
Automatic Profile Generation for OFL-Languages

Dan Pescaru, Pierre Crescenzo, Philippe Lahire
Dan@cs.utt.ro

Pierre.Crescenzo@unice.fr
Philippe.Lahire@unice.fr

Faculty of Automatics and Computer Science,
"Politehnica" University of Timisoara,

Bd. V. Parvan no 2, 1900 Timisoara, ROMANIA,

Laboratoire I3S (UNSA/CNRS), Project OCL 2000,
Route de Lucioles, Les Algorithmes,
Bâtiment Euclide B BP121 F-06903,
Sophia-Antipolis CEDEX, FRANCE

November 10, 2003

Contents

1 Introduction 3

2 Supported Elements and Definitions 5
2.1 OFL Model . 5
2.2 OFL-Modifiers . 5
2.3 UML Profile . 5
2.4 OCL . 6

2.4.1 For ModelElement. 6
2.4.2 For Classifier . 7

3 OFL-ML Definition 8
3.1 Identified Subset of UML . 8

3.1.1 From Core - Backbone . 8
3.1.2 From Core - Relationships . 9
3.1.3 From Model Management . 9

3.2 The Virtual Meta-model . 11
3.2.1 Definition. 11
3.2.2 Virtual Meta-model of OFL-ML. 12

4 The OFL Type Representations 16
4.1 The OFL BasicType Element . 16

4.1.1 Stereotypes and Tagged Values. 16
4.1.2 Constraints. 16
4.1.3 Elements Generation. 16
4.1.4 Example. 16

4.2 The OFL Description Element . 17
4.2.1 Stereotypes and Tagged Values. 17
4.2.2 Constraints. 17
4.2.3 Elements Generation. 18
4.2.4 Example. 20
4.2.5 Additional constraints. 21

4.3 The External Description Element . 21
4.3.1 Stereotypes and Tagged Values . 22
4.3.2 Constraints . 22
4.3.3 Elements Generation . 22
4.3.4 Example . 22

5 The OFL Feature Representations 23
5.1 The OFL Attributes . 23

5.1.1 Stereotypes and Tagged Values. 23
5.1.2 Constraints. 24
5.1.3 Elements Generation. 25
5.1.4 Example. 25

5.2 The OFL Methods . 26

1

5.2.1 Stereotypes and Tagged Values . 26
5.2.2 Constraints . 27
5.2.3 Elements Generation. 27
5.2.4 Example. 28
5.2.5 Additional constraints. 29

6 The OFL Relationship Representations 31
6.1 The OFL Import Relationship . 31

6.1.1 Stereotypes and Tagged Values. 31
6.1.2 Constraints. 31
6.1.3 Elements Generation. 39
6.1.4 Example. 39

6.2 The OFL Use Relationships . 40
6.2.1 Stereotypes and Tagged Values. 40
6.2.2 Constraints. 40
6.2.3 Elements Generation. 42
6.2.4 Example. 42

6.3 The Basic Type Composition . 44
6.3.1 Stereotypes and Tagged Values. 44
6.3.2 Constraints. 44
6.3.3 Elements Generation. 45
6.3.4 Example. 45

6.4 The External Import Relationship . 45
6.4.1 Stereotypes and Tagged Values. 45
6.4.2 Constraints. 45
6.4.3 Elements Generation. 45
6.4.4 Example. 45

6.5 The External Use Relationship . 45
6.5.1 Stereotypes and Tagged Values. 45
6.5.2 Constraints. 46
6.5.3 Elements Generation. 46
6.5.4 Example. 46

7 The OFL Model Organization 47
7.1 The OFL Package . 47

7.1.1 Stereotypes and Tagged Values. 47
7.1.2 Constraints. 47
7.1.3 Elements Generation. 47
7.1.4 Example. 48

8 Modeling Example Using an OFL-Java Profile 49

9 Conclusions and Future Work 51
9.1 Conclusions . 51
9.2 Future Work . 51

10 Annexes 53

2

Chapter 1

Introduction

The OFL-ML modeling language specification is designed to provide a standard way to ex-
press the semantics of an OFL-language application using UML-like notation and thus to
support OFL applications modeling with standard UML tools.

The term OFL-language means a language reified or expressed in OFL1. For example it
can be : OFL-Java, OFL-C++, OFL-myJavaExtension, etc.

OFL-ML could be considered as a "meta-profile" or a "meta-model" for UML Profiles ded-
icated to a better support of the semantics of object-oriented language. Each instance of
OFL-ML in the context of a particular OFL-language is an UML Profile for that language.
We name this profile "OFL-ML-Profile for OFL-language". It will exists for example an "OFL-
ML Profile for OFL-Java", an "OFL-ML Profile for OFL-myExtendedJava" or an "OFL-ML
Profile for OFL-C++".

An OFL-ML Profile is an UML Profile that is generated automatically and customized for
every language expressed in OFL. Indeed, each existing language reified in OFL or a possible
extended language expressed in OFL will have its own associated OFL-ML Profile.

OFL-ML could be considered as a template for profiles. To obtain a specific UML Profile for
an OFL-language, OFL-ML has to be instantiated using OFL meta-information (components,
parameters, characteristics and modifiers).

All properties of UML meta-model elements contained in OFL-ML may be used to express
an object model that conforms to the resulting profile. Based on that, modeling tools that
handle UML Profiles could generate an XML representation of an OFL-language application.

The main purpose of OFL-ML is to provide to programmer an UML Profile designed to
support the development of OFL applications. Using this profile with a modeling tool, the
programmer could generate a representation for the application that could be processed later
by an OFL-compiler, an OFL-interpretor or other tools.

UML Profiles provide a generic extension mechanism for building UML models dedicated
to a particular domain. They are based on additional Stereotypes and Tagged values that
are applied to Elements, Attributes, Methods, Links, Link Ends, etc. A profile is a collection
of such extensions that together describe some particular modeling problem and facilitate
modeling constructs in that domain. In [Des99] it is discussed how specific domains that
require a specialization of the general UML meta-model can define an UML profile which
customize UML in order to better address specificities of a given domain. Even if concrete
UML profiles have started to emerge, the use of the profiling mechanism is still discussed
[DSB99, AK00]. To define OFL-ML profile generation we rely on the recommendation found
in the "UML Profile White Paper" [Des99]. Because it is not a final accepted opinion about
Profiles, this paper is not yet an official OMG white paper.

An OFL-ML profile is planed to be used with standard UML modeling tools or with new
modeling tools especially designed for it. It could be used to test and validate the model, to
apply design patterns in an automatic way, to collect metrics or to generate XML representa-
tion of OFL-code. The OFL information contained in OFL-ML entities represent a real help

1For more information on the OFL Model, to read the thesis of Pierre Crescenzo [Cre01b].

3

to achieve all these goals. It is obvious that in the last case, all this information will fill the
XML representation of application elements.

4

Chapter 2

Supported Elements and
Definitions

2.1 OFL Model
Specification of OFL-ML is based on OFL model definition found in [Cre01b] extended with
OFL Modifiers [PL03, PCL03]. The OFL elements modeled by OFL-ML are:

OFL-atoms OFL-atoms represent the reification of the non-customized entities of the model.
Example of atoms are AtomAttribute, AtomMethod, AtomParameter etc.

OFL-components OFL-components inherit from OFL-atoms and represent reification of
customized language entities (relationships and descriptions).

OFL-component parameters and characteristics OFL-parameters and OFL-characteristics
contains values that determine the operational semantics of an object oriented lan-
guage. OFL-ML use only parameters and characteristics that have impact at the level
of application model.

OFL-component properties Each OFL-component keeps a set of reified properties that
represents meta-information for program entities such as lists of attributes and meth-
ods for a description component or lists of redefined features for relationship compo-
nents. As specified, OFL-ML use only the reified properties that have an impact at the
level of application model.

2.2 OFL-Modifiers
OFL-Modifiers [PL03] represent an extension of the OFL Model as presented in [Cre01b].
They are used to express additional semantics that is not customizable by OFL. OFL-ML
will express this semantics using mainly tagged values. These tagged values will be added
to the generated UML-Profile. Moreover, modifiers assertions, which contain most of the
semantics, have to be translated into Profile constraints. In this paper we try to identify
assertion transformation rules that are necessary if we address an automatic generation of
profile.

2.3 UML Profile
UML profiles appeared with the UML 1.3 standard as a way to structure UML extensions
(tagged values, stereotypes and constraints). UML is a modeling language which intend to
be used in a large number of application domains and for all types of software applications.

5

However, each domain has specific notions and particular needs, which are handled by UML
through extensions which are grouped into UML Profiles.

OFL-ML is based on the UML Profile specification found in [Des99, OMG02, Sof99]. An
UML Profile:

� Identifies a subset of the UML meta-model (which may be the entire UML meta-model).
� Specifies well-formedness rules beyond those specified by the identified subset of the

UML meta-model. Well-formedness rule is a term used in the normative UML meta-
model specification [OMG03] to describe a set of constraints written in natural language
and UMLŠs Object Constraint Language (OCL) that contributes to the definition of a
meta-model element.

� Specifies standard elements beyond those specified by the identified subset of the UML
meta-model. Standard element is a term used in the UML meta-model specification to
describe a standard instance of an UML stereotype, tagged value, or constraint.

� Specifies semantics, expressed in formal or natural language, beyond those specified by
the identified subset of the UML meta-model.

2.4 OCL
The OCL convenience operations for UML Meta-model elements presented in this section can
be applied generally to UML version 1.5 (01.03.2003) and are not specific to the UML Profile
defined by OFL-ML. They are defined in order to produce more compact and readable OCL.
Indeed, they are used in UML profiles already approved by OMG [OMG02, OMG01] in the
same way we intend to do here.

2.4.1 For ModelElement.
[1] The operation allStereotypes results in a Set containing the Stereotype of ModelElement

and all Stereotypes inherited by this Stereotype (not to be confused with all Stereotypes
inherited by the ModelElement).

allStereotypes : Set(Stereotype);
allStereotypes = self.stereotype->union

(self.stereotype.generalization.parent.allStereotypes)

[2] The operation isStereotyped determines whether the ModelElement has a Stereotype
whose name is equal to the input name.

isStereotyped : (stereotypeName : String) : Boolean;
self.stereotype.name = stereotypeName

[3] The operation isStereokinded determines whether the ModelElement has a Stereotype
whose name is equal to the input name or if one of the ancestor of one of its stereotypes
has a name which is equal to the input name.

isStereokinded : (stereotypeName : String) : Boolean;
self.allStereotypes->exists (

stereotype | stereotype.name = stereotypeName)

There are some OCL convenience operations defined in this specification that apply
more narrowly to certain extensions of UML that the profile defines. These operations
appear in line with the Constraints for those specific extensions.

6

2.4.2 For Classifier
[1] The operation navigableOppositeEnds results in a Set containing all navigable Associa-

tionEnds that are opposite to the Classifier.

navigableOppositeEnds : Set(AssociationEnd);
navigableOppositeEnds

= self.oppositeAssociationEnds ->
select(end | end.isNavigable)

[2] The operation allEnds results in a Set containing all AssociationEnds for which the
Classifier is the type.

allEnds : Set(AssociationEnd);
allEnds = self.associations ->

collect(assoc | assoc.connection)

[3] The operation nonNavigableNearEnds results in a Set containing all AssociationEnds
that are adjacent to the Classifier and that are non-navigable.

nonNavigableNearEnds : Set(AssociationEnd);
nonNavigableNearEnds =

self.allEnds->select
(end | end.type = self and not end.isNavigable)

[4] The operation navigableEnds results in a Set containing all navigable AssociationEnds
for which the Classifier; that is to say, self is the type.

navigableEnds : Set(AssociationEnd);
navigableEnds = allEnds ->

select (end | end.isNavigable)

7

Chapter 3

OFL-ML Definition

3.1 Identified Subset of UML
OFL-ML diagrams are based on UML Static Structures Diagrams (Class Diagrams). An UML
class diagram is a graph of Classifier elements connected by their various static relationships.
These elements belong to standard UML packages.

