Decidable Properties of 2D Cellular Automata

Alberto Dennunzio - Università di Milano-Bicocca
Enrico Formenti - Université de Nice-Sophia Antipolis

This work has been supported by the Interlink/MIUR project "Cellular Automata: Topological Properties, Chaos and Associated Formal Languages", by the ANR Blanc "Projet Sycomore" and by the PRIN/MIUR project "Formal Languages and Automata: Mathematical and Applicative Aspects"

1D Cellular Automata

1D Cellular Automata

- infinite cells over a regular lattice \mathcal{L}
lattice $\mathcal{L}=\mathbb{Z}$

1D Cellular Automata

- infinite cells over a regular lattice \mathcal{L}
lattice $\mathcal{L}=\mathbb{Z}$

- each cell assumes a state from an alphabet A

1D Cellular Automata

- infinite cells over a regular lattice \mathcal{L}
lattice $\mathcal{L}=\mathbb{Z}$

- each cell assumes a state from an alphabet A

- a r-radius rule $f: A^{2 r+1} \rightarrow A$ updates the state by looking at a neighborhood
update of a cell

1D Cellular Automata

- infinite cells over a regular lattice \mathcal{L}

$$
\text { lattice } \mathcal{L}=\mathbb{Z}
$$

- each cell assumes a state from an alphabet A

- a r-radius rule $f: A^{2 r+1} \rightarrow A$ updates the state by looking at a neighborhood
update of a cell

- Global rule $F: A^{\mathbb{Z}} \rightarrow A^{\mathbb{Z}}$: local, uniform, and synchronous update

$$
\forall c \in A^{\mathbb{Z}}, \quad \forall i \in \mathbb{Z}, \quad F(c)_{i}=f\left(c_{i-r}, \ldots, c_{i+r}\right)
$$

1D CA as Discrete Dynamical Systems

- The configuration set is usually equipped with the metric d

$$
\forall c, c^{\prime} \in A^{\mathbb{Z}}, d\left(c, c^{\prime}\right)=2^{-n}, \text { where } n=\min \left\{i \geq 0: c_{i} \neq c_{i}^{\prime} \text { or } c_{-i} \neq c_{-i}^{\prime}\right\} .
$$

- the global map $F: A^{\mathbb{Z}} \rightarrow A^{\mathbb{Z}}$ is continuous w.r.t. d

1D CA as Discrete Dynamical Systems

- The configuration set is usually equipped with the metric d

$$
\forall c, c^{\prime} \in A^{\mathbb{Z}}, d\left(c, c^{\prime}\right)=2^{-n}, \text { where } n=\min \left\{i \geq 0: c_{i} \neq c_{i}^{\prime} \text { or } c_{-i} \neq c_{-i}^{\prime}\right\} .
$$

- the global map $F: A^{\mathbb{Z}} \rightarrow A^{\mathbb{Z}}$ is continuous w.r.t. d

So the pair $\left(A^{\mathbb{Z}}, F\right)$ is a Discrete Dynamical System.
If \underline{A} is finite, the configuration set $A^{\mathbb{Z}}$ is compact.
Compactness is essential to prove the most important results on the basic and dynamical properties of CA.

Some Basic and Dynamical Properties

- Surjectivity:
F is a surjective map.
O Openness:
for any open set $O \subseteq A^{\mathbb{Z}}, F(O)$ is open.
For 1D CA with A finite, openness is equivalent to the following condition:
all configurations have the same number of pre-images.
- mixing:
for any non empty open $O, O^{\prime} \subseteq A^{\mathbb{Z}}$ there exists $n \in \mathbb{N}$ such that for all $t \geq n$ $F^{t}(O) \cap O^{\prime} \neq \emptyset$.
- Denseness of Periodic Orbits (DPO):
the set of all periodic points of F is dense in $A^{\mathbb{Z}}$.

