An Extension of OFL Model through Modifiers

Dan Pescaru, Pierre Crescenzo, Philippe Lahire
dan@cs.utt.ro
Pierre. Crescenzo@unice. fr
Philippe. Lahire@unice. fr

Faculty of Automatics and Computer Science,
”Politehnica” University of Timisoara,
Bd. V. Parvan no 2, 1900 Timisoara, ROMANIA,

Laboratoire I3S (UNSA/CNRS), Project OCL 2000,
Route de Lucioles, Les Algorithmes,
Btiment Euclide B BP121 F-06903,
Sophia-Antipolis CEDEX, FRANCE

November 10, 2003

Contents

1 Introduction
2 The OCL Language

3 The OFL Modifiers
3.1 Component Modifiers in Commercial Languages.
3.1.1 Javalanguage.,
312 C++language.
3.1.3 Eiffel language.
3.2 Definition of an OFL-Modifier
3.3 Modifiers Classification Regarding OFL Implementation Issues .
3.3.1 Access Control Modifiers
3.3.2 Optimization Modifiers
3.3.3 Service Modifiers
3.3.4 Additional Modifiers

4 Basic Access Control Modifiers
4.1 Examples of Native Basic Access Control Modifiers
4.1.1 JavaLanguage
412 C++ Language oo oo
4.1.3 Eiffel Languageo
4.2 Basic Access Control Modifiers for Features
4.2.1 Modifier Assertions
4.2.2 Modifier Actions
4.3 Basic Access Control Modifiers for Descriptions
4.3.1 Modifier Assertions o
4.3.2 Modifier Actions

5 Complex Access Control Modifiers
5.1 Examples of Native Complex Access Control Modifiers
5.1.1 JavaLanguage.
5.1.2 C++ Language.
5.1.3 Eiffel Language.
5.2 Complex Access Control Modifiers for Methods

5.2.1 Modifier Assertions.
5.2.2 Modifier Actions. o e
5.3 Complex Access Control Modifiers for Attributes
5.3.1 Modifier Assertions
5.3.2 Modifier Actions
5.4 Complex Access Control Modifiers for Descriptions
5.4.1 Modifier Assertions
5.4.2 Modifier Actions

Optimization Modifiers

6.1 Examples of Native Optimization Modifiers
6.1.1 Java Language.
6.1.2 C++4 Language.
6.1.3 Eiffel Language.

6.2 Optimization Modifiers for Attributes
6.2.1 Modifier Assertions oo,
6.2.2 Modifier Actions

6.3 Optimization Modifiers for Methods
6.3.1 Modifier Assertions
6.3.2 Modifier Actions oL oo

6.4 Optimization Modifiers for Description
6.4.1 Modifier Assertions L.
6.4.2 Modifier Actions Lo

Service Modifiers

7.1 Examples of Native Service Modifiers
7.1.1 JavaLanguage.
712 C++ Language.
7.1.3 Eiffel Language.

7.2 Service Modifiers for Attributes
7.2.1 Modifier Assertionso
7.2.2 Modifier Actions L oo

7.3 Service Modifiers for Methods
7.3.1 Modifier Assertions
7.3.2 Modifier Actions L oo

7.4 Service Modifiers for Descriptions
7.4.1 Modifier Assertions
7.4.2 Modifier Actions

Additional Modifiers

8.1 Examples of Native Additional Modifiers
8.1.1 JavaLanguage.
81.2 C++ Language.
8.1.3 Eiffel Language.
8.1.4 Modifier Assertions,
8.1.5 Modifier Actions

9 Conclusion and perspectives

34

Chapter 1

Introduction

OFL model provides a customization of main aspects of the semantics of a
language through actions and parameters, but the customization provided can
deal only with features that are enough general for being applicable to most
existing object oriented programming languages'. Practical experience points
out the necessity to capture more of the semantics of these languages. To
achieve that it is necessary to add new elements to the original OFL Model
[Cre01, CLO2].

In order to preserve simplicity, a large part of the language reification is
not customizable in the OFL Model philosophy. However, in order to achieve
acceptance in programmers’ community, some other customizations are needed.
Generally, this additional semantics is handled by keywords (modifiers) in ex-
isting languages.

One of main goal for introducing modifiers is to limit the number of com-
ponents within an OFL-language. Using modifiers, it is not necessary anymore
to define one different component for each different combination of parameters.
For instance, instead of having both public java-class and package java-class
components differentiated only by one parameter (visibility), we can design just
one java-class component and something else (like modifiers) in order to ensure
(when it is necessary) that the access is public.

Another goal of modifiers is to improve the flexibility of the meta-level by
providing a clean way to extend a language with new capabilities.

According to that we propose a generic approach which allows to define rules
for implementing access controls or additional semantics for language compo-
nents. The general idea is to apply these rules to an application in order to
provide for example metrics, error reporting, and design or debugging facilities.
Thanks to these rules we can had constraints to language entities in order to
enrich, when it is necessary, the expressiveness of a given language.

Comparing with other approaches found in [ACL03, Sch02], we focus on a
generic technique independent from languages. Moreover, instead to define a

1For more information on the OFL Model, to read the thesis of Pierre Crescenzo [Cre01].

formalism which depicts access control mechanisms, we propose an approach
that describes how to implement these mechanisms at a meta-programming
level.

Following those goals we pay a special attention to the consistency of this
approach with the OFL model philosophy.

Considering these issues we propose to add at the level of language compo-
nents the ability to define different kinds of modifiers and to add the entities
that are necessary to their reification.

OFL modifiers are used together with other language entities in order to
change protection or other aspects of their semantics. Some of them correspond
to keywords that may be found in existing programming languages, while others
could be added in order to simplify some programming tasks.

Chapter 2

The OCL Language

Starting from the point that most of the OFL modifiers relay on constraints to
be applied to program entities, we choose OCL as the language for specifying
these constraints. OCL is a formal language which allows to express side effect-
free constraints. The Object Management Group (OMG) defines OCL (Object
Constraint Language) [OMGOQ0] as a part of UML 1.3 standard specification.
Main motivation regarding this choice are the independence of OCL from pro-
gramming languages and its general acceptance within many communities.