The OFL-ML extends the following standard UML packages: Core and Model Manage-
ment. Figure 3.1 shows the model elements that form the structural backbone of the meta-
model and figure 3.2 shows the model elements that define relationships. The abstract syntax
for the Model Management package is expressed in graphic notation in Figure 3.3.

UML use standard visibility markers to express access control at the level of a classifier
and feature. These markers has no meaning for an OFL-ML profile. They are covered by
tagged values that represents corresponding access control modifiers. The reason resides
in difficulty of an automatic translation between access control modifiers and these mark-
ers. But, if a meta-programmer manual intervention is accepted, mapping between these
elements should be considered.

The following concrete meta-classes, and implicitly all super-meta-classes of these meta-
classes, are used:

3.1.1 From Core - Backbone
The backbone of the core package is shown in fig. 3.1.

Attribute An attribute is a named slot within a classifier that describes a range of values
that may be hold by instances of the classifier.

Class A class is a description of a set of objects that share the same attributes, operations,
methods, relationships, and semantics.

Classifier A classifier is an element that describes behavioral and structural features; it
comes in several specific forms, including class, data type, interface, component, artifact,
and others that are defined in other meta-model packages.

Comment A comment is an annotation attached to a model element or a set of model ele-
ments. It is not relevant for the definition of the semantics but it may contain informa-
tion useful for people in charge with the project.

Constraint A constraint has a semantic which deals with either a condition or a restriction
and it is expressed in the model specification.

DataType A data type is a type whose values have no identity (i.e., they are pure values).
Data types include primitive built-in types (such as integer and string) as well as cus-
tomizable enumeration types (such as the predefined enumeration type boolean whose
literals are false and true).

8

ElementOwnership Element ownership defines the visibility of a ModelElement contained
in a Namespace.

Feature A feature is a property, like operation or attribute, which is encapsulated within a
Classifier.

Namespace A namespace is a part of a model that contains a set of ModelElements; each of
them has a name which designates an unique element within the namespace.

Operation An operation is a service that can be requested from an object to implement its
behavior. An operation has a signature, which describes the actual parameters that are
possible (including possible return values).

Parameter A parameter is an unbound variable that can be changed, passed, or returned.
A parameter may include a name, a type, and a direction of communication.

ProgrammingLanguageDataType A data type is a type whose values have no identity
(i.e., they are pure values). A programming language data type is a data type speci-
fied according to the semantics of a particular programming language, using constructs
available in that language.

3.1.2 From Core - Relationships
The UML relationships described in the core package are presented in fig. 3.2.

Abstraction An abstraction is a Dependency relationship that relates two elements or sets
of elements that represent the same concept at different levels of abstraction or from
different viewpoints.

Association An association declares a connection (link) between instances of the associated
classifiers (e.g., classes). It consists of at least two association ends, each specifying a
connected classifier and a set of properties that must be fulfilled for the relationship in
order to be valid.

AssociationEnd An association end is an endpoint of an association, which connects the
association to a classifier. Each association end is part of one association.

Dependency A term of convenience for a Relationship other than Association, Generaliza-
tion, Flow, or meta-relationship (such as the relationship between a Classifier and one
of its Instances).

Generalization A generalization is a taxonomic relationship between a more general ele-
ment and a more specific element. The more specific element is fully consistent with the
more general element (it has all of its properties, members, and relationships) and may
contain additional information.

Usage An usage is a relationship in which one element requires another element (or set of
elements) for its full implementation or operation.

3.1.3 From Model Management
The main elements of the model management package are shown in fig. 3.3.

ElementImport An element import defines the visibility and alias of a model element in-
cluded in the namespace within a package, as a result of the package importing another
package.

Package A package is a way to group several of model elements which deal with the concern.

9

Figure 3.1: The UML Core Package - Backbone

Figure 3.2: The UML Core Package - Relationships

10

Figure 3.3: The UML Model Management Package

3.2 The Virtual Meta-model
3.2.1 Definition.
A virtual meta-model is a formal model of a set of UML extensions, expressed in UML. The
virtual meta-model for the UML Profile for OFL-ML is presented in this chapter as a set
of class diagrams. More information about virtual meta-models can be found in [OMG02,
OMG01]. The semantics of stereotypes described in this virtual meta-model is given in the
next sections.

Representation of Stereotypes. The virtual meta-model represents a Stereotype as a
Class stereotyped � stereotype � . The Class that represents the Stereotype is the client of
a Dependency stereotyped � baseElement � , whose supplier is the UML meta-model element
being extended.

Representation of Tagged Values. The virtual meta-model represents a TaggedValue as-
sociated with a Stereotype as an Attribute of the Class that represents the Stereotype. The
Attribute is stereotyped � TaggedValue � . An expression of the form �������	��
�

����� indicates
that the TaggedValue value is a comma-delimited tuple. An expression of the form ����������

�
�����
indicates that the value is an enumeration.

A big challenge for OFL-ML is to generate a clean and understandable profile in an auto-
matically way. To following rules are specified in order to address this objective:

� every OFL-component will be represented through an individual stereotype
� every combination of the characteristics values of an element of OFL which is non-

customizable (reified by OFL-atoms) generates a different stereotype. This rule is based
on the UML stereotype definition:"... a stereotype may be used to indicate a difference in
meaning or usage between two model elements with identical structure".

11

Figure 3.4: Virtual Model for OFL Basic Types

Figure 3.5: Virtual Model for OFL-description Components

� additional OFL-elements (like OFL-modifiers or OFL-assertions) are associated to tagged
values or constraints which are created in the generated profile.

3.2.2 Virtual Meta-model of OFL-ML.
Figure 3.4 presents a stereotype used to model the basic types defined by a language. These
types are managed as a characteristic of OFL-language component, which is actually a list.
This Stereotype is derived from UML programming language data type.

Figure 3.5 shows a stereotype used to model OFL-description components. This stereotype
is derived from UML class. An UML class is a description of a set of objects that share the
same attributes, operations, methods, relationships, and semantics.

Figure 3.6 presents a stereotype used to model an External Description. This element
does not exists in the OFL-model. It is defined only at the level of OFL-ML and it specifies
a Description that has no OFL reification. It is necessary to include such entity in order to
allow the integration of class libraries that have no OFL representation. The stereotype is
derived from UML classifier.

Figure 3.7 shows how to represent an OFL-package. Generated profile will contain entities
that inherit from this stereotype and denote specific language class organization mechanisms.
The stereotype is derived from UML package.

In figure 3.8 we show the stereotypes used to represent OFL-features. Stereotypes are
derived from UML attribute and method. Also, stereotypes are specialized according to the
characteristics of OFL-AtomAttribute (isDescriptionAttribute and isConstant), and of OFL-
AtomMethod (isConstructor and isDestructor).

Stereotypes for association end that belongs to OFL-UseRelationship are presented in fig-
ure 3.9. These stereotypes follows same rules as the stereotypes dealing with features. Figure

12

Figure 3.6: Virtual Model for External Description

Figure 3.7: Virtual Model for OFL Package

Figure 3.8: Virtual Model for OFL Features - attributes and methods

13

Figure 3.9: Virtual Model for Association End

3.10 presents stereotypes used to represent OFL-relationships. These stereotypes are derived
from UML generalization and association.

14

Figure 3.10: Virtual Model for OFL Relationships

15

Chapter 4

The OFL Type Representations

This section describes all the Stereotypes introduced in the Virtual Meta-model for OFL-
BasicType, OFL-ML-ExternalDescription and OFL-Description. It adds the necessary Tagged-
Values, Constraints, and Common Model Elements to complete the Profile specification.

These stereotypes could be used by modeling tools to generate corresponding instances
of OFL elements and to fill them with appropriate information. Thereby, the following ele-
ments are considered to be generated: instances of OFL-PrimitiveType components and OFL-
Description components. The result will be an OFL representation for application in XML.

4.1 The OFL BasicType Element
An OFL BasicType is a model of a primitive type found in the language binding such as int,
boolean, char (from Java) etc.

4.1.1 Stereotypes and Tagged Values.
The OFL-ML basic types are represented by UML ProgrammingLanguageDataType from
Core package with the � OFLBasicType � stereotype.

4.1.2 Constraints.
All � OFLBasicType � stereotyped elements is strongly related to the characteristic identified
by OFL-language.basicTypes.

4.1.3 Elements Generation.
A profile element stereotyped � OFLBasicType � will be generated for each element of the
list OFL-language.basicTypes. All strings contained by this list will became a name of one
profile element.

4.1.4 Example.
If we consider Java language, eight elements will be considered. Those elements will have
following names:

� boolean
� char
� byte
� short

16

� int
� long
� float
� double

4.2 The OFL Description Element
OFL Description Components represent the reification of Class types in different program-
ming languages. They are created by the meta-programmer during the language modeling
phase. If we consider the support for automatic code generation, OFL-ML has to include the
representation of elements for all these components.

4.2.1 Stereotypes and Tagged Values.
The abstract stereotype � OFLDescriptionType � is the base for all the concrete stereotypes
representing OFL Description of the considered language. The name of a generated stereo-
type is the name of the corresponding OFL component but without "Component" prefix. For
a component ComponentJavaClass, a stereotype named � JavaClass � will be created.

Tagged values are created to express all OFL-modifiers associated with that component.
These tags have boolean values and take the name from the attribute keyword of the modifier.

4.2.2 Constraints.
Constraints related with components stereotypes must address parameter values, character-
istics and associated OFL Modifiers constraints for that component. Not all OFL parameters
are considered but only those which have an impact on the static model of the application1.

This paragraph presents constraints that have to be generated for all stereotypes derived
from abstract stereotype � OFLDescriptionType � . Each of them will consider parameter
values, characteristics and modifiers associated with corresponding OFL component. Thus
all constraints related with the stereotype � JavaClass � take into account parameter values,
characteristics and modifiers associated with the component ComponentJavaClass defined for
OFL-Java.

Parameter ConceptDescription::attribute. This parameter specify if the description could
declare or not attributes. Legal values are allowed and forbidden. The constraint related with
the value forbidden of this parameter will ensure an empty attribute compartment:

context: OFLDescriptionType (Core::Class)
self.allAttributes->size = 0

The operation allAttributes results in a Set containing all Attributes of the Class itself and
all its inherited Attributes. It is defined in [OMG03] as a standard operation on classifiers.

allAttributes : set(Attribute);
allAttributes =

self.allFeatures->select(f | f.oclIsKindOf(Attribute))

1See the full list of information associated to each OFL-component in the annexes, chapter 10.

17

Parameter ConceptDescription::methods. This parameter specifies if the description
could declare or not methods. Legal values are allowed and forbidden. The constraint related
with the value forbidden of this parameter will ensure an empty method compartment:

context: OFLDescriptionType(Core::Class)
self.allMethods->size = 0

The operation allMethods results in a Set containing all Methods of the Class itself and all
its inherited Methods.

allMethods : set(Methods);
allMethods =

self.allFeatures->select(f | f.oclIsKindOf(Method))

OFL Modifiers Constraints. All modifier constraints defined for the considered descrip-
tion component will be added in the generated profile. These constraints have to be trans-
formed to deal with profile tagged values and stereotypes instead of OFL entities. Transfor-
mations that should be made to deal with profile tagged values are very basic. The purpose
is to translate attributes of OFL-Atoms and OFL-Components into the corresponding tagged
values.

According to modifier assertions which deal with OFL-Description components, only pa-
rameter modifier inherited from OFL-AtomDescription is involved. It has to be translated
into a taggedValue which has the same name as the modifier. Indeed, transformations rely
on the following two rules:

� Syntax:

self.modifiers->includes(’modifier_name’)

is translated in:

self.stereotype.taggedValue
->select(name = ’modifier_name’)->size = 1

� and syntax:

NOT self.modifiers->includes(’modifier_name’)

is translated in:

self.stereotype.taggedValue
->select(name = ’modifier_name’)->size = 0

These constraints check whether a tagged value exists or not. Each tagged value corresponds
to a given modifier for the entity which is considered.