1D Closing and Permutivity

- Left (resp., right) asymptotic configurations $c, c^{\prime} \in A^{\mathbb{Z}}$:
for some $n \in \mathbb{Z}, c_{(-\infty, n]}=c_{(-\infty, n]}^{\prime}\left(\right.$ resp. $\left.c_{[n, \infty)}=c_{[n, \infty)}^{\prime}\right)$
$(-\infty, n]$: infinite integer interval of positions $i \leq n$.
O Right (resp. left) closing:
for any pair of distinct left (resp. right) asymptotic configurations $c, c^{\prime} \in A^{\mathbb{Z}}$, $F(c) \neq F\left(c^{\prime}\right)$.
- Rightmost (resp. leftmost) permutivity:
$\forall u \in A^{2 r}$ (input block), $\forall \beta \in A$ (output symbol), $\exists \alpha \in A$ (input symbol) such that $f(u \alpha)=\beta$ (resp., $f(\alpha u)=\beta$).

1D Closing and Permutivity

- Left (resp., right) asymptotic configurations $c, c^{\prime} \in A^{\mathbb{Z}}$:
for some $n \in \mathbb{Z}, c_{(-\infty, n]}=c_{(-\infty, n]}^{\prime}\left(\right.$ resp. $\left.c_{[n, \infty)}=c_{[n, \infty)}^{\prime}\right)$
$(-\infty, n]$: infinite integer interval of positions $i \leq n$.
- Right (resp. left) closing:
for any pair of distinct left (resp. right) asymptotic configurations $c, c^{\prime} \in A^{\mathbb{Z}}$, $F(c) \neq F\left(c^{\prime}\right)$.
- Rightmost (resp. leftmost) permutivity:
$\forall u \in A^{2 r}$ (input block), $\forall \beta \in A$ (output symbol), $\exists \alpha \in A$ (input symbol) such that $f(u \alpha)=\beta$ (resp., $f(\alpha u)=\beta$).

Known Results for 1D CA. If A is a finite set:

- Closingness and Permutivity are decidable;
- Closing CA have DPO and are surjective;
- $\mathrm{A} C A$ is open iff it is both left and right closing;
- permutive CA have DPO, and are topologically mixing and surjective.

2D Cellular Automata/1

- lattice $\mathcal{L}=\mathbb{Z}^{2}$

- configuration $c: \mathbb{Z}^{2} \rightarrow A$

0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	$(\circ 8)$	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0

2D Cellular Automata/2

- r-radius local rule $f: \mathcal{M}_{r} \rightarrow A$
\mathcal{M}_{r} : set of all the 2D $(2 r+1) \times(2 r+1)$ matrices with values in A

- global rule $F: A^{\mathbb{Z}^{2}} \rightarrow A^{\mathbb{Z}^{2}}:$ local, uniform and synchronous update

$$
\forall c \in A^{\mathbb{Z}^{2}}, \forall \vec{x} \in \mathbb{Z}^{2}, \quad F(c)(\vec{x})=f\left(M_{r}^{\vec{x}}(c)\right)
$$

$M_{r}^{\vec{x}}(c) \in \mathcal{M}_{r}$ is the $(2 r+1) \times(2 r+1)$ matrix inside c centered in the position $\vec{x} \in \mathbb{Z}^{2}$.

2D CA as Discrete Dynamical Systems

- The configuration set is usually equipped with the metric d

$$
\forall c, c^{\prime} \in A^{\mathbb{Z}^{2}}, \quad d\left(c, c^{\prime}\right)=2^{-k} \quad \text { where } \quad k=\min \left\{|\vec{x}|: \vec{x} \in \mathbb{Z}^{2}, c(\vec{x}) \neq c^{\prime}(\vec{x})\right\} .
$$

- the global map $F: A^{\mathbb{Z}^{2}} \rightarrow A^{\mathbb{Z}^{2}}$ is continuous w.r.t. d

So the pair $\left(A^{\mathbb{Z}^{2}}, F\right)$ is a Discrete Dynamical System.
If \underline{A} is finite, the configuration set $\underline{A^{\mathbb{Z}}}$ is compact.
We assume a finite alphabet A when dealing with 2D CA.