OCL is designed to express side effect-free constraints. It was used by OMG
in the UML Semantics document to specify the rules of the UML meta-model.
Each rule in the static semantics sections in the UML Semantics document
contains an OCL expression, which is an invariant for the involved class.

The usage of OCL is important because in object-oriented modeling a graph-
ical model, like a class model, is not enough for a precise and unambiguous
specification. There is a need to describe additional constraints about the ob-
jects in the model. Such constraints are often described in natural language.
Practice has shown that this will always result in ambiguities. In order to write
unambiguous constraints, so-called formal languages have been developed. The
disadvantage of traditional formal languages is that they are usable to persons
with a strong mathematical background, but difficult for the average business
or system modeler to use.

OCL has been developed to fill this gap. It is a formal language that remains
easy to read and write. It has been developed as a business modeling language
within the IBM Insurance division, and has its roots in the Syntropy method.

OCL is a pure expression language. Therefore, an OCL expression is guar-
anteed to be without side effect; it cannot change anything in the model. This
means that the state of the system will never change because of an OCL ex-
pression, even though an OCL expression can be used to specify a state change,
for example in a post-condition. With other words, any fields of any objects,
including links, cannot be modified. Whenever an OCL expression is evaluated,
it simply delivers a return value.

OCL is not a programming language, so it is not possible to write program

logic or flow control in OCL.
OCL is a typed language, so each OCL expression has a type. OCL can be
used for a number of different purposes:

e to specify invariant on classes and types in a class model,

e to specify type invariant for UML stereotypes,

to describe pre/post conditions on operations and methods,

to describe Guards,
e to specify constraints on operations,
e as a navigation language.

We use OCL to describe constraints introduced by modifiers. It can be also
used to specify pre and post conditions for OFL-entities at the level of OFL-ML
implementation.

As a notation convention for this document, the underlined word before
an OCL expression determines the context for the expression and the OCL
expression itself will be in italic.

In OCL, a number of basic types are predefined and available at any time:
Boolean, Integer, Real, String and Enumeration. Several operations are also
defined on these predefined types. In addition, all OFL-descriptions' coming
from the OFL Model are types in OCL which are attached to the model.

The type Collection, which is predefined in OCL, plays an important role
according to constraint definitions. It includes a large number of predefined
operations for the handling of collections. Collection operations are consistent
with the definition of OCL as an expression language, they never modify the
contents of collections. They may return a collection, but rather than changing
the original collection they put the result into a new one.

Collection is an abstract type, with the concrete collection types as its sub-
types. OCL distinguishes three different collection types: Set, Sequence, and
Bag. A Set is the mathematical set ; it does not contain duplicate elements.
A Bag is like a set, which may contain duplicates, i.e. the same element may
be in a bag twice or more. A Sequence is like a Bag in which the elements are
ordered. Both Bags and Sets have no order defined on them. Sets, Sequences
and Bags can be specified by a literal in OCL.

OCL defines a number of operators for collection manipulation:

e SELECT and REJECT - allows to specify a selection from a specific col-
lection ;

e COLLECT - allows to specify a collection which is derived from some other
collection, but which contains different objects from the original collection
(i.e. it is not a sub-collection) ;

YAn OFL-Description or OFL-ComponentDescription is the name chosen in OFL for clas-
sifier.

e FORALL - allows to specify a Boolean expression, which must be verified
for all objects in a collection ;

e EXISTS - allows to specify a Boolean expression which must be verified
for at least one object in a collection ;

e ITERATE - allows building one accumulation value by iterating over a
collection. It is a very generic operation. Reject, Select, forAll, Exists and
Collect can all be described in terms of Iterate.

Chapter 3

The OFL Modifiers

An intuitive definition of a modifier entity is the following: a modifier is a
language keyword that is used in composition with other keywords in order to
change their semantics. An important issue is that a modifier keyword have no
stand-alone meaning.

OFL-modifiers are designed to reify those entities in order to ensure better
OFL customization for programming languages. Generally, modifiers imply
constraints added to the application model in order to achieve a fine control.

Not all language modifiers are intended to be reified by OFL modifiers.
Semantics changes induced by some of them are very deep and rely on several
OFL components. We name them component modifiers. Following list presents
modifiers for three well known object-oriented languages: Java [GJSB00], C++
[Str97] and Eiffel [Mey02].

3.1 Component Modifiers in Commercial Lan-
guages

The modifiers proposed in the following rely on several parameters or properties
that are mentioned.

3.1.1 Java language.

abstract {class declaration} An abstract class is a class that is incomplete,
or to be considered incomplete. The reification for a class declared abstract
in Java results in several OFL-ComponentDescription for abstract class,
static abstract nested class, abstract inner class and abstract local class.
All these components have the parameters generator and destructor set
to value false.

final {attribute declaration} A final attribute may only be assigned once.
When a final attribute has been assigned, it always contains the same

value. To model this kind of attribute in OFL we use an OFL-AtomAttribute
that has property isConstant set to true.

static {feature declaration} If a feature (attribute or method) is declared
static, then it exists exactly one incarnation of the feature, no matter
how many instances (possibly zero) of the class which may eventually be
created. A static attribute, sometimes called “class variable”, is incarnated
when the class is initialized. A static method, called “class method”,
is always invoked without reference to a particular object. The OFL-
AtomAttribute and OFL-AtomMethod that reifies these entities has the
isDescriptionFeature property set to false.

3.1.2 C++ language.

static {member declaration} In C++ a variable that is part of a class, but
is not part of an object of that class, is declared as static member. There
is exactly one copy of a static member instead of one copy per object.
Similarly, a function that needs access to members of a class, but which
doesn’t need to be invoked for a particular object, is called a static member
function. The OFL reification resides in OFL-AtomAttribute and OFL-
AtomMethod entities, which have the isDescriptionFeature property set
to false.

