integer interval of positions i ≤ n.

Right (resp. left) closing:

for any pair of distinct left (resp. right) asymptotic configurations c, c′ ∈ AZ,
F (c) 6= F (c′).

Rightmost (resp. leftmost) permutivity:

∀u ∈ A2r (input block), ∀β ∈ A (output symbol), ∃α ∈ A (input symbol) such that
f(uα) = β (resp., f(αu) = β).

Known Results for 1D CA. If A is a finite set:

Closingness and Permutivity are decidable;

Closing CA have DPO and are surjective;

A CA is open iff it is both left and right closing;

permutive CA have DPO, and are topologically mixing and surjective.
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2D Cellular Automata/1

lattice L = Z
2

(0,0)

configuration c : Z
2 → A

(0,0)
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2D Cellular Automata/2

r-radius local rule f : Mr → A

Mr : set of all the 2D (2r + 1) × (2r + 1) matrices with values in A

2r+1

f

2r+1

global rule F : AZ
2

→ AZ
2

: local, uniform and synchronous update

∀c ∈ AZ
2

, ∀~x ∈ Z
2, F (c)(~x) = f

(
M~x

r (c)
)

,

M~x
r (c) ∈ Mr is the (2r + 1)× (2r + 1) matrix inside c centered in the position ~x ∈ Z

2.

f

x
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2D CA as Discrete Dynamical Systems

The configuration set is usually equipped with the metric d

∀c, c′ ∈ AZ
2

, d(c, c′) = 2−k where k = min
{
|~x| : ~x ∈ Z

2, c(~x) 6= c′(~x)
}

.

the global map F : AZ
2

→ AZ
2

is continuous w.r.t. d

So the pair (AZ
2

, F ) is a Discrete Dynamical System.

If A is finite, the configuration set AZ is compact.

We assume a finite alphabet A when dealing with 2D CA.
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2D Closing

South-West (SW) asymptotic configurations c, c′ ∈ AZ
2

:

there exists q ∈ Z such that ∀~x ∈ Z
2 with (1, 1) · ~x ≤ q it holds that c(~x) = c′(~x).

(1,1)   x < q (1,1)   x = q

North-East (NE) closing:

for any pair of distinct SW asymptotic configurations c, c′ ∈ AZ
2

,
F (c) 6= F (c′)

In a similar way, the notions of NW, SW, SE closing have been introduced.

Result: NE/NW/SE/SW closing are decidable properties.
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2D Permutivity

NE permutivity:

for each pair of matrices N, N ′ ∈ Mr with N(~x) = N ′(~x) in all vectors ~x 6= (r, r), it
holds that N(r, r) 6= N ′(r, r) implies f(N) 6= f(N ′). Equivalently,

for any input pattern

2r+1

2r+1 and for any output symbol

there exists an input symbol xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxx
xxx
xxx

such that

2r+1

f

2r+1

2r+1

f

2r+1

x
x
x
x
x
x
x
x
x
x
x
x

xxx
xxx

In a similar way, the notions of NW, SW, SE permutivity have been introduced.

Result: NE/NW/SE/SW permutivity are decidable properties.
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2D CA as 1D CA: slicing construction

NE slicing of the plane:

– p. 11/18



2D CA as 1D CA: slicing construction

NE slicing of the plane:

(0,0)

Consider the vector (−1, 1) ∈ Z
2

– p. 11/18



2D CA as 1D CA: slicing construction

NE slicing of the plane:

L
0

(0,0)

Consider the vector (−1, 1) ∈ Z
2

L0 is the integer line expressed in parametric form by ~x = t(1,−1) where t ∈ Z

– p. 11/18



2D CA as 1D CA: slicing construction

NE slicing of the plane:

L
0

(0,0)

L
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Consider the vector (−1, 1) ∈ Z
2

L0 is the integer line expressed in parametric form by ~x = t(1,−1) where t ∈ Z

L1 is the integer line expressed in parametric form by ~x = t(1,−1) + (1, 0) where t ∈ Z
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2D CA as 1D CA: slicing construction

NE slicing of the plane:

L
0

(0,0)

L
1

(1,0)

L
-1

L
2

...

L
-2

(-2,0) (2,0)(-1,0)

... ......

... ...