2D Closing

- South-West (SW) asymptotic configurations $c, c^{\prime} \in A^{\mathbb{Z}^{2}}$: there exists $q \in \mathbb{Z}$ such that $\forall \vec{x} \in \mathbb{Z}^{2}$ with $(1,1) \cdot \vec{x} \leq q$ it holds that $c(\vec{x})=c^{\prime}(\vec{x})$.

- North-East (NE) closing:
for any pair of distinct SW asymptotic configurations $c, c^{\prime} \in A^{\mathbb{Z}^{2}}$, $F(c) \neq F\left(c^{\prime}\right)$
- In a similar way, the notions of NW, SW, SE closing have been introduced.

Result: NE/NW/SE/SW closing are decidable properties.

2D Permutivity

- NE permutivity:
for each pair of matrices $N, N^{\prime} \in \mathcal{M}_{r}$ with $N(\vec{x})=N^{\prime}(\vec{x})$ in all vectors $\vec{x} \neq(r, r)$, it holds that $N(r, r) \neq N^{\prime}(r, r)$ implies $f(N) \neq f\left(N^{\prime}\right)$. Equivalently,

- In a similar way, the notions of NW, SW, SE permutivity have been introduced.

Result: NE/NW/SE/SW permutivity are decidable properties.

2D CA as 1D CA: slicing construction

NE slicing of the plane:

2D CA as 1D CA: slicing construction

NE slicing of the plane:

Consider the vector $(-1,1) \in \mathbb{Z}^{2}$

2D CA as 1D CA: slicing construction

NE slicing of the plane:

Consider the vector $(-1,1) \in \mathbb{Z}^{2}$
L_{0} is the integer line expressed in parametric form by $\vec{x}=t(1,-1)$ where $t \in \mathbb{Z}$

2D CA as 1D CA: slicing construction

NE slicing of the plane:

Consider the vector $(-1,1) \in \mathbb{Z}^{2}$
L_{0} is the integer line expressed in parametric form by $\vec{x}=t(1,-1)$ where $t \in \mathbb{Z}$
L_{1} is the integer line expressed in parametric form by $\vec{x}=t(1,-1)+(1,0)$ where $t \in \mathbb{Z}$

2D CA as 1D CA: slicing construction

NE slicing of the plane:

Consider the vector $(-1,1) \in \mathbb{Z}^{2}$
L_{0} is the integer line expressed in parametric form by $\vec{x}=t(1,-1)$ where $t \in \mathbb{Z}$
L_{1} is the integer line expressed in parametric form by $\vec{x}=t(1,-1)+(1,0)$ where $t \in \mathbb{Z}$
L_{i} is the integer line expressed in parametric form by $\vec{x}=t(1,-1)+i(1,0)$ where $t \in \mathbb{Z}$

- $\mathcal{L}=\left\{L_{i}\right\}$ is in a one-to-one correspondence with \mathbb{Z}
- \mathcal{L} induces a partition of \mathbb{Z}^{2}

2D CA as 1D CA: slicing construction

In this way, the NE slicing of configurations is obtained:

- a configuration $c \in A^{\mathbb{Z}^{2}}$ can be view as a mapping $c: \bigcup_{i \in \mathbb{Z}} L_{i} \mapsto A$.
- for every $i \in \mathbb{Z}$, the slice c_{i} over the line L_{i} of the configuration c is the mapping $c_{i}: L_{i} \rightarrow A$, which is the restriction of c to the set $L_{i} \subset \mathbb{Z}^{2}$.
- a configuration $c \in A^{\mathbb{Z}^{2}}$ can be expressed as the bi-infinite one-dimensional sequence $c=\left(\ldots, c_{-2}, c_{-1}, c_{0}, c_{1}, c_{2}, \ldots\right)$ of its slices $c_{i} \in A^{L_{i}}$.