3.1.3 Eiffel language.

expanded {class declaration} Declaring a class as expanded means that any
of its instances which is addressed through a field of a given object, is ex-
panded (included) in this object (by default a field contains only a refer-
ence to it). These classes will be reified by OFL-componentDescription
corresponding to expanding class and generic expanding class. Those
components could not be a target of neither aggregation relationship nor
generic derivation. But, they could be a target of inheritance relationship,
expanded client relationship and expanded generically derivation.

Figure 3.1 illustrates the OFL model extended with OFL-Modifiers. We define
four kinds of modifiers (one for each type of entity which is concerned by mod-
ifier definition) : description-modifier, relation-modifier, method-modifier and
attribute-modifier. The OFL modifiers components inherit from OFL-modifiers
and represent the reification of language modifiers.

3.2 Definition of an OFL-Modifier

An OFL-modifier is defined by a name, a contert (the entity on which it ap-
plies), a keyword, assertions (OCL constraints) and a set of associated actions
(modified OFL-actions).

10

OFL
OFL~concepts OFL-atoms

concept- concept- concept-

Rnguse relationsidp deErTton language description method attribute relationship

]

OFL-modifiers

ES A
I 1
| i
| !
L

description method attribute relationship
modifier modifier modifier modifier

OFL- components OFL- modiﬁell components
difier

a-modifier P

a-la 2 ionshi a-descripti for for for for
a-description method attribute relationship

Figure 3.1: The extension of the OFL model through OFL-Modifiers

Modifier Name. The name is used to identify the modifier. It should be a
legal identifier related with OFL and the language binding.

Modifier Context. Type of entity that accepts the modifier is denoted by
its context. The context could be either one description, one relationship, one
attribute or one method.

Modifier Keyword. The modifier keyword represents the string representa-
tion of the modifier in the language syntax.

Modifier Assertions. We use OCL to specify the modifier constraints through
assertions.

A first solution is to define These constraints in invariant for OFL compo-
nents or in pre and post conditions for OFL actions. Implementation of control
implies assertions at the level of OFL entities reifying the corresponding mech-
anisms. Indeed, they will be attached to corresponding OFL-Components and
OFL-Actions.

Another solution is to define the assertion within the OFL-Modifier itself
but the drawback is that if assertion refers to other modifiers then it has to
know about other modifiers and this decrease its reuse capabilities.

The role of an OFL-Modifier is to take into account those remarks in order
to help the meta-programmer to manage and organize assertions.

For assertions we use notation that have the same meaning as in OCL defi-
nition [OMGO00]. The self keyword refers the current instance of the associated
component. The OCL modifier assertions are written in the context of the OFL

11

model definition; as a result of that, all types defined by the OFL model could
be used in assertions.

Some component features correspond to OCL collection type and support
OCL collection operators. For instance, “component.modifiers — includes(’modifier
name’)” that tests if the component has modifier modifier name attached to it
or not.

Modifier’s Actions. Modifier’s actions are OFL-Actions rewritten to con-
sider new semantics. The modifier keeps references to all rewritten action, help-
ing meta-programmer to manage them. Actions play different roles depending
on the complexity of the considered modifier. Most modifiers do not need action
rewriting. They have just a set of assertions attached to them.

In order to build a complex semantics from simpler ones and to extend mod-
ifiers, we define a modifier composition operator. This operator specifies how
to combine assertions and actions that are specified within composed modifiers.
In the context of composition operation we state the definition of ” compatible
modifiers” and ”incompatible modifiers”. Two modifiers defined in the same
context are compatible if they can be composed. They are incompatible if their
actions and assertions are not disjunctive. Actions and assertions are not dis-
junctive if their semantics interfere. According to that we extent the definition of
OFL-Modifier by adding a characteristic named incompatible modifier set. One
modifier keeps in this set information about all modifiers that are incompatible
with it.

In the composition process, two aspects of modifiers are addressed: the
assertions and the actions associated with it. For compatible modifiers all inter-
actions will be just cumulative. For the assertions, which are OCL expressions,
other constraints can be composed using the AND logical operator. Because
OCL avoids side effects, composition of assertions is commutative. Actions may
be called in a random order. Indeed, if there are some interactions at the level of
action semantics, the modifiers are incompatible and the composition operator
cannot be applied. To deal with incompatible modifiers we define an invariant
in the OFL entity which is the modifier context.

Following example considers the Java public modifier for attributes. For a
better understanding we consider a "package’ modifier which replaces the default
visibility rule for attributes. The OFL reification for an attribute is the OFL-
AtomAttribute. At the time the modifier is defined we attach an invariant to
this entity which means : incompatible modifiers set for public is {protected,
private, package}.

context AtomAttribute
inv: self.modifiers->includes(’public’)
implies
NOT (
self.modifiers->includes(’private’)
OR
self.modifiers->includes(’package’)

12

OR
self.modifiers->includes(’protected’)

)

In order to cover all situations a new definition of invariant should be made
for each newly added modifier.

If we consider the extension of a given language extension, we can distin-
guish two kind of modifiers. An OFL-modifier can represent the reification of a
modifier that belongs to the language binding - we name it native modifier - or
it can be a custom modifier added by the meta-programmer in order to enrich
the language semantics.

The native modifiers will have the same meaning (related to the language
binding components), as in the original language. The meta-programming task
will consist in describing the meaning and the behavior of modifiers according
to their definition. When a meta-programmer adds new extension for the lan-
guage (new components) he has the responsibility to extend the definition of
the modifiers according to the new entities.

In the following sections we try to provide an orthogonal approach in order
to define both native and custom modifiers.

Next we present a classification based on the semantics which is behind
modifiers. The meaning of semantics in this context deals with the aspect of
entity semantics that is changed by the modifier. To evaluate semantic changes,
we consider all the OFL-Actions that are involved.

3.3 Modifiers Classification Regarding OFL Im-
plementation Issues

All the kinds of modifiers presented in this section will be addressed in detail
within the next chapters.

