
Annotations of Classes and Inheritance Relationships: an Unified Mechanism in
Order to Improve Skills of Library of Classes

Pierre Crescenzo, Christophe Jalady and Philippe Lahire

Laboratoire I3S UNSA/CNRS - Projet OCL,
Les Algorithmes - Bât. Euclide - 2000, Route des Lucioles

BP 121 - F-06903 Sophia-Antipolis cedex - France
E-mail: {Firstname.Lastname}@unice.fr

Abstract

We propose here to show the usefulness of the addition
of annotations inside the classes for a better specification of
the use of the inheritance relationship in libraries of classes.
The awaited added value is to improve the documentation,
the reusability, the evolution capabilities and the robustness
of these libraries; typically these annotations could be ex-
ploited by programming environments. We rely on existing
taxonomies of inheritance to show the contribution of these
annotations and we define an unified and flexible mecha-
nism able to take into account any other taxonomy. We pro-
pose an integration of this mechanism in the Eiffel language
through an extension of its clauses "inherit" and "indexing".
The broad outline of the implementation based on model
OFL defined in our team is also highlighted.

1. Introduction

Programming languages such as Eiffel, Smalltalk, Java,
C# or C++ provide a support for the specification of classes 1,
inheritance relationship and aggregation (or client relation-
ship) which have an expressiveness that may change from
one language to the other, features (attributes, methods, etc.),
visibility or protection rules that deal mainly with features
but sometimes also with the classifiers themselves.

The expressiveness of those languages allows to take into
account multiple situations but in some of them the desi-
gner does not have to express his choice explicitly or even
it may not be supported. Although some improvement has
been made in this direction - it is for example the case for
the use of inheritance - it remains still much to do in this
field. Thus, many papers discuss the justified uses of inhe-
ritance relationship [10, 11].

1. In the rest of the paper, we will prefer the more general term classi-
fier used in UML[15].

For example in Java or Eiffel, the keyword abstract for
the first and deferred for the second allows to stress that
the classifier contains definitions of abstract or delayed rou-
tines, according to the vocabulary associated to each lan-
guage. In Java, rather than to use only one inheritance rela-
tionship there are two keywords: extends which describes a
single inheritance relationship between classes or a multiple
one between interfaces, and implements which describes a
multiple inheritance relationship between a class and one or
several interfaces. Furthermore in C++ it is possible to in-
herit "privately" (keyword private), so that it is forbidden to
apply polymorphism on class instances as it is normally the
case when the symbol "::" is used.

According to our point of view these approaches represent
a step forward because they allow the developer of applica-
tion to better specify his use of inheritance but they seem
still insufficient to us. Thus it can be interesting to give more
explanation on the use of the keywords extends or imple-
ments in Java or of the keyword inherit in Eiffel, to quote
only these two languages. In the same way researches like
those of [9] or of [5] show that it is important to provide
to a classifier a way to protect itself from the other entities
of the program in order to avoid them to break the consis-
tency of its instances. In our approach we wish to better take
into account this aspect according to the use of inheritance
relationships between classifiers.

Our proposal thus consists to allow the developer of ap-
plication (in an optional way), to add a set of annotations
to the description of the classifiers or to the inheritance re-
lationship in order to better specify its use. It is important
to mention that these annotations should be used by compi-
lers, interpreters or programming environments rather than
by the language runtime. They do not have vocation to mo-
dify the semantics of the inheritance relationships or more
generally of the language. We promote the idea that thanks
to this approach, a developer gets additional means in order
to obtain more documented, more reusable, more maintai-

1

Functional variation inheritance
Type variation inheritance
Uneffecting inheritance

Variation inheritance

Constant inheritance
Machine inheritance

Reification inheritance
Structure inheritance
Implementation inheritance
Facility inheritance

Software inheritance
Subtype inheritance
View inheritance
Restriction inheritance
Extension inheritance

Model inheritance

Valid use of inheritance

FIG. 1 –. Taxonomy proposed by B. Meyer

nable and more robust applications.
We give initially an outline of the only two classifica-

tions dealing with inheritance relationship that we found
in the state of the art and we propose a third classification
(here known as referential classification). Then we present
the main elements which are useful for the definition of an
annotation. In a third part we examine through an example
the main aspects of our approach like its contribution in the
development process of the libraries. In a fourth part we
propose an integration of our approach in the Eiffel lan-
guage 2. We will finish by the evocation of related works
and of mid-term perspectives for this work.