Consider the vector (−1, 1) ∈ Z
2

L0 is the integer line expressed in parametric form by ~x = t(1,−1) where t ∈ Z

L1 is the integer line expressed in parametric form by ~x = t(1,−1) + (1, 0) where t ∈ Z

Li is the integer line expressed in parametric form by ~x = t(1,−1) + i(1, 0) where t ∈ Z

L = {Li} is in a one-to-one correspondence with Z

L induces a partition of Z
2
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2D CA as 1D CA: slicing construction

In this way, the NE slicing of configurations is obtained:

a configuration c ∈ AZ
2

can be view as a mapping c :
⋃

i∈Z
Li 7→ A.

for every i ∈ Z, the slice ci over the line Li of the configuration c is the mapping
ci : Li → A, which is the restriction of c to the set Li ⊂ Z

2.

a configuration c ∈ AZ
2

can be expressed as the bi-infinite one-dimensional sequence
c = (. . . , c−2, c−1, c0, c1, c2, . . .) of its slices ci ∈ ALi .

c
0

(0,0) (1,0)(-2,0) (-1,0)

... ...... c
1

c
2

c
-2

c
-1

(2,0)
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2D CA as 1D CA: slicing construction

a
i

... ...... a
i+1

a
i+2

a
i-2

a
i-1

c
i

... ...... c
i+1

c
i+2

c
i-2

c
i-1

Problem: for each i the slice ci is an element of ALi . The components of c are not from the
same alphabet!
Solution: by the parametric form of lines Li (~x = t(1,−1) + i(1, 0) where t ∈ Z)

an element of AZ is associated with any slice ci.

a bi-infinite sequence a = (. . . , a−2, a−1, a0, a1, a2, . . .) ∈ (AZ)Z is associated with
c = (. . . , c−2, c−1, c0, c1, c2, . . .), via an isomorphism Ψ.
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2D CA as 1D CA: slicing construction

Introduction of a 1D CA over the alphabet AZ

the global map F ∗ : (AZ)Z 7→ (AZ)Z associates any configuration a : Z 7→ AZ with a
new configuration F ∗(a) : Z → AZ.

the 2r-radius local rule f∗ : (AZ)4r+1 → AZ takes a certain number of configurations
of AZ as input and produces a new configuration of AZ as output.
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2D CA as 1D CA: slicing construction

The following diagram commutes:

(AZ)Z F∗

−−−−−→ (AZ)Z

Ψ−1



y



yΨ−1

AZ
2

−−−−−→
F

AZ
2

the map Ψ−1 is continuous

the 2D CA F is a factor of the 1D CA F ∗ on the infinite alphabet AZ

Result: If a 2D CA F is NE permutive then the 1D CA F ∗ is right permutive.

Result: If a 2D CA F is NE permutive then it is topologically mixing.
proof (idea):
- if F is NE permutive then F ∗ is right permutive.
- right permutivity implies mixing also for CA with infinite alphabet, so F ∗ is mixing.
- since F is a factor of F ∗, then F is mixing too.
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Slicing plus finite alphabet

For any 2D CA F we can build an associated 1D sliced version F ∗ with finite alphabet.

fix a vector ~v ⊥ (1, 1)

let σ~v : AZ
2

→ AZ
2

the shift map of vector ~v

consider the set S~v of configurations c such that σ~v(c) = c (translation invariant)

F (S~v) ⊆ S~v and so (S~v , F ) is a dynamical system

Slicing construction on S~v :

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xxxx
xxxx
xxxx
xxxx

c
i

... ...... c
i+1

c
i+2

c
i-2

c
i-1

A = {   ,   }

B =     ,   ,  ,  ,   ,  ,  ,   { }= A
3

v

Result: (S~v , F ) is top. conjugated to the 1D CA (BZ, F ∗) on the finite alphabet B = A|~v|.
proof (idea):the slices of configurations in S~v are in one-to-one correspondence with
symbols of the alphabet B. – p. 16/18



Consequences

Results:

NE (or NW, or SE, or SW) closing 2D CA have DPO and are surjective

2D CA which are closing w.r.t. all the 4 directions are open

NE (resp., NW, resp., SE, resp., SW) permutivity implies NE (resp., NW, resp., SE,
resp., SW) closing and then DPO.
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Future Works

Continue the study of 2D CA by means of the slicing
constructions!
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