4.2.3 Elements Generation.
A profile stereotype derived from � OFLDescriptionType � will be generated for each OFL
component. For a language which contains description types that are reified in OFL by com-
ponents, such as ComponentLanguageDescriptionType1, ComponentLanguageDescription-
Type2 etc, the resulting hierarchy is presented in figure 4.1.

18

Figure 4.1: Generated stereotypes for Descriptions Components

Figure 4.2: Generated stereotypes for OFL-Java Descriptions Components

19

�
Modifier Basic Access Complex Access Optimization Service Additional

Description Control Control
Class public, package final strictfp - -
AbstractClass public, package - strictfp - -
Interface public, package final strictfp - -
StaticMemberClass public, protected final strictfp - -

private, package - -
AbstractStaticMemberClass public, protected - strictfp - -

private, package - -
StaticMemberInterface public, protected final strictfp - -

private, package - -
MemberClass public, protected final strictfp - -

private, package - -
AbstractMemberClass public, protected - strictfp - -

private, package - -
LocalClass - final strictfp - -
AbstractLocalClass - final strictfp - -
AnonymousClass - final strictfp - -

Table 4.1: Modifiers for Java Description Components

4.2.4 Example.
Considering Java language, following description types are identified [CCL02, Cre01a]: class,
abstract class, interface, static member class, abstract static member class, static member
interface, member class, abstract member class, local class, abstract local class and anony-
mous class. Indeed, the OFL model for Java will contains eleven components derived from
OFLComponentDescription.

Stereotypes generated for Java language are shown in figure 4.2.
Modifiers supported by these description components are summarized in table 4.1.
Table 4.2 presents the generated tagged values corresponding to these modifiers.

Stereotype Tagged Values
JavaClass

�
public � ,

�
package � ,

�
final � ,

�
strictfp �

JavaAbstractClass
�
public � ,

�
package � �

strictfp �
JavaInterface

�
public � ,

�
package � ,

�
final � ,

�
strictfp �

StaticMemberClass
�
public � ,

�
protected � ,

�
final � ,

�
strictfp ��

private � ,
�
package �

AbstractStaticMemberClass
�
public � ,

�
protected � ,

�
strictfp ��

private � ,
�
package �

StaticMemberInterface
�
public � ,

�
protected � ,

�
final � ,

�
strictfp ��

private � ,
�
package �

MemberClass
�
public � ,

�
protected � ,

�
final � ,

�
strictfp ��

private � ,
�
package �

AbstractMemberClass
�
public � ,

�
protected � ,

�
strictfp ��

private � ,
�
package �

LocalClass
�
final � ,

�
strictfp �

AbstractLocalClass
�
final � ,

�
strictfp �

AnonymousClass
�
final � ,

�
strictfp �

Table 4.2: Tagged Values for Java Description Components Stereotypes

No OFL-Java component has OFL parameters ConceptDescription::attribute and Concept-
Description::methods set to forbidden. Indeed, even Java interface could have attributes (final
static). As a result, no constraints will be added to the generated profile for these parameters.

For Java components, only constraints dealing with incompatible modifiers are defined
regarding basic access control modifiers and optimization modifiers.

If we consider JavaClass component, action control modifier assertion for that component
is:

context ComponentJavaClass
inv: self.modifiers->includes(’public’)

implies
NOT self.modifiers->includes(’package’)

20

The constraint after the transformation which is included in the generated profile is very
close from the original one:

context JavaClass::OFLDescriptionType (Core::Class)
inv: self.stereotype.taggedValue

->select(name=’public’)->size=1
implies
self.stereotype.taggedValue

->select(name=’package’)->size=0

Complex modifier final will be considered when the constraints associated to relationships
will be described.

4.2.5 Additional constraints.
OFL parameters, characteristics and modifiers do not cover all language semantics. At the
stage of our work there is no way to extract automatically constraints from the body of OFL
actions. To take this situation into account the meta-programmer must add additional con-
straints. These constraints follow the same rules as OFL Assertions added with the same
goal. As an example, if we consider Java Interfaces, the following rule has to be specified:

An interface should not contain attributes that are not final (constant) and static (class
attribute).

This rule will have an associated OFL-assertion at the level of ComponentJavaInterface.

context: ComponentJavaInterface inv: self->features->forAll(
a:OFLAttribute |

a.isConstant and a.isDescriptionFeature)

The OCL constraint added into the profile in order to implement this rule is (for transfor-
mation see Section 5.1):

context: JavaInterface:OFLDescriptionType(Core::Class)
self->allAttributes

->forAll (a | a.oclIsKindOf(Attribute) implies
a.isStereokinded("OFLConstantClassAttribute"))

4.3 The External Description Element
The External Description element does not exists in the OFL-model. It is defined at the level
of OFL-ML and specify a Description which is not described with OFL but with an external
language, so that it is not associated to any OFL information and it is outside the scope of
OFL. This element is useful especially when an application is linked to descriptions coming
from existing class libraries which are not imported into the OFL universe.

OFL-ML could not handle the External Descriptions in the same manner as normal OFL-
Descriptions are treated. The main impediment is their opacity. Their internal structures
are hidden and could not be seen through usual OFL-relationships. As consequence, only
very few profile constraints could be defined for them.

OFL-ML defines special relationships to deal with external descriptions. Those relation-
ships are called "external relationships". For more information see the section "External
Relationships". An external description could be involved only in external relationships and
can act only as a target.

The usage of external descriptions is adequate only if the goal of OFL-application modeling
is to obtain executable code. Control of semantics involved by these entities is done in that
case by the native compiler or linker of the language of the generated code.

21

Figure 4.3: Example of using External Description Stereotype

4.3.1 Stereotypes and Tagged Values
There is only one stereotype involved in the representation of an external description. It is
presented in figure 3.6.

Moreover, one tagged value is also specified. This is the taggedValue
�

externalPath =
importPathSpecification � . It allows to specify the location of the resource. The value of this
tag is a string that depends much on the syntax used by the language in order to integrate
existing resources. For example, following values are legal : "import java.util.Vector" for Java
or " � include ’MyApp.h’" for C++.

4.3.2 Constraints
The use of external descriptions is strongly linked with specific language semantics. Only
very light control may be achieved. Constraints related with external descriptions are added
at the level of relationships that could involve these elements.

4.3.3 Elements Generation
Only one profile element stereotyped as � OFLExternalDescription � will be generated. As
it has been already mentioned, this stereotype will be tagged with an externalPath tagged
value. The value of this tag will be included in the generated source file. For models that are
intended to be used for other purposes than the generation of executable code, this tag may
be ignored.

For languages with a complex syntax for addressing resources, the meta-programmer may
define additional tags for this stereotype.

4.3.4 Example
Figure 4.3 shows some examples of the description of external descriptions for Java and C++.

22

Chapter 5

The OFL Feature
Representations

OFL-Features deals with features declared by an OFL-Description. They describe the state
(attributes) and the behavior (methods) of the description which is considered. Every feature
is associated to a name and a list of modifiers.

These stereotypes could be used in modeling tools to generate corresponding instances of
OFL elements and to fill them with appropriate information. Thereby, the following elements
are considered to be generated: instances of OFL-Attribute atom and OFL-Method atom.

5.1 The OFL Attributes
An Attribute inherit from the properties of a feature and keep the values that describe the
state of the description. An attribute has a name, a type, an initial value and a set of modi-
fiers. Whether the attribute type is basic or not, we have to consider one of the two following
cases :

� An attribute definition whose type is a language basic type (modeled as an OFLBasic-
Type) is represented as an UML Attribute. This is an attribute of a Class stereotyped
with a stereotype derived from � OFLBasicType � .

� An OFL-attribute whose type is an OFL-description is represented as an UML Associa-
tion. This association is between the Class stereotyped with a stereotype derived from
the � OFLDescriptionType � which declares the attribute and the UML stereotype that
represents the OFL-description type of the attribute. The name of the attribute is used
as the role name for the attribute type AssociationEnd of this Association.

5.1.1 Stereotypes and Tagged Values.
Instance Attributes. Whenever a new instance of a description is created, a new attribute
associated with that instance is created for all instance attributes. OFL handles them by set-
ting the value of isDescriptionAttribute characteristic of the AtomAttribute instance to false.
OFL-ML represents those attributes using � OFLAttribute � stereotype for basic type at-
tributes or � OFL-AssociationEnd � for attributes that represent aggregation with other de-
scriptions.

Class Attributes. For a given class it exists exactly one incarnation of each class attribute,
no matter how many instances (possibly zero) of the class may eventually be created. For such
attributes the characteristic isDescriptionAttribute of AtomAttribute instance, is set with true.
OFL-ML represents these attributes using � OFLClassAttribute � stereotype for basic type
attributes and � OFLClassAssociationEnd � for attributes that represent aggregation with
other OFL-descriptions.

23

Constant Attributes. Constant attributes are attributes that could not change their value
after initialization. OFL uses the characteristic isConstant of AtomAttribute in order to take
them into account. If this characteristic is set to true, the attribute is constant and OFL-
ML will represent it through � OFLConstantAttribute � , � OFLConstantClassAttribute � ,� OFLClassAssociationEnd � , respectively � OFLConstantClassAssociationEnd � stereotype.

Tagged values are created to express all OFL-modifiers associated with an OFL-attribute.
These tags have boolean values and take the name from the attribute keyword of a modifier.

5.1.2 Constraints.
All modifiers constraints defined for AtomAttribute will be added in the generated profile. For
incompatible modifiers, constraint transformation is the same as presented in Section 4.2.
Transformation of constraints regarding stereotypes for attributes are the following:

� Syntax:

a.isConstant

is translated into:

a.isStereokinded("OFLConstantAttribute")

This transformation refers to constant attributes. OFL uses AtomAttribute.isConstant to
keep this information. OFL-ML will represent this as an UML Attribute stereokinded as� OFLConstantAttribute � .

� Syntax:

a.isDescriptionAttribute

is translated into:

a.isStereokinded("OFLClassAttribute")

This transformation refers to class attributes. OFL uses AtomAttribute.isDescriptionAttribute
to keep this information. OFL-ML will represent this as an UML Attribute stereokinded as� OFLClassAttribute � .

� Syntax:

a.isConstant
AND

a.isDescriptionAttribute

is translated into:

a.isStereokinded("OFLConstantClassAttribute")

This transformation refers to class attributes that are constant. OFL uses AtomAttribute.isConstant
and AtomAttribute.isDescriptionAttribute to keep this information. OFL-ML will represent
this as an UML Attribute stereokinded as � OFLConstantClassAttribute � .

24

Stereotype Applies To Definition� OFLAttribute � Attribute An attribute of a
basic type� OFLConstantAttribute � Attribute A constant attribute
of a basic type� OFLClassAttribute � Attribute A class attribute
of a basic type� OFLConstantClassAttribute � Attribute A constant class
attribute of a basic
type� OFLAssociationEnd � Attribute An attribute that
represents an OFL
use relationship� OFLConstantAssociationEnd � Attribute A constant attribute
that represents an OFL
use relationship� OFLClassAssociationEnd � Attribute A class attribute that
represents an OFL use
relationship� OFLConstantClassAssociationEnd � Attribute A constant class
attribute that represents
an OFL use relationship

Table 5.1: OFL-ML Attribute Stereotypes

5.1.3 Elements Generation.
Four profile stereotypes will be generated automatically for the basic-type attributes and four
for the association-ends that correspond with relationships known as OFL-UseRelationships.
These stereotypes are presented in table 5.1.