3.3.1 Access Control Modifiers

The importance of a systematic approach on access control mechanism rep-
resents an actual topic of research in the field of object oriented technology
[Aba98, Ard02, CNP89, Sny86]. Even the UML standard [OMGO03], which was
planned to be language independent, lacks in defining protection mechanisms.
Flower and Scott emphasize this aspect [FS01]:

”When you are using visibility, use the rules of the language in which you
are working. When you are looking at UML model from elsewhere, be wary of
the meaning of visibility markers, and be aware how those meanings can change
from language to language.”

OFL Model also lacks in customization of access control mechanisms [PL03].
Modifiers represent a way to add this customization. Considering the OFL-
Actions involved by the semantics we can split these modifiers into two subcat-
egories: basic modifiers and complexr modifiers.

13

Basic Access Control Modifiers. Some modifiers add constraints to some
facets of the language which are customizable in OFL by setting values to
some of the parameters and characteristics built in the OFL Model. To
implement these modifiers, meta-programmer has to write assertions at
the level of one or several OFL-Components only. They do not imply any
action rewriting. We call them basic modifiers.

Complex Access Control Modifiers. Some other modifiers address mecha-
nisms that are implemented in OFL through pieces of code wrote by a
meta-programmer. To implement these modifiers, he has to rewrite some
of the OFL-Actions and/or to extend their assertions. Because writing
actions is a more complicated job, we call them complex modifiers.

complex modifiers implies always protection and some time they implies
also visibility (ex. protected-write [CKMR99]).

3.3.2 Optimization Modifiers

These modifiers have no impact at the level of application model semantics.
They are used only to establish optimization strategies for compilers or, more
generally, translators (ex. in line, volatile, register etc.). The corresponding
OFL-modifiers are used only to allow the programmer to specify optimization
for OFL Parser. This is particularly important if he plans to run the resulting
OFL-application.

3.3.3 Service Modifiers

Service modifiers are used to introduce new kind of services like custom look-up,
persistency or concurrency; They could have an impact at the level of model
semantic or only at the level of code generation. (ex. persistent, synchronised
etc.)

3.3.4 Additional Modifiers

In addition to previous considered modifiers, languages propose also other key-
words used to influence the semantics of program entities. The meaning of
these additional modifier is to force compiler to treat in a special way the entity
that declare the modifier. This category does not include modifiers that modify
the reification of considered entity (this subject was discussed in sec. 3). The
modified semantics is handled by the native compiler (ex. explicit, agent etc.).

14

Chapter 4

Basic Access Control
Modifiers

Most of access-control modifiers add constraints regarding the way features
could be reached by other entities that are connected through different kinds
of relationships. They imply only constraints related with mechanisms reified
by OFL relationships (dynamic relationships like the one that links an instance
to its class could also be considered). According to that they could be con-
sidered as basic modifiers. Their implementation relies only on assertions in
OFL-componentDescriptions which involve those relationships.

4.1 Examples of Native Basic Access Control
Modifiers

4.1.1 Java Language

Java [GJSB00] has several modifiers used for basic access control: public, pro-
tected, private, and default (to be more expressive we name it package).

Java class members (attributes and methods) that are declared public can be
accessed from any class which can access to the class where they are declared.

Members that are declared as protected can be accessed from any class of
the package, and also from any subclasses, of the class where they are declared.

Members that are declared as private are only accessible from the class in
which they are defined (it means that subclasses are not allowed to).

Class members that have no access control modifier associated are considered
to have default visibility. These members can be accessed only from classes of
the package where they are declared.

A Java class, an abstract class or an interface which is declared as public
can be referenced from outside its package. If a class is not declared as public,
it can be referenced only within its package.

15

Classes and members that are not explicitly associated to a modifier have
the default Java visibility, that it is to say that they are visible only within the
package.

4.1.2 C++ Language

For C++ language [Str97] the public, protected and private modifiers have a
meaning which is slightly different than in Java [Ard02]. There is no ”package”
resolution but another kind of visibility denoted by friend.

Using the friend keyword, a class can grant access to non-member functions
or to another class. These friend functions and friend classes are permitted to
access private and protected class members. The public and protected keywords
do not apply to friend functions, as the class has no control over the scope of
friends.

If a member of a C++ class is private, its name can be used only by member
functions and friends of the class in which it is declared. A protected member
can be used only by member functions and friends of the class in which it is
declared and by member functions and friends of classes derived from this class.
A public member can be used by any function. The default access for C++
class members is private.

These modifiers could be used to change access control through inheritance
between classes. When preceding the name of a base class, the public keyword
specifies that the public and protected members of the base class are public and
protected members, respectively, of the derived class. The protected keyword
used for inheritance specifies that the public and protected members of the base
class are protected members of its derived classes. Finally, when preceding the
name of a base class, the private keyword specifies that the public and protected
members of the base class are private members of the derived class.

4.1.3 Eiffel Language

In Eiffel [Mey02] there are two constructions that can deal with access modifiers;
these are feature and ezport. In this language some of the protection semantics
are hidden in the language philosophy. For instance, the writing protection has
no direct meaning for an attribute because access to an attribute from outside
class is considered as a query (and it is not possible to write into a result of a

query).

4.2 Basic Access Control Modifiers for Features

4.2.1 Modifier Assertions

The assertions of basic access control modifiers for features (attributes and meth-
ods) are defined in OFL-Relationship components that manage export of those
features. They should be tested each time a relationship involving that feature
is created. An invariant in the description to which belongs the feature is not

16

necessary (basic modifiers do not protect features against the description itself).
Independently of the language syntax we can consider three possibilities: i) the
feature belongs to current class #) it is inherited through an inheritance rela-
tionship from a direct or indirect ancestor or #ii) it is accessed through an use
relationship (current class is a client of the description which owns the feature).
In the last situation we consider that the current description can access to the
supplier one. Indeed, this aspect is covered by access control handled at the
level of descriptions. By current description we mean the one that accesses to
the feature.

If we consider the Java syntax, features belonging to a class or inherited by
the class, are accessed using the keyword this as qualifier. This keyword could
be explicit or implicit (non-qualified features). Features accessed through an
use relationship are explicitly qualified with the supplier name. To consider all
situations, an invariant is needed for all OFL-components, dealing with both
import relationship and use relationship, which are defined for a given language.