2. To classify information

In the state of the art we found only two taxonomies of
inheritance. It is on the first hand the taxonomy of Bertrand
Meyer [5]; its main goal is to clarify the various cases where
the use of inheritance can be justified. On the other hand, the
one proposed by Xavier Girod [7] aims to classify the va-
rious kinds of use of inheritance with the point of view of
the application designer. We propose then a third classifica-
tion which is orthogonal with the two first ones and whose
objective is to make an inventory of the various limitations
that one can apply to the nodes of these classifications wi-
thout denaturing their meaning.

2.1. To justify the use of inheritance

We reproduce here the taxonomy suggested by Bertrand
Meyer (see figure 1) and we briefly point out the meaning
of the various types of inheritance by focusing especially on
the most interesting aspects, i.e., the aspects which suggest
the handling of some possible controls. It is useful to note
that it applies more particularly to the Eiffel language and
less to other languages, even if its matter can be generalized
with profit.

– The sub-type inheritance allows to partition the set
of instances of the ancestor class into disjoint sets re-

2. Our approach could be easily adapted to other languages but inte-
gration would be surely different.

presented by the subclasses. The super-class must be
abstract and thus does not have proper instances.

– The view inheritance is used to operate a multi-criteria
classification between the instances. It produces not
disjoint partitions of instances and relies very much on
multiple inheritance to represent the various “views”
of an object. The classes concerned by this relation-
ship have to be abstract.

– The restriction inheritance means that the subclass
needs to satisfy an additional constraint compared to
the ancestor class, such as for example a new inva-
riant. The classes have to be or both abstract or both
concrete.

– The extension inheritance allows to specify that the
subclasses add characteristics which are not applicable
to the super-class. The subclass which can be abstract
or concrete extends the interface (i.e. the set of expor-
ted characteristics) of the class from which it inherits
and that must be concrete.

– The variation inheritance deals with situations where
the heir class wants to redefine one or more characte-
ristics of the ancestor class. There is no addition of cha-
racteristics except possibly for the only need of rede-
fined characteristics. One distinguishes the functional
variation which allows the redefinition of the routine
body, from the type variation which only aims to re-
define its signature (type and numbers of arguments or
type of the result). The subclass must be like its super-
class abstract or concrete.

– The uneffecting inheritance leads to make abstract
one or more characteristics of the ancestor class. It
should be only used to merge two concrete routines
having the same name in the case of multiple inheri-
tance or to reuse a class which is too concrete and in
this case, that represents a certain form of generaliza-
tion. The source class 3 becomes naturally abstract.

– The reification inheritance is used when one wants to
propose an implementation with initially abstract cha-
racteristics. Thus the ancestor class is inevitably defer-
red while the heir class can become concrete. In this
type of inheritance the interface (the set of exported
characteristics) of the ancestor class is not extended.

– The structure inheritance is used when the ancestor
class represents a structural property which can be as-
sociated to the heir class, knowing that the structural
property is only one aspect of the functionalities of the
heir class. The ancestor class is inevitably abstract be-
cause the functionalities that it proposes are specific to
the subclass.

– The implementation inheritance is used to provide to

3. The source class is the one which defines the inheritance relationship
and the target class is the inherited one.

2

the heir class some functionalities which will be used
for the implementation of its behavior. This type of
inheritance requires that ancestor and heir classes are
both concretes. The latter can, moreover, define a se-
cond inheritance relationship enabling him to inherit
from the model (it is a “is a”relationship) of this new
super-class.

– The facility inheritance is mainly used to allow the
heir classes to take advantage from some functionali-
ties. For example, it will be used to inherit from a class
which contains constants or once functions (constant
inheritance) or to inherit from routines that may be
viewed as operations on an abstract machine (machine
inheritance).