To increase the expressiveness of the generated profile, meta-programmer can derive new
stereotypes from � OFLAttribute � and can choose for them a suggestive name such as� OFLJavaStaticAttribute � , � OFLJavaFinalAttribute � or � OFLJavaFinalStaticAttribute � .
Same work could be done also for AssociationEnd stereotypes. In order to make this task eas-
ier, some "wizard" may be added to the profile generator tool. The additional stereotypes will
inherit from the standard ones, all generated constraints.

5.1.4 Example.
Table 5.2 shows some profile elements which are mapped to Java attributes.

Stereotype Java Mapping Example
OFLJavaAttribute instance non-final Java char a
(:OFLAttribute) basic types attributes (for Java

basic types see Section 4.1)
OFLJavaFinalAttribute instance final Java basic types final char a
(:OFLConstantAttribute) attributes
OFLJavaStaticAttribute static (class) non-final static char a
(:OFLClassAttribute) Java basic types attributes
OFLJavaFinalStaticAttribute static (class) final final static char a
(:OFLConstantClassAttribute) Java basic types attributes
OFLJavaAssociationEnd instance non-final Java AClass a
(:OFLAssociationEnd) aggregation attributes
OFLJavaFinalAssociationEnd instance final Java final AClass a
(:OFLConstantAssociationEnd) aggregation attributes
OFLJavaStaticAssociationEnd static (class) non-final static AClass a
(OFLClassAssociationEnd:) Java aggregation attributes
OFLJavaFinalStaticAssociationEnd static (class) final Java final static AClass a
(:OFLConstantClassAssociationEnd) aggregation attributes

Table 5.2: OFL-ML Stereotypes of Java Attribute

Table 5.3 presents tagged values generated for modifiers associated with Java attributes.

25

These tagged-values correspond to public, protected, package and private access control mod-
ifiers, respectively volatile optimization modifier and transient service modifier.

Stereotype Tagged Values
OFLAttributes

�
public � ,

�
protected � ,

�
private � ,

�
package ��

volatile � ,
�
transient �

OFLConstantAttributes
�
public � ,

�
protected � ,

�
private � ,

�
package ��

transient �
OFLClassAttributes

�
public � ,

�
protected � ,

�
private � ,

�
package ��

volatile � ,
�
transient �

OFLConstantClassAttributes
�
public � ,

�
protected � ,

�
private � ,

�
package ��

transient �
OFLAssociationEnd

�
public � ,

�
protected � ,

�
private � ,

�
package ��

volatile � ,
�
transient �

OFLConstantAssociationEnd
�
public � ,

�
protected � ,

�
private � ,

�
package ��

transient �
OFLClassAssociationEnd

�
public � ,

�
protected � ,

�
private � ,

�
package ��

volatile � ,
�
transient �

OFLConstantClassAssociationEnd
�
public � ,

�
protected � ,

�
private � ,

�
package ��

transient �

Table 5.3: Tagged Values for Java Attribute Stereotypes

5.2 The OFL Methods
Methods inherit from features and specify the behavior of the description. Method elements
may represent both procedures and functions. Functions differs from procedures because
they return a result. The method declaration specifies a list of parameters. This list could
be empty or not. If not, it contains a list of OFL-parameter elements. Abstract methods are
methods that are not implemented. An abstract methods has an empty body. Additionally,
OFL make the distinction between normal methods, constructors and destructors.

5.2.1 Stereotypes and Tagged Values
Three stereotypes defined in the OFL-ML virtual meta-model are used also in the generated
profile: � OFLMethod � , � OFLConstructorMethod � and � OFLDestructorMethod � . In
addition, an � OFLParameter � is derived from UML-parameter element to express method
parameters. The returned value is indicated thanks to the following UML convention : the
method has a parameter which implements an attribute ’kind = return’.

The standard attribute body of UML-Method element is used to keep the list of statements
that represents the method body. UML represents it as a list of ProcedureExpression, which
are actually strings. When the code is generated from the model, these strings have to be
translated into OFL-Statement elements. Another possibility is to represent the body using
the UML-ActionsSemantic Model. This option will be discussed at the end of this chapter.

For abstract methods, OFL-ML uses an attribute isAbstract inherited from UML-Operation
element. If it is set to true, then the operation does not have an implementation and the
method body will be empty. If false, the operation must have an implementation specified
within the description or within one of its ancestors.

To end the method overriding, UML uses the boolean attribute isLeaf from Operation. If it
set to true, then the implementation of the operation may not be overridden by a descendant
class. If false, then the implementation of the operation may be overridden by a descendant
class but it is not compulsory to be overridden. If we consider automatic generation of pro-
file, OFL-ML cannot use directly this attribute. In OFL, rights about method overriding or
redefining are specified through modifiers rather than characteristics.

26

Method parameters are represented as a list of UML-parameter elements. An UML-
parameter is an unbound variable that can be changed, passed, or returned. A parameter
may include a name, a type, and a direction of communication. If we consider the reification
of parameter semantics (as the Eiffel agent parameter modifier) constraints have to be added
at the level of these elements.

Other constraints could be added related to parameter semantics. The standard attribute
kind of the UML-parameter element can take following values:

in An input Parameter (may not be modified).

out An output Parameter (may be modified to communicate information to the caller).

inout An input Parameter that may be modified.

return A return value of a call.

Tagged values are created to express all OFL-modifiers associated with an OFL-method.
These tags have boolean values and take the name from the attribute keyword of a modifier.

5.2.2 Constraints
Some constraints are imported from UML semantics. In fact, any usage of standard UML
attributes implies also constraints.

In this context, according to UML-BehavioralFeature which is inherited by an UML-
Method, we have:

� All Parameters should have a unique name.

self.parameter->
forAll(p1, p2 | p1.name = p2.name implies p1 = p2)

� The type of the Parameters should be included in the Namespace of the Classifier.

self.parameter->forAll(p |
self.owner.namespace.allContents->includes (p.type))

Moreover, as for attributes, all modifiers constraints defined for AtomMethod must be
added.

5.2.3 Elements Generation.
Four stereotypes will be generated for methods. These are � OFLMethod � , � OFLConstructorMethod � ,� OFLDestructorMethod � and � OFLParameter � . The first tree stereotypes apply to the
UML Method element. The last one apply to the UML Parameter one. � OFLConstructorMethod �
corresponds to an OFL-method which has the attribute isConstructor set to true. � OFLDestructorMethod �
corresponds to an OFL-method which has an attribute isDestructor set to true. As mentioned
in section 5.1, meta-programmer may decide to derive specific stereotypes from the generated
ones in order to increase the expressiveness of the profile elements.

Generated tags will correspond to the OFL-method modifiers defined for the language
which is considered.

No tags will be generated for abstract methods and or eventually for non-overriding meth-
ods. Instead, the profile will use standard UML attributes as mentioned in the previous
section.

Following list presents the transformation rules for the constraints dealing with methods.
� Syntax:

27

m.isConstructor

is translated into:

m.isStereokinded("OFLConstructorMethod")

This transformation refers to constructor methods. OFL uses the characteristic isConstructor
from AtomMethod to keep this information. OFL-ML will represent it as an UML Method
stereokinded as � OFLConstructorMethod � .

� Syntax:

m.isDestructor

is translated into:

m.isStereokinded("OFLDestructorMethod")

This transformation refers to destructor methods. OFL uses the characteristic isDestructor
from AtomMethod to keep this information. OFL-ML will represent it as an UML Method
stereokinded as � OFLDestructorMethod � .

Both characteristics body and parameters are a collection whatever we consider OFL or
UML. Collection operations may be applied on both in the same way.

5.2.4 Example.
Profile elements mapping to Java methods are presented in table 5.4.

Stereotype Java Mapping Example
OFLMethod standard Java method returnType aMethod(listOfParameters)
(:Method)
OFLConstructorMethod a Java constructor method className(listOfParameters)
(:OFLMethod) must have same name as the

class itself and no return type
OFLFinalizeMethod a Java finalizer protected void finalize()
(:OFLDestructorMethod) (not exactly a destructor)

Table 5.4: OFL-ML Stereotypes of Java Method

Tagged values generated for modifiers associated with Java methods are presented in
table 5.5. This corresponds to public, protected, package, private and final access control
modifiers, respectively native and strictfp optimization modifiers and synchronized service
modifier.

To handle java language, an additional tagged value is necessary to express the exception
mechanism. Considering that OFL does not provide any customization for exceptions han-
dling, this tagged value have to be added manually. We propose a tag

�
javaThrows = string � .

The value of this tag will represent a comma-delimited list of names of Java Exception Classes
thrown by the method which is considered.

Constraints that correspond to access control modifiers are generated using the same
translation as the one mentioned in the previous section. For native modifier the assertion
has also to be transformed.

context AtomMethod
inv: self.modifiers->includes(’native’)

implies
self.isConstructor = false

28

Stereotype Tagged Values
OFLMethod

�
public � ,

�
protected � ,

�
private � ,

�
package � ,

�
final ��

native � ,
�
strictfp � ,

�
synchronized � ,

�
javaThrows �

OFLConstructorMethod
�
public � ,

�
protected � ,

�
private � ,

�
package ��

javaThrows �
OFLFinalizeMethod

�
protected ��
javaThrows �

Table 5.5: Tagged Values for Java Method Stereotypes

and
self.body->isEmpty()

and
NOT self.modifiers->includes(’synchronized’)

Transformation are made using transformation rules which had been already presented.

context OFLMethod (Core::Method)
inv: self.stereotype.taggedValue

->select(name = ’native’)->size = 1
implies

NOT self.isStereotyped(’OFLConstructorMethod’)
and

self.body->isEmpty()
and

self.stereotype.taggedValue
->select(name = ’synchronized’)->size = 0

5.2.5 Additional constraints.
As we mentioned in 4.2, the generated constraints do not cover all the semantics of the lan-
guage. For example, in Java, all method parameters must have an attribute kind set to in,
except one that is set to return. Moreover, a Java method cannot be abstract unless it is
declared in a Java Interface or a Java abstract class.

context OFLMethod (Core::Method)
inv: let owner:Classifier = self.specification.owner

in
(owner.isStereokinded(’JavaAbstractClass’)

or
owner.isStereokinded(’JavaAbstractMemberClass’)
or

owner.isStereokinded(’JavaAbstractStaticMemberClass’)
or

owner.isStereokinded(’JavaAbstractLocalClass’)
or

owner.isStereokinded(’JavaInterface’)
or

owner.isStereokinded(’JavaStaticMemberInterface’))

Following Java constraint is related with a finalize method. A finalize method has to i)
be declared as protected, ii) not return any result (it must have void as return type) and iii)
throw Throwable exception.

context OFLFinalizeMethod (Core::Method)
inv: self.stereotype.taggedValue

29

->select(name = ’protected’)->size = 1
and

self.parameter->select(p |
p.kind = return
implies

(p.type.isStereotyped(’OFLBasicType’)
and

p.type.name = ’void’)
)

and
self.stereotype.taggedValue

->select(tag | tag.name = ’javaThrows’
implies tag.value = ’Throwable’)

30

Chapter 6

The OFL Relationship
Representations

This chapter describes all the Stereotypes introduced in the Virtual Meta-model for OFL-
ImportRelationship and OFL-UseRelationship. It also adds the necessary TaggedValues,
Constraints, and Common Model Elements to fulfill the profile.

These stereotypes could be used by modeling tools in order to generate corresponding
instances of OFL elements and to fill them with the appropriate information. Thereby, the
following elements are considered to be generated: instances of OFL-ImportRelationship com-
ponents and OFL-UseRelationship components.

Current work on OFL-ML does not consider dynamic relationships which are reified by
OFL-ObjectToClassRelationship and OFL-ObjectToObjectRelationship. The reason is that
OFL-ML profiles may represent only static models corresponding to UML Static Class Di-
agrams.

6.1 The OFL Import Relationship
The OFL-import relationship is a generalization of the inheritance mechanism found in object
oriented languages. The meta-programmer has the responsibility to create an OFL relation-
ship component for each import relationships existing in the language which is modeled.
OFL-ML generates the necessary elements in order to represents all these components.