The following example presents invariants for the extends Java inter-class
relationship and the Java aggregation relationship. In Java, basic modifiers
related to features are public, protected, private, package.

context ComponentJavaClassExtends
inv: self.shownFeatures->forall(f:Feature |
f.modifiers->includes(’public’)
OR
f.modifiers->include(’protected’))
inv: self.redefinedFeatures->forall(f:Feature |
f.modifiers->includes(’public’)
OR
f.modifiers->include(’protected’))
inv: self.hiddenFeatures->forall(f:Feature |
f.modifiers->includes(’private’))

The invariant says that all shown and redefined features through an extend
relationship should have modifiers public or protected attached. All hidden fea-
tures have private modifier. It has to be noted that in OFL, shownFeatures,
redefinedFeatures and hiddenFeatures are collections of features which partici-
pates to the reification of a relationship.

context ComponentJavaAggregation
inv: self.shownFeatures->forall(f:Feature |
f.modifiers->includes(’public’)
OR
((f.modifiers->include(’package’) OR
f.modifiers->include(’protected’))
AND
self.source.package = self.target.package)))
inv: self.hiddenFeatures->forall(f:Feature |
f.modifiers->includes(’private’)

17

OR
((f.modifiers->include(’package’) OR
f.modifiers->include(’protected’))
AND
self.source.package <> self.target.package)))

In addition to previous assertion, this one tests also information about the
packages to which belong the descriptions; it considers the descriptions which are
source! and target? of the instance of the OFL-relationship component (self).

All these modifiers are incompatible. When the feature is a method, the set
of incompatible modifiers contains also the modifier abstract.

4.2.2 Modifier Actions

Interference with OFL-actions (actions which are defined in the OFL model)
is minimal. Assertions are added (see above), in order to control the access
to features through relationships and no action rewriting is necessary. Indeed,
modifiers for basic access control generally do not redefine any actions.

But there are some exception; for example let us consider the modifier pro-
tected applied to Java features. Action is needed in this case to express a
particular semantic presented in Figure 4.1. Method m of class C' have access
to protected member f of B. This happens because class A, which declares the
member f, and class C, belongs to the same package. To express this semantics
we need to rewrite the action lookup for features. This action must allow the
access to protected members for any feature that is declared by an ancestor
belonging to same package as the class which accesses to the feature.

4.3 Basic Access Control Modifiers for Descrip-
tions

4.3.1 Modifier Assertions

The assertions of basic modifiers dealing with the access control of descrip-
tions are defined in OFL-relationship components and also in OFL-description
component. They should be tested each time a relationship involving that de-
scription is created and each time an instance of it is created. The last situation
deals with relationships that enable polymorphism. According to these assump-
tions, the assertion associated to such modifier should be a post-condition of
the OFL-action lookup.

The following example refers to the Java language semantics related to class
access control. Please note that this example does not consider interfaces, ab-

IThe source is the class which declares the relationship. In Java, for an extends relationship
this is the class which declare the keyword eztends.

2the target is the class which is addressed by the relationship. In Java, for an extends
relationship this is the class whose name is mentioned after the keyword eztends.

18

packagel

ClassC ClassA
{public} {public}
ubC VoIl In0 | protected int f:
B b =new B():
out(b.r):
}
= 7
package2 \
o ~
\\
v
oy ClassB
{public}

Figure 4.1: Java protected modifier semantics

stract classes and inner classes. the modifiers associated to classes that have to
be considered are public and package.

context ComponentJavaClassExtends
inv: self.source.package = self.target.package
OR
(self.source.package <> self.target.package
implies
self.source.modifiers->includes(’public’))

A class can extend another class from the same package and a class can extend
a public class from any other package.

context ComponentJavaAggregation
inv: self.source.package = self.target.package
OR
(self.source.package <> self.target.package
implies
self.source.modifiers->includes(’public’))

The following assertion addresses dependencies between classes, which are not
covered by OFL customization.

context Description::lookup(accessed: Description) :Description
post: self.package = result.package
OR
self.package <> result.package
implies
result.modifiers->includes (’public’)

19

Then, we consider the Java language semantics for the access control of inter-
faces. The example does not take into account inner interfaces. The modifiers
public and package are considered for Java interfaces.

context ComponentJavalnterfaceExtends
inv: self.source.package = self.target.package
OR
(self.source.package <> self.target.package
implies
self.source.modifiers->includes(’public’))

An interface can extend another interface from the same package and it may
also extend a public interface from any other package.

context ComponentJavalmplements
inv: self.source.package = self.target.package
OR
(self.source.package <> self.target.package
implies
self.source.modifiers->includes(’public’))

A class can implements any interface from the same package but also a public
interface from any other package.

context ComponentJavaAggregation
inv: self.source.package = self.target.package
OR
(self.source.package <> self.target.package
implies
self.source.modifiers->includes(’public’))

A class can declare an attribute whose type is represented by interface from the
same package and also by a public interface from any other package.

To handle dependencies between classes and interfaces we use the same post-
condition as for the action lookup previously defined for class modifiers. Action
lookup is defined in components related to description and relationships.

4.3.2 Modifier Actions

For the modifiers mentioned above, assertions are also added in OFL-relationship
components in order to control the access to features. Post-conditions are used
to filter the result of the action look-up. Those modifiers do not redefine any
actions.

20

Chapter 5

Complex Access Control
Modifiers

Complex access control modifiers define protection dealing with special rights
such as writing or reading an attribute, calling or redefining a method and
extending or instantiating a description.

5.1 Examples of Native Complex Access Con-
trol Modifiers

5.1.1 Java Language.

Java language does not include complex access control modifiers for attributes.
It includes final modifier for methods and classes and interfaces. Modifier final
associated to a method disallows the ability to redefine it. When Modifier
final is applied on classes or interfaces it prevent from extending them. Other
language mechanisms (like making all constructors private) could be used to
control instantiation of classes.

5.1.2 C++ Language.

C++ does not provide any specific modifiers to control the use of an entity
(like final in Java). Changing access rights of constructors does also control the
ability to create or not an instance of a given class, like in Java.

