
Supporting Architectural Composition at Runtime with π-ADL.NET

Zawar Qayyum, Flavio Oquendo
Université Européenne de Bretagne

Université de Bretagne Sud – VALORIA – BP 573 – 56017 Vannes Cedex – France
zawar.qayyum@univ-ubs.fr, flavio.oquendo@univ-ubs.fr

Extended Abstract

1. BACKGROUND
Architecture Description Languages (ADLs) have been
around for sometime, with the objective of providing a
style-specific or general semantic framework for
describing software architectures. Influenced by building
architectures, ADLs initially tended to focus on the
structural aspects of software architectures while largely
ignoring behavioural ones. While it is true that behavioural
aspects of software systems are more relevant at the lower
levels of detail than the high-level view, the present day
context of distributed and concurrent computing and its
various manifestations in service-oriented architectures
make behaviour an integral component in high-level
architecture design, due to a) the fluid nature of system
elements and b) the influence of runtime comportment on
their interrelationships.

π-ADL attempts to capture the dynamic needs of such
systems by presenting a structure and behaviour
description language based on the process formalism of
typed π-calculus. System components can be dynamically
instantiated and can modify their interconnection at any
stage of execution through connection unification and
mobility.

Concretizing π-ADL, π-ADL.NET is a compiler and
virtual machine of π-ADL for the .NET platform, designed
with the objective of rapidly prototyping and simulating
software architectures using π-ADL. With the help of π-
ADL.NET, we demonstrate the robust support for
architectural dynamicity in π-ADL, and the flexibility it
grants in system conception.

2. OVERVIEW OF π-ADL.NET
π-ADL.NET is a .NET implementation for π-ADL,
developed with the objective of experimenting with π-
ADL on a mainstream software technology platform. By
generating an implementation level executable, π-
ADL.NET extends the scope of π-ADL from an abstract
design-level notation to an architecture-centric approach to
system implementation. With π-ADL.NET we attempt to:
• preserve the architectural integrity of the system at the

implementation level;
• support analysis of the concrete architecture;
• support evolution of the implementation while

enforcing its architectural integrity;

• and directly use the implementation mechanisms of
the hosting platform.

Execution in π-ADL.NET takes place in behaviours.
Reusable behaviour templates exist in the form of
abstractions, which can be pseudo-applied in line with the
π-calculus formalism.

3. SPECIFYING COMPOSITION AT RUNTIME
π-ADL.NET supports straightforward constructs for the
composition of executable elements at different levels of
details. Within behaviours, code blocks can be composed
in parallel using the compose construct:
composeBlock := "compose {" block [" and " block]+ "}"

Message passing between these concurrent threads of
execution is supported by shared connections declared
within their containing behaviours. In order to compose
different units of execution, pseudo-applications in
conjunction with connection renaming can be applied:
pseudoApplication := "via" Abstraction "send"

(typeName | value) [renamingClause] ";"
renamingClause := "where" "{" [connectionRename]*

lastConnectionRename "}"
connectionRename := lastConnectionRename ","
lastConnectionRename := identifier "renames" identifier

Renamed connections enable different behaviours to pass
data between each other. The ability to compose
architectural elements at inter- and intra-behavioural level
results in a powerful semantic base for modelling
architectural composition at runtime. The two techniques
can also be seamlessly combined, as show in the following
code snippet:
compose {
 via a1 send Void where {x renames c1};
 and via a2 send Void where {x renames c2};
 and via a3 send Void where {x renames c3};
}

The compose block enables the initiation in parallel of the
pseudo-application of the three abstractions a1, a2 and a3.
The connection x belongs to the behaviour containing the
compose block, and is instrumental in linking together the
connections c1, c2 and c3 from the abstractions a1, a2 and
a3 respectively.

4. FOR FURTHER INFORMATION

www-valoria.univ-ubs.fr/ARCHLOG/