6.1.1 Stereotypes and Tagged Values.
The abstract stereotype � OFLImportRelationship � is the base for all the concrete stereo-
types representing OFL ImportRelationship components of the language which is considered.
The name of a generated stereotype is the same as the one of the related OFL component but
without "Component" prefix. For example a component "ComponentJavaExtends", leads to
the creation of a stereotype named � JavaExtends � .

All relationships stereotyped as specialization of � OFLImportRelationship � will have
an associated set of tagged values. Values of these elements correspond to some of the Atom-
Relationship characteristics. These tagged values are presented in table 6.1.

In addition, one tagged value will be generated for each modifier associated with a rela-
tionship component.

6.1.2 Constraints.
All modifiers constraints defined in relationship components will be added to the profile.
Transformation rules ensure that all characteristics of relationships components lead to the
creation of the corresponding tagged values. Following rules will apply:

31

TaggedValue TaggedValue Comment
Name Value
abstractedFeatures string list of concrete methods

(list of feature names) that are abstracted
effectedFeatures string list of abstract methods

(list of feature names) that are effected
hiddenFeatures string list of features that

(list of feature names) are hidden
redefinedFeatures string list of features that

(list of feature names) are redefined
renamedFeatures string list of features that

(list of feature names) are renamed
removedFeatures string list of features that

(list of feature names) are removed
shownFeatures string list of features that pass

(list of feature names) the relationship unchanged

Table 6.1: OFL-ML Tagged Values for OFLImportRelationship

� Syntax:

self.relationshipCharacteristic->forall(f:Feature |
f.modifiers->includes(’modifier_name’))

is translated in:

self.stereotype.taggedValue
->forall(t:taggedValue |

(t.name = ’relationshipCharacteristic’ and
t.values->includes(feature_name))

imply
self.parent.features->forall(f:Feature |

f.name = feature_name imply
f.stereotype.taggedValue->

select(name = ’modifier_name’)->
size = 1))

Following example applies to the Java private modifier in the context of the � JavaClassExtends �
stereotype.

� Syntax:

self.hiddenFeature->forall(f:Feature |
f.modifiers->includes(’private’))

is translated in:

self.stereotype.taggedValue
->forall(t:taggedValue |

(t.name = ’hiddenFeatures’ and
t.values->includes(feature_name))

imply
self.parent.features->forall(f:Feature |

f.name = feature_name
imply

32

f.stereotype.taggedValue->
select(name = ’private’)->

size = 1))

Additionally, the generated profile will contains constraints regarding each stereotype
which corresponds to the relationship components of the language. The generic name Com-
ponentRelationship designates these stereotypes. Indeed, each OFL-ML generic constraint
presented next will have one instance for each component into the generated OFL-ML Pro-
file.

Parameter ConceptRelationship::cardinality. This parameter specifies the cardinality
of relationship as an integer value n in the meaning of cardinality 1-n. This specify that
relationship has one source (child) description and could have between 1 and n target (parent)
descriptions. As an example, for simple inheritance n = 1 and the cardinality is 1-1. For a
general relationship n could be � .

The constraint related with this parameter checks the conformance with cardinality spec-
ification. If cardinality is � no constraint is necessary.

OFL-ML: if cardinality
�� �

context ComponentRelationship(OFLImportRelationship)
inv: self.child.generalization->select(gen |

gen.isStereotyped(’ComponentRelationship’)
and

gen.child = self.child)->size = n

Parameter ConceptRelationship::repetition. This parameter indicates if a direct repe-
tition of target (parent) is permitted or not. The possible values of this parameter are allowed
and forbidden. Value allowed make sense only for a relationship with the cardinality � ���
(1-n).

If the cardinality value n is 1 or if the repetition value is allowed, no constraint is neces-
sary.

OFL-ML: if cardinality
�� 1 and repetition = forbidden

context ComponentRelationship (OFLImportRelationship)
inv: self.parent.generalization->select(gen |

gen.isStereotyped(’ComponentRelationship’)
and

gen.child = self.child)->size = 1

Parameter ConceptRelationship::circularity. This parameter specifies the possibility
to create cycles using considered relationship component. Constraint make sense only if pa-
rameter contain value forbidden.

OFL-ML: if circularity = forbidden

context ComponentRelationship (OFLImportRelationship)
inv: let dp(d:Classifier) =

d.generalisation.select(g |
g.isStereotyped(’ComponentRelationship’))

->collect(g.parent) in
allParents(p:Set(Classifier)) =

self.dp(self.child)->union((self.dp(self.child)-p)
->collect(np |

np.allParents(p->including(self.child)))) in
NOT self.child.allParents(Set{})->includes(self.child))

33

First, OCL let expression (dp) calculates all direct parents of a Classifier in the meaning of
considered relationship. The expression allParents returns all parents of a Classifier. Pa-
rameter p contains all parents which are already visited and is used to stop recursions. The
constraint checks if the source of the relationship is included or not in its list of parents.

Parameter ConceptRelationship::feature_variance. This parameter specifies the type
of variance of relationship concerning method parameters, method result and attributes. The
value is a triplet where each component can have one of the following values:

covariant elements that corresponds to a redefinition need to have the same type or a sub-
type as the original one (defined by the source).

contravariant elements that corresponds to a redefinition need to have the same type or a
super-type as the original one (defined by the source).

nonvariant elements that corresponds to a redefinition must have the same type as the
original one (defined by the source).

non_applicable parameter is not applicable

Constraint has to consider the first three values separately for each triplet component.
All constraint use the following definitions for i) direct parent and ii) all parents, of a

Classifier:

context Classifier
def: directParent =

self.generalisation->collect(g.parent)
def: allParents(p:Set(Classifier)) =

self.directParent->union((self->directParent-p)
->collect(np | np.allParents(p->including(self))))

Constraints dealing with method parameters variance are now presented.

OFL-ML: if feature_variance for method parameter = covariant

context ComponentRelationship (OFLImportRelationship)
inv: self.redefinedFeatures->forAll(

m | m.oclIsKindOf(Method) implies
m.parameters->forAll(

p | p.kind <> return
implies

self.source.features->forAll(rm |
rm.oclIsKindOf(Method)

implies
if (rm.name = m.name and

rm.parameters->count() = m.parameters->count())
rm.parameters->forAll(rp |
rp.name = p.name

implies
p.allParents(Set{})

->including(p.type)->include(rp.type)))
))

OFL-ML: if feature_variance for method parameter = contravariant

context ComponentRelationship (OFLImportRelationship)
inv: self.redefinedFeatures->forAll(

m | m.oclIsKindOf(Method) implies
m.parameters->forAll(

34

p | p.kind <> return
implies

self.source.features->forAll(rm |
rm.oclIsKindOf(Method)

implies
if (rm.name = m.name and

rm.parameters->count() = m.parameters->count())
rm.parameters->forAll(rp |

rp.name = p.name
implies

rp.allParents(Set{})
->including(rp.type)->include(p.type)))

))

OFL-ML: if feature_variance for method parameter = nonvariant

context ComponentRelationship (OFLImportRelationship)
inv: self.redefinedFeatures->forAll(

m | m.oclIsKindOf(Method) implies m.parameters->forAll(
p | p.kind <> return
implies

self.source.features->forAll(rm |
rm.oclIsKindOf(Method)

implies
if (rm.name = m.name and

rm.parameters->count() = m.parameters->count())
rm.parameters->forAll(rp |
rp.name = p.name

implies
p.allParents

->including(p.type)->include(rp.type)))
))

For method result variance constraints are the same but the term ’p.kind � � return’ is
replaced by ’p.kind = return’. Following specifications show the constraints for attribute vari-
ance.

OFL-ML: if feature_variance for attributes = covariant

context ComponentRelationship (OFLImportRelationship)
inv: self.redefinedFeatures->forAll(

a | a.oclIsKindOf(Attribute) implies
self.source.features->forAll(ra |

ra.oclIsKindOf(Attribute)
implies

ra.name = a.name
implies

a.type.allParents
->including(a.type)->include(ra.type)))

OFL-ML: if feature_variance for attributes = contravariant

context ComponentRelationship (OFLImportRelationship)
inv: self.redefinedFeatures->forAll(

a | a.oclIsKindOf(Attribute) implies
self.source.features->forAll(ra |

ra.oclIsKindOf(Attribute)
implies

35

ra.name = a.name
implies

ra.type.allParents->including(ra.type)
->include(a.type)))

OFL-ML: if feature_variance for method parameter = nonvariant

context ComponentRelationship (OFLImportRelationship)
inv: self.redefinedFeatures->forAll(

a | a.oclIsKindOf(Attribute) implies
self.source.features->forAll(ra |

ra.oclIsKindOf(Attribute)
implies

ra.name = a.name
implies

a.type=ra.type)))

Parameter ConceptRelationship::abstracting. This parameter specifies if the relation-
ship permits or not to abstract methods (to transform methods that pass relationship from
implemented to abstract status). Permitted values are mandatory, allowed and forbidden.
The OFL-ML constraint for this parameter refers only to the first and last values.

OFL-ML: if abstracting = mandatory

context ComponentRelationship (OFLImportRelationship)
inv: self.parent.features->forAll(

m | m.oclIsKindOf(Method) implies
NOT m.isAbstract

implies
self.stereotype.taggedValue

->forAll(t | t.name=’abstractedFeatures’
implies t.value->include(m)))

OFL-ML: if abstracting = forbidden

context ComponentRelationship (OFLImportRelationship)
inv: self.stereotype.taggedValue

->select(name=’abstractedFeatures’)->size=0

Parameter ConceptRelationship::effecting. This parameter specifies if the relationship
permits or not to effect methods (to implements methods that pass relationship). Permitted
values are mandatory, allowed and forbidden. The OFL-ML constraint for this parameter
refers only to the first and last values.

OFL-ML: if effecting = mandatory

context ComponentRelationship (OFLImportRelationship)
inv: self.parent.features->forAll(

m | m.oclIsKindOf(Method) implies
m.isAbstract

implies
self.stereotype.taggedValue

->forAll(t | t.name=’effectedFeatures’
implies t.value->include(m)))

OFL-ML: if effecting = forbidden

context ComponentRelationship (OFLImportRelationship)
inv: self.stereotype.taggedValue

->select(name=’effectedFeatures’)->size=0

36

Parameter ConceptRelationship::masking. The masking parameter establishes if the
features could be hidden or not when they pass a relationship. Legal values are mandatory,
allowed and forbidden.

OFL-ML: if masking = mandatory

context ComponentRelationship (OFLImportRelationship)
inv: self.parent.features->forAll(

f:Feature |
self.stereotype.taggedValue

->forAll(t | t.name=’hiddenFeatures’
implies t.value->include(f)))

OFL-ML: if masking = forbidden

context ComponentRelationship (OFLImportRelationship)
inv: self.stereotype.taggedValue

->select(name=’hiddenFeatures’)->size=0

Parameter ConceptRelationship::redefining. This parameter indicates if the redefini-
tion of features is mandatory, allowed or forbidden.

OFL-ML: if redefining = mandatory

context ComponentRelationship (OFLImportRelationship)
inv: self.parent.features->forAll(

f:Feature |
self.stereotype.taggedValue

->forAll(t | t.name=’redefinedFeatures’
implies t.value->include(f)))

OFL-ML: if redefining = forbidden

context ComponentRelationship (OFLImportRelationship)
inv: self.stereotype.taggedValue

->select(name=’redefinedFeatures’)->size=0

Parameter ConceptRelationship::renaming. This parameter indicates if the renaming
of features that pass a given relationship is mandatory, allowed or forbidden.