5.1.3 Eiffel Language.

Eiffel modifiers Frozen and deferred could be considered as belonging to this
category. Frozen, put before a feature name express that the declaration is not
subject to redefinition in descendants. The modifier Deferred also put before a

21

feature allows the feature to not have any body or implementation. This trans-
fers to descendants the responsibility for providing an implementation through
a new declaration. This is called "effecting” the feature.

5.2 Complex Access Control Modifiers for Meth-
ods

Rights concerning method usage address mechanisms like calling or redefining.
Modifiers presented in the previous section do not make distinction between
these mechanisms.

5.2.1 Modifier Assertions.

Implementation of control implies assertions in OFL entities reifying correspond-
ing mechanisms. Redefinition mechanism is reified in OFL by redefinedFeatures
characteristic of relationship components. Access control is done by invariant
for these components. Calling mechanism is reified in execute action. Assertion
dealing with the right to call a feature is implemented as a post-condition of
this action.

The following example is an implementation of the modifier final applied to
Java methods.

context ComponentJavaClassExtends
inv: self.redefinedFeatures->forall(f:Feature |
f.typeOfFeature = method
implies
NOT f.modifiers->includes(’final’))

The modifier Final is compatible with following modifiers : public, protected,
package and private. This means that Final can be set simultaneously with any
of these modifiers. Its invariant will be added to the invariant of the correspond-
ing component (for example Feature or more precisely method).

5.2.2 Modifier Actions.

Complex access control modifiers for methods require sometimes the rewriting
of the OFL-Action ezecute.

5.3 Complex Access Control Modifiers for At-
tributes

Rights concerning attribute usage address the ability to read or write the con-
tent of fields (defined by an attribute). Protection on writing is achieved by a

pre-condition in OFL-Action assign. We can consider here a proposal of Cook
and Rumpe [CKMR99] for defining a read-only modifier for attributes. They

22

conclude that it is useful to constraint the visibility of an attribute to be read-
able, but not changeable. The concept of a read-only modifier is introduced in
combination with private and protected modifiers.

5.3.1 Modifier Assertions

Assertions for attribute complex modifiers deal only with pre and post conditions
added to the OFL-action assign.

5.3.2 Modifier Actions

It is necessary to redefine or rewrite OFL-action only if the semantics associ-
ated to the modifier is enough complex. As an example we consider a modifier
that implements a strong protection against attribute modification. By strong
protection we mean to protect not only the reference of the object against mod-
ification but also the internal state of the referred object.

A solution that lacks in efficiency is to use a clone of the object which
contains the field (corresponding to the attribute) and to look if any changes
appear; so that the access is allowed or not. To ensure this control, the call to
the OFL-actions which deal with the access to attribute should be embedded in
the following code:

// cloning the original object
aux = deep_clone(f)
// original action
// (any kind of action that may imply modification
// of the internal state of attribute)
*action(aux)
// test if the object preserve same state
if (not deep_compare(f, aux))
generate_error("Could not write attribute")
end_if
destroy_object (aux)

OFL-Actions that permit the change of the internal state of attributes are
the following : evaluate-parameters, attach-parameters, detach- parameters, as-
sign, execute, etc.

5.4 Complex Access Control Modifiers for De-
scriptions
The specification of an application may lead to the extension of descriptions,

to their use through the declaration of features or to the creation of instance of
them. These situations involve different kinds of relationships.

23

5.4.1 Modifier Assertions

The extension is controlled through invariant on OFL-ImportRelationship com-
ponents and the control of client-supplier relationship is made through invariants
on OFL-UseRelationship components.

Let us consider the following example related to the Java modifier final
applied to descriptions. The invariant for the Java extends-relationship check
absence of this modifier in the target description of the relationship.

context ComponentJavaClassExtends
inv: NOT self.target.modifiers->includes(’final’)

5.4.2 Modifier Actions

For description modifiers, OFL-actions participate very much to the control of
instantiation. Some rewriting may be needed but most of the times a precondi-
tion in the OFL-action create-instance is enough to ensure all semantics of the
control.

24

Chapter 6

Optimization Modifiers

Optimization modifiers are used to transmit hints to the compiler in order to
generate a smaller or faster code. Because these modifiers have no impact on
the semantics of the application model they have only to be passed to final
compiler.

6.1 Examples of Native Optimization Modifiers

6.1.1 Java Language.

Java has one optimization modifier for attributes - wvolatile - two optimization
modifiers for methods - native and strictfp - and one optimization modifier for
descriptions - strictfp.

An attribute which is declared as wolatile refers to objects and primitive
values that can be modified asynchronously by separate threads at runtime.
They are treated in a special way by the compiler to control how they can be
updated.

A native method is a method written in a language other than Java. In a
way it is declared like an abstract method.

The effect of the strictfp modifier is to make all float or double expressions
within the method body be explicitly FP-strict. Within a FP-strict expression,
all intermediate values must be elements of the float value set or the double value
set, implying that the results of all FP-strict expressions must be those predicted
by IEEE 754 arithmetic on operands represented with single and double formats.

The effect of the strictfp modifier in context of a class or an interface is to
make all float or double expressions within the class or interface declaration be
explicitly FP-strict. This implies that all methods declared in the class, and all
nested types declared in the class, are implicitly strictfp. Also all float or double
expressions within all variable initializers, instance initializers, static initializers
and constructors of the class will also be FP-strict.

25

6.1.2 C++ Language.

C++ language contains also optimization modifiers. The C++ specification
defines inline for functions and mutable and volatile for member attributes.

The inline modifier for a member function is a hint for the compiler which
ensure that when it encounter a function call it should rather generate the code
corresponding to the function body than the usual function call mechanisms.

The mutable modifier specifies that a member attribute should be stored
in a way that allows its update - even when it is a member of a const object.
In other words mutable means ”can never be const”. Declaration of mutable
member is appropriate when only a part of the object is allowed to change.

A wolatile specifier is a hint to a compiler which means that an attribute
may change its value in a way not specified by the language, so that aggressive
compiler optimization must be avoided.