2D CA as 1D CA: slicing construction

\ldots						\ldots	a_{i-2}	a_{i-1}	a_{i}	a_{i+1}	a_{i+2}	\ldots

Problem: for each i the slice c_{i} is an element of $A^{L_{i}}$. The components of c are not from the same alphabet!
Solution: by the parametric form of lines $L_{i}(\vec{x}=t(1,-1)+i(1,0)$ where $t \in \mathbb{Z})$

- an element of $A^{\mathbb{Z}}$ is associated with any slice c_{i}.
- a bi-infinite sequence $a=\left(\ldots, a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2}, \ldots\right) \in\left(A^{\mathbb{Z}}\right)^{\mathbb{Z}}$ is associated with $c=\left(\ldots, c_{-2}, c_{-1}, c_{0}, c_{1}, c_{2}, \ldots\right)$, via an isomorphism Ψ.

2D CA as 1D CA: slicing construction

Introduction of a 1D CA over the alphabet $A^{\mathbb{Z}}$
〇 the global map $F^{*}:\left(A^{\mathbb{Z}}\right)^{\mathbb{Z}} \mapsto\left(A^{\mathbb{Z}}\right)^{\mathbb{Z}}$ associates any configuration $a: \mathbb{Z} \mapsto A^{\mathbb{Z}}$ with a new configuration $F^{*}(a): \mathbb{Z} \rightarrow A^{\mathbb{Z}}$.
O the $2 r$-radius local rule $f^{*}:\left(A^{\mathbb{Z}}\right)^{4 r+1} \rightarrow A^{\mathbb{Z}}$ takes a certain number of configurations of $A^{\mathbb{Z}}$ as input and produces a new configuration of $A^{\mathbb{Z}}$ as output.

2D CA as 1D CA: slicing construction

Introduction of a 1D CA over the alphabet $A^{\mathbb{Z}}$
〇 the global map $F^{*}:\left(A^{\mathbb{Z}}\right)^{\mathbb{Z}} \mapsto\left(A^{\mathbb{Z}}\right)^{\mathbb{Z}}$ associates any configuration $a: \mathbb{Z} \mapsto A^{\mathbb{Z}}$ with a new configuration $F^{*}(a): \mathbb{Z} \rightarrow A^{\mathbb{Z}}$.
O the $2 r$-radius local rule $f^{*}:\left(A^{\mathbb{Z}}\right)^{4 r+1} \rightarrow A^{\mathbb{Z}}$ takes a certain number of configurations of $A^{\mathbb{Z}}$ as input and produces a new configuration of $A^{\mathbb{Z}}$ as output.

2D CA as 1D CA: slicing construction

Introduction of a 1D CA over the alphabet $A^{\mathbb{Z}}$
〇 the global map $F^{*}:\left(A^{\mathbb{Z}}\right)^{\mathbb{Z}} \mapsto\left(A^{\mathbb{Z}}\right)^{\mathbb{Z}}$ associates any configuration $a: \mathbb{Z} \mapsto A^{\mathbb{Z}}$ with a new configuration $F^{*}(a): \mathbb{Z} \rightarrow A^{\mathbb{Z}}$.

- the $2 r$-radius local rule $f^{*}:\left(A^{\mathbb{Z}}\right)^{4 r+1} \rightarrow A^{\mathbb{Z}}$ takes a certain number of configurations of $A^{\mathbb{Z}}$ as input and produces a new configuration of $A^{\mathbb{Z}}$ as output.

2D CA as 1D CA: slicing construction

Introduction of a 1D CA over the alphabet $A^{\mathbb{Z}}$
〇 the global map $F^{*}:\left(A^{\mathbb{Z}}\right)^{\mathbb{Z}} \mapsto\left(A^{\mathbb{Z}}\right)^{\mathbb{Z}}$ associates any configuration $a: \mathbb{Z} \mapsto A^{\mathbb{Z}}$ with a new configuration $F^{*}(a): \mathbb{Z} \rightarrow A^{\mathbb{Z}}$.

- the $2 r$-radius local rule $f^{*}:\left(A^{\mathbb{Z}}\right)^{4 r+1} \rightarrow A^{\mathbb{Z}}$ takes a certain number of configurations of $A^{\mathbb{Z}}$ as input and produces a new configuration of $A^{\mathbb{Z}}$ as output.