OFL-ML: if renaming = mandatory

context ComponentRelationship (OFLImportRelationship)
inv: self.parent.features->forAll(

f:Feature |
self.stereotype.taggedValue

->forAll(t | t.name=’renamedFeatures’
implies t.value->include(f)))

OFL-ML: if renaming = forbidden

context ComponentRelationship (OFLImportRelationship)
inv: self.stereotype.taggedValue

->select(name=’renamedFeatures’)->size=0

37

Parameter ConceptRelationship::removing. This parameter establishes if the removal
of features is mandatory, allowed or forbidden.

OFL-ML: if removing = mandatory

context ComponentRelationship (OFLImportRelationship)
inv: self.parent.features->forAll(

f:Feature |
self.stereotype.taggedValue

->forAll(t | t.name=’removedFeatures’
implies t.value->include(f)))

OFL-ML: if removing = forbidden

context ComponentRelationship (OFLImportRelationship)
inv: self.stereotype.taggedValue

->select(name=’removedFeatures’)->size=0

Parameter ConceptRelationship::showing. This parameter is the opposite as masking.
It indicates if the feature is made again visible after it was masked. Possible values are
mandatory, allowed and forbidden.

OFL-ML: if showing = mandatory

context ComponentRelationship (OFLImportRelationship)
inv: self.parent.features->forAll(

f:Feature |
self.stereotype.taggedValue

->forAll(t | t.name=’shownFeatures’
implies t.value->include(f)))

OFL-ML: if showing = forbidden

context ComponentRelationship (OFLImportRelationship)
inv: self.stereotype.taggedValue

->select(name=’showed-Features’)->size=0

Characteristic AtomLanguage::validRelationships. This characteristic indicates the
descriptions types that may act as sources and targets for a given kind of relationship. Values
are triplets of � ComponentRelationship, ComponentDescriptionSource, ComponentDescriptionTarget � .
OFL-ML will add a constraint that check for legal source type according to that.

In the next lines, we present the generated constraints according to the value
� � ComponentRelationship,

LanguageDescriptionTypeSource1, LanguageDescriptionTypeTarget1 � , � ComponentRelationship,
LanguageDescriptionTypeSource2, LanguageDescriptionTypeTarget2 � , ... � for this charac-
teristic.

context ComponentRelationship (OFLImportRelationship)
inv: let st = self.child in

(
st.isStereotyped(’LanguageDescriptionTypeSource1’)

or
st.isStereotyped(’LanguageDescriptionTypeSource2’)

or
...

)

context ComponentRelationship (OFLImportRelationship)
inv: let st = self.parent in

38

Figure 6.1: Generated stereotypes for Import Relationships Components

(
st.isStereotyped(’LanguageDescriptionTypeTarget1’)

or
st.isStereotyped(’LanguageDescriptionTypeTarget2’)

or
...

)

6.1.3 Elements Generation.
A profile stereotype derived from � OFLImportRelationship � will be generated for each OFL
component. For a language which includes import relationships reified in OFL by the compo-
nents ComponentLanguageImportRelationship1, ComponentLanguageImportRelationship2,
etc, the resulting hierarchy is presented in figure 6.1.

Tagged values will be generated for each relationship component according to the values of
OFL-parameters: abstracting, effecting, masking, redefining, renaming, removing and show-
ing. Indeed, tags will be added taking into accounts the values mandatory and allowed for
these parameters.

Constraints are generated regarding OFL-ML generation-conditions. These conditions
will be described by statements like: OFL-ML: if condition

The test condition will be evaluated by the module that generates the OFL-ML profile.

6.1.4 Example.
Considering Java language, following import relationships are identified [CCL02, Cre01a]:
between classes inheritance (JavaClassExtends), between interfaces inheritance (JavaInter-
faceExtends), concretization (JavaConcretization) and implementation (JavaImplements).

TaggedValues that corresponds to these stereotypes are shown in table 6.2. Valid sources
and targets for components are presented in table 6.3. Example of generated constraints for
valid sources and targets for JavaInterfaceExtends relationship are given below.

context JavaInterfaceExtends (OFLImportRelationship)
inv: let st = self.child in

(
st.isStereotyped(’JavaInterface’)

or
st.isStereotyped(’JavaStaticMemberInteface’)

39

Stereotype Tagged Values
JavaClassExtends

�
redefinedFeatures � ,

�
hiddenFeatures ��

effectedFeatures �
JavaInterfaceExtends

�
redefinedFeatures �

JavaConcretization
�
redefinedFeatures � ,

�
hiddenFeatures ��

effectedFeatures � (mandatory)
JavaImplements

�
redefinedFeatures � ,

�
effectedFeatures �

Table 6.2: Tagged Values for Java Import Relationship Components Stereotypes

)

context JavaInterfaceExtends (OFLImportRelationship)
inv: let st = self.parent in

(
st.isStereotyped(’JavaInterface’)

or
st.isStereotyped(’JavaStaticMemberInteface’)

)

6.2 The OFL Use Relationships
The OFL-use relationship is a generalization of the aggregation mechanism found in object
oriented languages. The meta-programmer has the responsibility to create an OFL relation-
ship component for each kind of use relationships existing in the language which is modeled.
OFL-ML generates the stereotypes, tagged values and constraints that are needed in order to
represents all these components.

6.2.1 Stereotypes and Tagged Values.
The abstract stereotype � OFLUseRelationship � is the base for all the concrete stereotypes
representing OFL UseRelationship components of the considered language. As for import
relationships which had been presented in the section above, the name of a generated stere-
otype is the same as the name of the OFL component but without the "Component" prefix.
for example a component "ComponentJavaAggregation", leads to the creation of a stereotype
named � JavaAggregation � .

In the same way as for import relationship, all use relationships stereotyped as specializa-
tion of � OFLUseRelationship � are associated to a set of tagged values which correspond to
some of the characteristics of AtomRelationship. These tagged values are presented in table
6.4.

6.2.2 Constraints.
All associations which correspond to an OFL use relationship must have exactly two ends.
They correspond to the source and target of the relationship.

context ComponentRelationship(OFLUseRelationship) inv:
self.allConnections->size = 2

Some constraints regarding parameters of OFL-concept-relationship which are generated
for import relationships are also valid for use relationships. In this context, the OFLUseRela-
tionship stereotype replaces OFLImportRelationship as ancestor of ComponentRelationship
stereotype. Moreover, UML-associations attribute replaces the UML-generalization. This at-
tribute is a set which contains all association relationships in which the classifier is involved.

40

Stereotype Valid Sources Valid Targets
JavaClassExtends

�
JavaClass � �

JavaClass ��
JavaAbstractClass � �

JavaAbstractClass ��
JavaStaticMemberClass � �

JavaStaticMemberClass ��
JavaAbstractStaticMemberClass � �

JavaAbstractStaticMemberClass ��
JavaMemberClass � �

JavaMemberClass ��
JavaAbstractMemberClass � �

JavaAbstractMemberClass ��
JavaLocalClass � �

JavaLocalClass ��
JavaAbstractLocalClass � �

JavaAbstractLocalClass ��
JavaAnonymousClass �

JavaInterfaceExtends
�
JavaInterface � �

JavaInterface ��
JavaStaticMemberInteface � �

JavaStaticMemberInteface �
JavaConcretization

�
JavaClass � �

JavaAbstractClass ��
JavaStaticMemberClass � �

JavaAbstractStaticMemberClass ��
JavaMemberClass � �

JavaAbstractMemberClass ��
JavaLocalClass � �

JavaAbstractLocalClass ��
JavaAnonymousClass �

JavaImplements
�
JavaClass � �

JavaInterface ��
JavaAbstractClass � �

JavaStaticInterface ��
JavaStaticMemberClass ��
JavaAbstractStaticMemberClass ��
JavaMemberClass ��
JavaAbstractMemberClass ��
JavaLocalClass ��
JavaAbstractLocalClass ��
JavaAnonymousClass �

Table 6.3: Valid sources and targets for Java Import Relationship Components Stereotypes

According to the parameter ConceptRelationship::cardinality, the constraint will be the fol-
lowing after transformation :

OFL-ML: if cardinality
�� �

context ComponentRelationship(OFLUseRelationship)
inv: self.child.associations->select(assoc |

assoc.isStereotyped(’ComponentRelationship’)
and

assoc.child = self.child)->size = n

The parameters which remain valid in the context of an use relationship are :
� cardinality
� repetition
� circularity
� masking
� renaming
� removing
� showing

41

TaggedValue TaggedValue Comment
Name Value
hiddenFeatures string list of features that

(list of feature names) are hidden
renamedFeatures string list of features that

(list of feature names) are renamed
removedFeatures string list of features that

(list of feature names) are removed
shownFeatures string list of features that pass

(list of feature names) the relationship unchanged

Table 6.4: OFL-ML Tagged Values for OFLUseRelationship

Parameter ConceptRelation::dependence. This parameter specifies if the instances of
the target description have a life time which is dependent or independent from the source
description. Possible values are dependent and independent. This parameter has a meaning
only for an use relationship.

OFL-ML links this parameter with the aggregation attribute of UML-association-End el-
ement. Possible values for this attribute are:

aggregate The target class is an aggregate; therefore, the source class is a part and must
have the aggregation value set to none. The part may be contained in other aggregates.
This value is mapped to independent values of the OFL dependence parameter.

composite The target class is a composite; therefore, the source class is a part and must
have the aggregation value of none. The part is strongly owned by the composite and
may not be part of any other composite. This value corresponds in OFL to the parameter
dependence set to dependent.

OFL-ML: if dependence = independent

context ComponentRelationship(OFLUseRelationship)
inv: self.connection->select(assocEnd |

assocEnd.aggregation = aggregate)->size = 1

OFL-ML: if dependence = dependent

context ComponentRelationship(OFLUseRelationship)
inv: self.connection->select(assocEnd |

assocEnd.aggregation = composite)->size = 1

The constraints related with the characteristic AtomLanguage::validRelationships are the
same as the one presented for import relationships (see section above).

6.2.3 Elements Generation.
OFL-ML generates one stereotype derived from � OFLUseRelationship � for each OFL use
relationship component.

Tagged values are generated also for each use relationship according to the values of OFL-
parameters masking, renaming, removing and showing. As it has been already mentioned,
tags will be added taking into account the values mandatory and allowed of these parameters.

6.2.4 Example.
If we consider the Java language, we identify the following use relationship components
[CCL02, Cre01a]: aggregation (JavaAggregation), class aggregation (JavaClassAggregation),
composition (JavaComposition) and class composition (JavaClassComposition). Because the

42

last two components imply only Java primitive types, which correspond to OFL-ML basic
types, they are represented by stereotypes derived from basic type composition (see section
6.3).

TaggedValues that correspond to these stereotypes are presented in the table 6.5. The
deletedFeatures contain the features that are deleted when this relationship is crossed. This
may correspond for example to features declared with private modifier.

Stereotype Tagged Values
JavaAggregation

�
deletedFeatures �

JavaClassAggregation
�
deletedFeatures �

Table 6.5: Tagged Values for Java Use Relationship Components Stereotypes

Table 6.6 presents valid sources and targets for these relationships.