6.1.3 Eiffel Language.

Analyzing Eiffel we find also optimization modifiers. Indering and obsolete
modifiers for a class could be considered in this category . The optional In-
dexing parts have no direct effect on the semantics of the class. They serve to
associate information to the class which will be used by tools for archiving and
retrieving classes according to their properties. This is particularly important
in the approach to software construction promoted by Eiffel, based on libraries
of reusable classes: the designer of a class should help future users to find out
about the availability of classes fulfilling particular needs. We choose to imple-
ment that part like a modifier because OFL does not contain any customization
according to that. Because indexing part could appear in two different places
- one at the beginning and one at the end - we define two different modifiers
StartIndexing and EndIndexing.

The obsolete clause in a class indicates that the class does not meet current
standards. The advice for developers is against continuing to use it as supplier
or parent but it does not prevent existing systems which rely on this class, to
compile and run. Declaring a class as Obsolete does not affect its semantics.
Instead, some language processing tools may produce a warning when they
process a class that relies, as client or descendant, on an obsolete class. The
same mechanism exists for features.

6.2 Optimization Modifiers for Attributes

Optimization modifiers for attributes deal mainly with memory allocation and
persistency.

6.2.1 Modifier Assertions

Assertions for optimization modifiers have to be written just to avoid usage of
incompatible modifiers. No other constraints are necessary.

26

If we consider Java modifiers, volatile is incompatible with final. Because
final keyword has no reification in OFL (3) the assertion have to ensure that
the propriety isConstant is set to false.

context AtomAttribute
inv: self.modifiers->includes(’volatile’)
implies
self.isConstant = false

6.2.2 Modifier Actions

If an OFL translator is used in order to generate native code, it is only necessary
that OFL-actions ensure that these modifiers are copied to the final generated
code. If we deal with an OFL-interpretor, it could consider directly those mod-
ifiers to make optimizations. Another possibility is to ignore these modifiers if
that optimizations are not compulsory.

6.3 Optimization Modifiers for Methods

Optimization modifiers for methods are related i) to the need to get more effi-
cient mechanism for calling method and 4) to deal with methods written and
compiled in other languages.

6.3.1 Modifier Assertions

Assertions for optimization modifiers deal with incompatible modifiers. No other
constraint is necessary.

In the case of the modifier native in Java, it is incompatible with modifier
synchronized. Moreover, a constructor method may not be declared as native.
Not to be able to declare native constructors is an arbitrary design choice of the
language. It makes difficult an implementation of the virtual machine which
verify that superclass constructors are always properly invoked during object
creation.

context AtomMethod
inv: self.modifiers->includes(’native’)

implies self.isConstructor = false
and
self.body->isEmpty ()
and

NOT self.modifiers->includes(’synchronized’)

6.3.2 Modifier Actions

These modifiers needs the same kind of actions as the optimization modifiers
for attributes. If it is decided to build an OFL compiler for the OFL language

27

reification, attention must be payed to make a correct linking with the external
code.

6.4 Optimization Modifiers for Description

Optimization modifiers for descriptions are used for version and documentation
management. They could be used also to organize library of classes.

6.4.1 Modifier Assertions

No assertion are needed.

6.4.2 Modifier Actions

Actions could be designed to generate errors or warnings in case of version
conflicts or to generate class documentation. These actions could be executed
by modeling tools or by translators or compilers. Special tools could also run
them in order to find desired classes in libraries or to check compatibilities.

28

Chapter 7

Service Modifiers

7.1 Examples of Native Service Modifiers

7.1.1 Java Language.

Java has two modifiers that could be considered as service modifiers. These are
synchronized for methods and transient for attributes.

Java virtual machine can support many threads simultaneously at runtime.
Threads may be supported by having many hardware processors, by time-slicing
a single hardware processor, or by time-slicing many hardware processors. To
help programmer to use threads, Java provide mechanisms for synchronizing
the concurrent activity of threads through the keyword synchronized. A Java
synchronized method is a method that must acquire a lock on an object or on a
class before it can be executed. For a (static) method, this is the lock associated
with the object Class corresponding to the class (which declare the method),
which is used. For an instance method, this is the lock associated with this (the
object for which the method was invoked), which is used.

An attribute which is declared as transient is not saved as part of an object
when the object is serialized. The transient keyword identifies an attribute that
does not maintain a persistent state.

7.1.2 C++ Language.

We do not identify any native service modifier in C++ language.

7.1.3 Eiffel Language.

Eiffel also does not include any service modifier.

29

7.2 Service Modifiers for Attributes

Service modifiers for attributes address services that deal with objects state (like
persistency).

7.2.1 Modifier Assertions

Most of the assertions for these modifiers deal just with incompatible modi-
fiers. A particular situation result from the fact that OFL does not provide
any customization for attributes. All attributes are reified with the same set
of properties (see OFL-AtomAttribute). To cover this situation, modifier asser-
tion has to test if the usage of the considered service is permitted or not in the
context of the description which declares the attribute.

7.2.2 Modifier Actions

Service modifier actions will implement the service or will make link with com-
ponents that provide the considered service. this are OFL-Actions added to
the list proposed in [Cre01] or modified by the meta-programmer in order to
support a new service. It may be interesting to discus about the possibility to
let meta-programmer to add new kind of actions.

7.3 Service Modifiers for Methods

Service modifiers for methods address services which deal with execution (ex.
concurrency).

7.3.1 Modifier Assertions

Service modifier assertions has to ensure that a particular kind of method (ex: a
constructor or a destructor) support or not a given service. In the same way as
for attributes, OFL does not provide customization for methods. All methods
are reified with the same set of properties (see OFL-AtomMethod). Additionally,
incompatible modifiers have to be considered.

7.3.2 Modifier Actions

Service modifier actions will implement the considered service. Most of those
actions will be dynamic actions integrated at compiling time. This actions
should consider at runtime the usage of particular hardware (e.g. actions that
support concurrency) or the usage of external resources (e.g. a database in case
of persistent actions).

30

7.4 Service Modifiers for Descriptions

Service modifiers for descriptions have to deal with all kinds of services.