2D CA as 1D CA: slicing construction

Introduction of a 1D CA over the alphabet $A^{\mathbb{Z}}$
〇 the global map $F^{*}:\left(A^{\mathbb{Z}}\right)^{\mathbb{Z}} \mapsto\left(A^{\mathbb{Z}}\right)^{\mathbb{Z}}$ associates any configuration $a: \mathbb{Z} \mapsto A^{\mathbb{Z}}$ with a new configuration $F^{*}(a): \mathbb{Z} \rightarrow A^{\mathbb{Z}}$.

- the $2 r$-radius local rule $f^{*}:\left(A^{\mathbb{Z}}\right)^{4 r+1} \rightarrow A^{\mathbb{Z}}$ takes a certain number of configurations of $A^{\mathbb{Z}}$ as input and produces a new configuration of $A^{\mathbb{Z}}$ as output.

2D CA as 1D CA: slicing construction

Introduction of a 1D CA over the alphabet $A^{\mathbb{Z}}$
〇 the global map $F^{*}:\left(A^{\mathbb{Z}}\right)^{\mathbb{Z}} \mapsto\left(A^{\mathbb{Z}}\right)^{\mathbb{Z}}$ associates any configuration $a: \mathbb{Z} \mapsto A^{\mathbb{Z}}$ with a new configuration $F^{*}(a): \mathbb{Z} \rightarrow A^{\mathbb{Z}}$.

- the $2 r$-radius local rule $f^{*}:\left(A^{\mathbb{Z}}\right)^{4 r+1} \rightarrow A^{\mathbb{Z}}$ takes a certain number of configurations of $A^{\mathbb{Z}}$ as input and produces a new configuration of $A^{\mathbb{Z}}$ as output.

2D CA as 1D CA: slicing construction

The following diagram commutes:

$$
\begin{array}{cc}
\left(A^{\mathbb{Z}}\right)^{\mathbb{Z}} \xrightarrow{F^{*}}\left(A^{\mathbb{Z}}\right)^{\mathbb{Z}} \\
\left.\Psi^{-1}\right|^{-1} & \\
A^{\mathbb{Z}^{2}} \xrightarrow[F]{ } & \downarrow^{\mathbb{Z}^{2}}
\end{array}
$$

- the map Ψ^{-1} is continuous
- the 2D CA F is a factor of the 1D CA F^{*} on the infinite alphabet $A^{\mathbb{Z}}$

Result: If a 2D CA F is NE permutive then the 1D CA F^{*} is right permutive.
Result: If a 2D CA F is NE permutive then it is topologically mixing.
proof (idea):

- if F is NE permutive then F^{*} is right permutive.
- right permutivity implies mixing also for CA with infinite alphabet, so F^{*} is mixing.
- since F is a factor of F^{*}, then F is mixing too.

Slicing plus finite alphabet

For any 2D CA F we can build an associated 1D sliced version F^{*} with finite alphabet.

- fix a vector $\vec{v} \perp(1,1)$
- let $\sigma^{\vec{v}}: A^{\mathbb{Z}^{2}} \rightarrow A^{\mathbb{Z}^{2}}$ the shift map of vector \vec{v}
- consider the set $S_{\vec{v}}$ of configurations c such that $\sigma^{\vec{v}}(c)=c$ (translation invariant)
- $F\left(S_{\vec{v}}\right) \subseteq S_{\vec{v}}$ and so $\left(S_{\vec{v}}, F\right)$ is a dynamical system

Slicing construction on $S_{\vec{v}}$:

Result: $\left(S_{\vec{v}}, F\right)$ is top. conjugated to the 1D CA $\left(B^{\mathbb{Z}}, F^{*}\right)$ on the finite alphabet $B=A^{|\vec{v}|}$. proof (idea):the slices of configurations in $S_{\vec{v}}$ are in one-to-one correspondence with symbols of the alphabet B.

Consequences

Results:

- NE (or NW, or SE, or SW) closing 2D CA have DPO and are surjective
- 2D CA which are closing w.r.t. all the 4 directions are open
- NE (resp., NW, resp., SE, resp., SW) permutivity implies NE (resp., NW, resp., SE, resp., SW) closing and then DPO.

Future Works

Continue the study of 2D CA by means of the slicing constructions!