Stereotype Valid Sources Valid Targets
JavaAggregation

�
JavaClass � �

JavaClass ��
JavaAbstractClass � �

JavaAbstractClass ��
JavaStaticMemberClass � �

JavaInterface ��
JavaAbstractStaticMemberClass � �

JavaStaticMemberClass ��
JavaMemberClass � �

JavaAbstractStaticMemberClass ��
JavaAbstractMemberClass � �

JavaMemberClass ��
JavaLocalClass � �

JavaAbstractMemberClass ��
JavaAbstractLocalClass � �

JavaLocalClass ��
JavaAnonymousClass � �

JavaAbstractLocalClass ��
JavaAnonymousClass ��
JavaStaticMemberInteface �

JavaClassAggregation
�
JavaClass � �

JavaClass ��
JavaAbstractClass � �

JavaAbstractClass ��
JavaInterface � �

JavaInterface ��
JavaStaticMemberClass � �

JavaStaticMemberClass ��
JavaAbstractStaticMemberClass � �

JavaAbstractStaticMemberClass ��
JavaMemberClass � �

JavaMemberClass ��
JavaAbstractMemberClass � �

JavaAbstractMemberClass ��
JavaLocalClass � �

JavaLocalClass ��
JavaAbstractLocalClass � �

JavaAbstractLocalClass ��
JavaAnonymousClass � �

JavaAnonymousClass ��
JavaStaticMemberInteface � �

JavaStaticMemberInteface �

Table 6.6: Valid sources and targets for Java Use Relationship Components Stereotypes

Both constraints and tags will be added according to the parameters values.
For JavaAggregation we will have:

� cardinality = � (no OFL-ML constraint)
� circularity = allowed (no OFL-ML constraint)
� repetition = allowed (no OFL-ML constraint)
� removing = allowed (no OFL-ML constraint but ’removedFeatures’ generated tag)

For JavaClassAggregation we will have:
� cardinality = � (no OFL-ML constraint)
� circularity = allowed (no OFL-ML constraint)

43

� repetition = allowed (no OFL-ML constraint)
� removing = allowed (no OFL-ML constraint but ’removedFeatures’ generated tag)

6.3 The Basic Type Composition
Basic-type composition association stereotypes are used to represent composition with lan-
guage primitive types. The relationship corresponds to the declaration of primitive-type at-
tribute within a description. This relationship is always a composition because basic types
instances represents values but not objects.

6.3.1 Stereotypes and Tagged Values.
Stereotypes have to be derived from two stereotypes � OFLMLBasicTypeCompo-sition � and� OFLMLBasicTypeClassComposition � . The first represents instance association and the
second represents class association. No tagged values are necessary.

6.3.2 Constraints.
An OFLMLBasicTypeComposition represents a composition.

context OFLMLBasicTypeComposition (Core::Association)
inv: self.connection->select(assocEnd |

assocEnd.aggregation = composite)->size = 1

An OFLMLBasicTypeComposition can have only OFLBasicType as target.

context OFLMLBasicTypeComposition (Core::Association)
inv: self.connection->forAll(assocEnd |

assocEnd.aggregation = composition
implies

assocEnd.participant.isStereokinded(OFLBasicType))

A � OFLBasicType � -stereotyped Classifier may not participate in any Associations with
navigable opposite AssociationEnds.

context OFLBasicType (Core::ProgrammingLanguageDataType)
inv: self.navigableOppositeEnds->isEmpty

An OFLMLBasicTypeComposition could have only OFLAssociationEnd as a target end.

context OFLMLBasicTypeComposition (Core::Association)
inv: self.connection->forAll(assocEnd |

assocEnd.aggregation = composition
implies

assocEnd.isStereotyped(OFLAssociationEnd))

An OFLMLBasicTypeClassComposition could have only OFLClassAssociationEnd as a
target end.

context OFLMLBasicTypeClassComposition (Core::Association)
inv: self.connection->forAll(assocEnd |

assocEnd.aggregation = composition
implies

assocEnd.isStereotyped(OFLClassAssociationEnd))

44

6.3.3 Elements Generation.
Usually a maximum of two stereotypes are generated: one derived from � OFLMLBasicTypeComposition �
and one from � OFLMLBasicTypeClassComposition � . If the language which is considered
have more than two type of relationships involving basic types, then additional constraints
could be also necessary. No tagged values are necessary.

6.3.4 Example.
For Java language we have two relationship components that involve Java primitive-types:
composition (JavaComposition) and class composition (JavaClassComposition). The Java-
Composition stereotype is derived from � OFLMLBasicTypeComposition � and the Java-
ClassComposition is derived from � OFLMLBasicTypeClassComposition � .

6.4 The External Import Relationship
External import relationships involve external descriptions. External descriptions are pre-
sented in section 4.3. They represent descriptions imported from external class libraries.
These descriptions are usually opaque and they could not be involved in OFL relationships.
OFL-ML uses the standard UML-generalization to represent these values.

6.4.1 Stereotypes and Tagged Values.
No stereotypes and tagged values are necessary.

6.4.2 Constraints.
Any generalization relationship that is not stereotyped has to have an external description
as target.

context generalization
inv: self.stereotype->isEmpty

implies
self.parent.isStereokinded(OFLExternalType)

6.4.3 Elements Generation.
No stereotypes or tagged values are generated. Only the constraint mentioned above is added
to the profile.

6.4.4 Example.
An example of using an external import-relationship in OFL-ML Java profile is presented in
fig. 6.2.

6.5 The External Use Relationship
An external use-relationships involves external descriptions. The handling of external use-
relationship is done in same way as for external import-relationship. OFL-ML uses the stan-
dard UML-association to represent these values.

6.5.1 Stereotypes and Tagged Values.
No stereotypes and tagged values are necessary.

45

Figure 6.2: Example of using OFL-ML ExternalImportRelationship

Figure 6.3: Example of using OFL-ML ExternalUseRelationship

6.5.2 Constraints.
Any association relationship that is not stereotyped has to have an external description at
one end.

context association
inv: self.stereotype->isEmpty

implies
self.connection->select(assocEnd |
assoEnd.participant.isStereotyped(OFLExternalDescription))

->size = 1

6.5.3 Elements Generation.
No stereotypes or tagged values are generated. Only presented constraint is added to the
profile.

6.5.4 Example.
An example of using an external use relationship in OFL-ML Java profile is presented in fig.
6.3.

46

Chapter 7

The OFL Model Organization

OFL organizes application elements into OFL-packages. An OFL-package contains a group of
Descriptions, Relationships and other OFL-packages. An OFL-package is intended to maps
to different module organization founded in existing object oriented languages.

7.1 The OFL Package
An UML-package is a set of model elements. In the meta-model, Package is a subclass of
Namespace and GeneralizableElement. A Package contains ModelElements like Packages,
Classifiers, and Associations. A Package may also contain Constraints and Dependencies be-
tween ModelElements of the Package.

7.1.1 Stereotypes and Tagged Values.
An OFL package is represented by an UML package (from Model Management) and is stereo-
typed as � OFLPackage � . OFL package containment (nesting) is modeled by Namespace
containment of one � OFLPackage � -stereotyped UML package within another. For each
OFL-language which is considered, stereotypes must be derived from � OFLPackage � . Be-
cause current version of OFL does not provides customization for package organization, these
stereotypes have to be created by the meta-programmer.

7.1.2 Constraints.
An OFLPackage may contain only OFLDescriptionTypes, OFLExternalDescriptions, OFLImportRe-
lationships, OFLUseRelationships and other OFLPackages .

context OFLPackage (ModelManagament::Package)
inv: self.ownedElement->forAll(el |

el.isStereokinded(’OFLDescriptionType’) or
el.isStereokinded(’OFLExternalDescription’) or
el.isStereokinded(’OFLImportRelationships) or
el.isStereokinded(’OFLUseRelationships) or
el.isStereokinded(’OFLPackage’))

7.1.3 Elements Generation.
Profile package stereotypes must be generated manually by the meta-programmer. If neces-
sary, it could add also tagged values to catch additional semantics of model organization.

47

7.1.4 Example.
A Java Package maps to an � OFLJavaPackage � , which is derived from � OFL-Package � .
The name of the OFL Package is the name of the Java Package. A hierarchy of Java Packages
maps to a hierarchy of OFL-packages.

PackageName is the fully-qualified name of the Java Package. The fully-qualified name of
a top level Java Package is its name. The fully-qualified name of a Java Package contained
by another Java Package is the fully-qualified name of the containing Java Package, followed
by ".", followed by the name of the Java Package. The fully-qualified name of a Java Pack-
age maps to the fully-qualified name of the corresponding OFLPackage by replacing every
occurrence of "." with "::".

48

Chapter 8

Modeling Example Using an
OFL-Java Profile

As an example we consider the following Java code:

// file: Vehicle.java //
package OFLML_JavaCars;

abstract class Vehicle {
public int type;
public abstract void start();

}
/* Class Vehicle is the base for all vehicle hierarchy */

// file: Color.java //
package OFLML_JavaCars;

public class Color { }

// file: Car.java //
package OFLML_JavaCars;

public class Car {
public Color color;

public void setColor(Color c) {};
public Color getColor() {

return color; };
public void start() {};

}

Figure 8.1 gives an example of a model for an application which uses an OFL-ML profile
for OFL-Java:

� three descriptions : Vehicle, Car, and Color,
� one Java concretization relationship : class Car is a concretization of the abstract class

Vehicle,
� one Java aggregation relationship: class Car has an attribute of type Color.

The diagram corresponds to above Java code. The OFL-ML Java Profile elements used
have been defined according to previous sections. The diagram was generated with Objecteer-
ing UML Modeler version 5.2.2 [Sof03].

49

Figure 8.1: Example of using OFLML Java Profile

50

Chapter 9

Conclusions and Future Work

9.1 Conclusions
This report presented an approach for the generation of UML profiles for an object oriented
languages described in OFL. This approach is based on a profile meta-language named OFL-
ML. We present in detail the generation mechanisms of OFL-ML and its drawbacks when
taking into account the semantics of some language. Then, based on this meta-language, we
present an OFL-Java Profile that is generated according to OFL-ML rules.

To define a profile, OFL-ML use meta-information defined by the OFL model. Profiles
elements are generated according to following OFL entities:

� OFL-DescriptionComponents
� OFL-AtomAttribute
� OFL-AtomMethod
� OFL-ImportRelationshipComponents
� OFL-UseRelationshipComponents
� OFL-Package

To fulfill the profile description, for each elements, additional taggedValues and OCL con-
straints are also generated.

Because each OFL-ML Profile conforms to UML 1.5 standard specification, generated pro-
files are guaranteed to be compatible with commercial UML modeling tools that support the
profile mechanisms.

But the approach which has been proposed has some limitations. It does not consider
following issues:

� other UML diagrams, in addition to the static class diagrams
� Modeling of OFL Objects
� dynamic relationships like OFL-class-to-object-relationships and OFL-object-to-object-

relationships
� type multiplicity (arrays or collection classes like java.util.Vector)

9.2 Future Work
We identify two main directions for future work.

A first short-term perspective is to refine and improve the language customization. Cur-
rent version of OFL provides only a light reification and no customization of semantics at

51

the level of routine body. Using UML definition of Action Model [OMG03, MTAL99], we in-
tent to provide a way to represent also semantics at this level. Our proposal is to extend the
generated OFL-ML profile with UML-Actions for routine body representation.

Briefly, UML actions deal with :
� a fundamental unit of computational behavior
� action semantics which are based on proved concepts from computer science
� action semantics which remove assumptions about specific computing environments in

user models:

– execution engines, programming languages, implementation details
– do not require specification of software components, tasking structures or forms of

transfer of control
– allows people in charge of the modeling to produce executable specifications

Considering the usage of Action, all OFL parameters should be considered into the Profile
constraints. As some example we can consider:

ConceptDescription parameters .
� generator - specifies if a description may create or not instances. This parameter

will be involved in constraints at the level of all UML Actions that implies creation
of description
instances.

� destructor - specifies if a description instance could be destroyed or not. This pa-
rameter will be involved in constraints at the level of all UML Actions that implies
destroying of objects.

ConceptRelationship parameters .
� direct_access - specifies if a relationship allows a direct access to a feature of target

description. This parameter will be involved in constraints at the level of UML
Read and Write Actions.

� polymorphism_implication - specifies if the relationship which is considered accepts
or not the handling of polymorphism for the instances of classes which are involved
in. This parameter addresses in constraints at the level of UML Read and Write
Actions and Messaging Actions

The second proposed task is to generate a representation in XML or in a proprietary lan-
guage representation of profile elements. We consider here specifications for profile represen-
tation provided by some major tools like Objecteering UML, Rational Rose etc.

52

Chapter 10

Annexes

These tables, taken from the thesis of Pierre Crescenzo, make the synthesis of all the meta-
informations related respectively to OFL-language, OFL-description and OFL-relationship.