7.4.1 Modifier Assertions

Assertion will have to ensure that all relationships which involve the current
description are compatible with the provided service. If we consider persistency,
a relationship implementing object composition could imply that the target
of relationship (in fact the referenced object) should be also persistent if the
source (the object which contains the reference), is persistent. In other words,
assertions have to verify that both objects are persistent or that both are not.

7.4.2 Modifier Actions

Service modifier actions will implement the service. Most of these actions will
specialize actions of modifiers for attributes and methods.

31

Chapter 8

Additional Modifiers

We consider in this chapter all modifiers that could not be included in previous
categories. These modifiers are used to change the semantics of the related entity
when it is non-customizable in OFL. Semantics modification implied by native
modifiers is handled by a native compiler of the corresponding language. When
an OFL application model is translated in native language code these modifiers
are just written into the generated source code. A custom OFL compiler for the
considered language binding must take care to generate the correct semantic for
native modifiers.

8.1 Examples of Native Additional Modifiers

8.1.1 Java Language.

For Java language we do not identify any modifiers that could be considered in
this category.

8.1.2 C++4 Language.

In this category, C++ has modifiers like const for methods and explicit for
constructors (that are also a kind of method). The const modifier used for
a method indicates that the method do not modify the state of an object.
In C++, explicit constructors will be invoked only explicitly. This disallows
implicit conversions.

8.1.3 Eiffel Language.

Eiffel contains agent keyword that modify the semantics of a method parameter.
The keyword agent is used to pass a routine as a parameter of another routine.
It avoids the confusion with an actual routine call when effective parameter is
computed. Indeed, when a routine is passed as an agent to another routine it
is not called but only transmit to it.

32

8.1.4 Modifier Assertions

Assertions have to deal with incompatible modifiers for all additional modifiers.
Because this category is a very general one, no other assumptions could be made
regarding other necessary assertions.

8.1.5 Modifier Actions

We can assume that all modifiers from this category involve hard action writing.
Each of them address a very specific semantic. Meta-programmer has to identify
first how OFL actions are involved in expressing the considered semantics.

As example, if we consider the native C++ modifier explicit, the semantics is
described in following OFL-Actions : before-create-instance and create-instance.

33

Chapter 9

Conclusion and perspectives

In this paper we proposed to extend the OFL Model. The main goal of this
extension was to improve the customization of the access control mechanism
and of additional non-covered semantics. We introduced the notion of OFL
modifier to provide a clean way to control implementation. For providing a
better understanding of the concept, sections 4 and 5 present examples of several
native modifiers reification.

As future work we proposed to add support for OFL modifiers and to inte-
grate them in all OFL tools. We also plan to extend the modifiers with high level
actions. The OFL modeling tool will execute these actions to ensure automatic
model consistency.

34

Bibliography

[Abag§]

[ACLO3]

[Ard02]

[CKMR99]

[CL02]

[CNP89)

[Cre01]

[FSO1]

[GISBOO]

M. Abadi. Protection in Programming Language Translation. In
Automata, Languages and Programming: 25th International Collo-
quium, ICALP’98, Springer-Verlag, July 1998.

G. Ardourel, P. Crescenzo, and P. Lahire. Lamp : vers un Langage
de definition de Mecanismes de Protection pour les langages de pro-
grammation a objets. In LMO 2003, Vannes, France, February
2003.

G. Ardourel. Modelisation des Mechanismes de Protection
dans les Langages a Objets. Phd thesis, University of Mont-
pellier, France, December 2002. http://www.lirmm.fr/ ar-
dourel/cv/theseArdourel.pdf.

S. Cook, A. Kleppe, R. Mitchell, and R. Rumpe. The Amsterdam
Manifesto on OCL. Technical Report TUM-19925, Technical Uni-
versity of Munchen, Germany, 1999.

P. Crescenzo and P. Lahire. Customisation of Inheritance. In
Springer Verlag, LNCS series, ECOOP’2002 (The Inheritance
Workshop) and Proceedings of the Inheritance Workshop at ECOOP
2002, University of Jyvskyl, Finlande, page 7, June 2002.

L. Cardelli, E. J. Neuhold, and M. Paul. Typefull Programming. In
IFIP Advanced Seminar on Formal Methods in Programming Lan-
gage Semantics, Lecture Notes in Computer Science. Springer Ver-
lag, 1989.

P. Crescenzo. OFL: un Modele pour Parameter la Semantique Op-
erationnele des Langages a Objets - Application aux Relations inter-
classes. Phd. thesis, University of Nice, Sophia Antipolis, France,
December 2001. http://www.crescenzo.nom.fr/.

K. Flower and K. Scott. UML Distilled Second Edition. Addison-
Wesley, 2001.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language
Specification Second Edition. Addison-Wesley, 2000.

35

[Mey02]

[OMG00]

[OMG03]

[PLO3]

[Sch02]

[Sny86]

[Str97]

B. Meyer. FEiffel: The Language. http://www.inf.ethz.ch/ meyer/,
2002.

Object Management Group OMG. Object Constraint Language
Specification. Version 1.8, March 2000. http://www.omg.org.

Object Management Group OMG. Unified Modelling Lan-
guage Specification, wersion 1.5, 1st ed., March 2003.
http://www.omg.org.

D. Pescaru and P. Lahire. Modifiers in OFL: An Approach for Ac-
cess Control Customization. In The 9th International Conferences
on Object-Orinted Information Systems - O0IS’03, WEAR work-
shop, Geneva, Swizerland, September 2003.

N. Schirmer. Analasyng the Java Package/Access Concepts in Is-
abelle/HOL. In ECOOP Workshop on Formal Techniques for Java-
like Programs (FTfJP’2002), Malaga, Spain, June 2002.

A. Snyder. Encapsulation and Inheritance in Object-Oriented Pro-
gramming Languages. In Proceedings of OOPSLA 86, Object-
Oriented Programming Systems, Languages, and Applications.,
November 1986.

B. Stroustrup. The C++ Programming Language. Addison-Wesley,
third edition, 1997.

36