2This parameter is specific to import relationships.
3This parameter is specific to use relationships.

53

General Information related to the Model OFL
Assertion Type Sample of value

Structural invariants set of condition cf. examples in the thesis

Information which is specific to concept-language
Element for the reification Type Sample of value

Extension set of component-language {MJava, MEiffel}

Information which is specific to each component-language
Element for the reification Type Sample of value

Valid
component-descriptions

set of
component-description

{Class, Interface}

Valid
component-relationships

set of
component-relationship

{Inheritance,
Implementation,
Aggregation}

Valid relationships

set of
<component-relationship,
component-description,
component-description>

{<Implementation, Class,
Interface>}

Extension set of language {Java, Eiffel, CPP}

Parameter Type Sample of value

Name string "Java-like"

Services
set of <Service_Name,
boolean>

{<"Persistence", false>,
<"Concurrency", true>}

Redefinition Type Sample of value

Description limitations
set of
<component-description,
parameter-name, value>

{<cd, Generator, false>}

Relationship limitations
set of
<component-relationship,
parameter-name, value>

{<cr1, Circularity, forbidden>,
<cr2,
Polymorphism_implication,
none>}

Valid-Qualifiers redefinitions

set of
<component-description |
component-relationship,
atom_name, set of string>

{<cd1, method, {"public",
"private"}>, <cd2, attribute,
{"static", "final"}>}

Assertion Type Sample of value

Local invariants set of condition cf. examples in the thesis

Table 10.1: Synthesis about the structure of concept-language

54

General Information related to the Model OFL
Assertion Type Sample of value

Structural invariants set of condition cf. examples in the thesis

Action Type Sample of value

Actions set of routine cf. the thesis

Information which is specific to concept-description
Element for the reification Type Sample of value

Extension set of component-description {Class, Interface}

Information which is specific to each component-description
Element for the reification Type Sample of value

Language language Java-like

Valid source
component-relationships set of component-relationship {Inheritance, Aggregation}

Valid target
component-relationships set of component-relationship {Inheritance, Aggregation,

Implementation}

Valid Qualifiers set of <atom_name, set of string> {<description, {}>, <attribute,
{"static"}>}

Extension set of description {Class1, Class2, Interface1}

Parameter Type Sample of value

Name string "Java-class"

Context language | library library

Services set of <Service_Name, boolean>
{<"Persistence", false>,
<"Concurrency", true>}

Genericity boolean false

Generator boolean true

Destructor boolean false

Extension_creation automatically | manually automatically

Encapsulation <boolean, boolean> <true, true>

Sharing_control set of (description | instance |
unique_instance) {description, instance}

Visibility
global | package | description
| method | object | statement
| expression | list

global

Attribute allowed | forbidden allowed

Method allowed | forbidden allowed

Overloading
<allowed | forbidden, allowed |
forbidden, allowed | forbidden,
allowed | forbidden>

<forbidden, forbidden, allowed,
allowed>

To be continued in table 10.3 on the following page

Table 10.2: Synthesis about the structure of concept-description (1/2)

55

continuation and end of the table 10.2 on the page before
Information which is specific to each component-description

Redefinition Type Sample of value

Relationship limitations
set of
<component-relationship,
parameter-name, value>

{<cr1, Circularity, forbidden>,
<cr2,
Polymorphism_implication,
none>}

Valid-Qualifiers redefinitions
set of
<component-relationship,
atom_name, set of string>

{<cr1, relationship, {}>}

To be continued in table 10.3
Assertion Type Sample of value

Local invariants set of condition cf. examples in the thesis

Information which is specific to each description1 (cf. the thesis)
Element for the reification Type Sample of value

Source relationships set of relationship
{Inheritance18,
Inheritance19,
Aggregation3}

Target relationships set of relationship
{Aggregation4,
Aggregation5,
Aggregation6}

Features set of feature {Prim1, Prim2}

Formal generic types set of type {object}

Effective types set of type
{ListOfObjects, ListOfCircles,
ListOfMen}

Table 10.3: Synthesis about the structure of concept-description (2/2)

56

General Information related to the Model OFL
Assertion Type Sample of value

Structural invariants set of condition cf. the thesis
Action Type Sample of value

Actions set of routine cf. the thesis

Information which is specific to concept-relationship
Element for the reification Type Sample of value

Extension
set of
component-relationship

{Inheritance, Clientele}

Information which is specific to each component-relation
Element for the reification Type Sample of value

Language language Java-like

Valid source
concept-descriptions

set of concept-description {Class}

Valid target
concept-descriptions

set of concept-description {Class, Interface}

Valid Qualifiers
set of <atom_name, set of
string> {<relationship, {"in"}>}

Extension set of relationship {Inheritance1, Inheritance2}

Parameter Type Sample of value

Name string "Specialization"

Kind
import | use | type-object |
objects

import

Context language | library library

Services set of <Service_Name,
boolean>

{<"Persistence", false>,
<"Concurrency", true>}

Cardinality <integer, integer> <1, � >

Repetition <allowed | forbidden,
allowed | forbidden> <forbidden, forbidden>

Circularity allowed | forbidden forbidden

Symmetry boolean false
Opposite none | concept-relationship none

Direct_access mandatory | allowed |
forbidden

mandatory

Indirect_access mandatory | allowed |
forbidden

forbidden

Polymorphism_implication2 none | up | down | both up

To be continued in table 10.5 on the next page

Table 10.4: Synthesis about the structure of concept-relationship between descriptions (1/3)

57

continuation of the table 10.4 on the preceding page
Information which is specific to each component-relation

Parameter Type Sample of value

Polymorphism_policy2 <hiding | overriding, hiding |
overriding>

<overriding, hiding>

Feature_variance2

<covariant | contravariant |
nonvariant |
non_applicable, covariant |
contravariant | nonvariant |
non_applicable, covariant |
contravariant | nonvariant |
non_applicable>

<covariant, nonvariant,
non_applicable>

Assertion_variance2

<weakened | strengthened
| unchanged |
non_applicable, weakened
| strengthened |
unchanged |
non_applicable, weakened
| strengthened |
unchanged |
non_applicable>

<strengthened, weakened,
strengthened>

Dependence3 dependent | independent independent

Sharing_level3
global | package |
description | instance |
unique_instance

instance

Read_accessor3 optional | mandatory optional

Write_accessor3 optional | mandatory optional

Adding mandatory | allowed |
forbidden

allowed

Removing mandatory | allowed |
forbidden

forbidden

Renaming mandatory | allowed |
forbidden

allowed

Masking mandatory | allowed |
forbidden

forbidden

Showing mandatory | allowed |
forbidden

forbidden

To be continued in table 10.6 on the next page

Table 10.5: Synthesis about the structure of concept-relationship between descriptions (2/3)

58

continuation and end of the table 10.5 on the preceding page
Information which is specific to each component-relation

Parameter Type Sample of value

Redefining

<mandatory | allowed |
forbidden, mandatory |
allowed | forbidden,
mandatory | allowed |
forbidden, mandatory |
allowed | forbidden>

<allowed, forbidden,
allowed, forbidden>

Abstracting mandatory | allowed |
forbidden

forbidden

Effecting mandatory | allowed |
forbidden

forbidden

Adaptation_advice

<Adding : advisable | free |
inadvisable, Removing :
advisable | free |
inadvisable, Renaming :
advisable | free |
inadvisable, Redefining :
advisable | free |
inadvisable, Masking :
advisable | free |
inadvisable, Showing :
advisable | free |
inadvisable, Abstracting :
advisable | free |
inadvisable, Effecting :
advisable | free |
inadvisable>

<Adding : advisable,
Removing : inadvisable,
Renaming : advisable,
Redefining : free, Masking :
inadvisable, Showing :
inadvisable, Abstracting :
inadvisable, Effecting : free>

Assertion Type Sample of value

Invariants set of condition cf. examples in the thesis

Information specific to each relationship4 (cf. the thesis)
Element for the reification Type Sample of value

Source descriptions set of type {Class23, Class28}

Target descriptions set of type {Interface1, Class22}

Removed features set of feature {a_feature}

Renamed features
set of <feature,
feature_name>

{<a_feature, its_new_name>}

Redefined features set of <feature, feature>
{<a_feature,
its_new_version>}

Hidden features set of feature {another_feature}

Shown features set of feature {a_feature}

Abstracted features set of feature {a_feature_again}

Effected features set of feature {another_feature}

Table 10.6: Synthesis about the structure of concept-relationship between descriptions (3/3)

59

Bibliography

[AK00] Colin Atkinson and Thomas Kühne. Strict profiles: Why and how. In UML 2000
– The Unified Modeling Language, Third International Conference, University of
York, UK, LNCS 1939, page 13. Springer Verlag, October 2000.

[CCL02] A. Capouillez, P. Crescenzo, and P. Lahire. OFL: Hyper-Genericity for Meta-
Programming: an Application to Java. Technical Report I3S/RR–2002-16–FR,
Laboratoire d’Informatique, Signaux et Systèmes de Sophia-Antipolis, France,
April 2002. http://www.i3s.unice.fr/I3S/FR/.

[Cre01a] P. Crescenzo. OFL : les relations et descriptions d’Eiffel et de Java. Technical
Report I3S/RR–2001-06–FR, Laboratoire d’Informatique, Signaux et Systèmes de
Sophia-Antipolis, France, April 2001. http://www.i3s.unice.fr/I3S/FR/.

[Cre01b] P. Crescenzo. OFL: un Modele pour Parameter la Semantique Opera-
tionnele des Langages a Objets - Application aux Relations inter-classes.
Phd. thesis, University of Nice, Sophia Antipolis, France, December 2001.
http://www.crescenzo.nom.fr/.

[Des99] P. Desfray. White Paper on the Profile Mechanism, OMG document ad/99-04-07.
http://www.omg.org, 1999.

[DSB99] D. F. D’Souza, A. Sane, and A. Birchenough. First Class Extensibility for UML -
Packaging of Profiles, Stereotypes, Patterns. In 2nd Int. Conf. on the Unified Mod-
eling Language: UML’99, Fort Collins, CO, USA, page 14. Springer-Verlag,LNCS
series, UML’99, October 1999.

[MTAL99] S. J. Mellor, S. R. Tockey, R. Arthaud, and P. LeBlanc. An Action Language for
UML: Proposal for a Precise Execution Semantics. In The Unified Modeling Lan-
guage, UML’98 - Beyond the Notation. First International Workshop, Mulhouse,
France, LNCS, pages 307–318. Springer, June 1999.

[OMG01] Object Management Group OMG. UML Profile for EJB Specification, Version 1.0.
http://www.omg.org, May 2001.

[OMG02] Object Management Group OMG. UML Profile for CORBA Specification, Version
1.0. http://www.omg.org, April 2002.

[OMG03] Object Management Group OMG. Unified Modelling Language Specification, ver-
sion 1.5, 1st ed., March 2003. http://www.omg.org.

[PCL03] D. Pescaru, P. Crescenzo, and P. Lahire. An Extension for OFL Model through
modifiers. Technical report, Laboratoire d’Informatique, Signaux et Systèmes de
Sophia-Antipolis, France, Jully 2003.

[PL03] D. Pescaru and P. Lahire. Modifiers in OFL: An Approach for Access Control
Customization. In The 9th International Conferences on Object-Orinted Informa-
tion Systems - OOIS’03, WEAR workshop, Geneva, Swizerland, September 2003.
also Research Report I3S/RR-2003-16-FR, Laboratoire d’Informatique, Signaux et
Systèmes de Sophia-Antipolis, UNSA, France, http://www.i3s.unice.fr/I3S/FR/.

60

[Sof99] SoftTeam. UML Profiles and the J Language: Totally control your application
development using UML, 1999. http://www.softeam.fr/pdf/us/uml_profiles.pdf.

[Sof03] Objecteering Software. Objecteering 5.2.2 Manual, 2003.
http://www.objecteering.com/.

61