2.2. To express the use of inheritance

In his classification, Xavier Girod [7] proposes seven
uses of inheritance which are quite close from the classifi-
cation of Bertrand Meyer. But two of them define a kind of
"multiple" inheritance, that may encapsulate the other types
of inheritance that have been highlighted. In the figure 2,
these relationships are materialized by a vector (<h1, ...,
hn>) where h1, ..., hn represent different types (respectively
the same type), according to whether a combined heritage
(respectively a merge inheritance), is considered.

Inheritance

implementationspecialization reification behavior

merge
<h,h,...>

adaptationcombined
<h1,h2,..>

FIG. 2 –. Taxonomy proposed by Xavier Girod

Thus the combined inheritance requiring the use of mul-
tiple inheritance, allows to specify a dependence between
the highlighted inheritance relationships. For example a class
BOUNDED_STACK which inherits from STACK through a
reification inheritance (close from the reification inheri-
tance - see figure 1) and ARRAY thru an implementation
inheritance (close from the implementation inheritance -
see figure 1) implements indeed a combined inheritance: in
this case the reification inheritance is associated to the im-
plementation inheritance.

When the inheritance types are identical, and that the
subclass represents an aggregate of ancestor classes in which
no super-class has a dominating place; it is called merge
inheritance (which can be seen like a specialization of the
combined inheritance). An example of merge inheritance
is the case of class SEAPLANE inheriting (specialization in-
heritance) from BOAT and PLANE.

In addition of these four inheritance relationships, X. Gi-
rod mentions also the specialization inheritance, the beha-
vior inheritance and the adaptation inheritance, respec-
tively close from the extension inheritance, the structure
inheritance and the variation inheritance also proposed in
the figure 1.

2.3. A classification known as of reference

We recalled the main aspects of two taxonomies on the
usage of inheritance. We now propose a more technical clas-
sification in which we make an inventory of the elemen-
tary adaptations of the classifier behavior that it is possible
to perform 4 on the source classifier when it inherits from
it. This classification is orthogonal with the two preceding
ones in the sense that it is not based on the same concerns.
We will examine in the section 3 how it can contribute to
improve the quality of libraries. It will be named in the rest
of the paper the referential classification.

after before around
parameter result assertionfree constraint

type export

attributemethod
free constraint free constraint

implementationimplementation

invariant export
classifier featureclassifier

...
...

hiding

attribute

Inheritance

redefinition

method

body signatureexport

addition
classifier feature

FIG. 3 –. Piece of the referential classification.

The figure 3 represents only a piece of this classifica-
tion, in which we are interested mainly in the adaptations
dealing with the addition and the redefinition of characte-
ristic. Among the categories of adaptation not quoted in the
diagram there are for example, the renaming of characteris-
tic or the uneffecting of a method body. In this classifica-
tion, each node corresponds to a category of adaptation; it
contains a property (noted constraint) which can take one
of the three following values:

– Mandatory: the adaptation associated with the node
must be applied for each instance of the corresponding
meta-entity (in general a classifier, an attribute or a me-
thod). For example "all the methods of the class must
be redefined".

– Forbidden: no occurrence of the corresponding meta-
entity can carry out this adaptation.

4. We consider that we are in the same context as a developer who
describes the source code of an application.

3

– Allowed: the adaptation associated with the node is
possible, i.e. that it can or not, being applied to a gi-
ven occurrence of the meta-entity.

For example it could be interesting to authorize (allowed)
all the kinds of redefinition related to a method (Inheri-
tance/redefinition/classifier_feature/method) or to prohibit
(forbidden) the redefinition of the body of any method of
the target classifier (inheritance/...method/body/free) or fi-
nally to make compulsory (mandatory) the redefinition of
the body of any method of the classifier with the constraint
that the new piece of code may only be added after the exe-
cution of the code of original method (inheritance/.../body/constraint/after).
In the same way with regard to the addition of characteris-
tics one will be able to allow (allowed), only the addition of
method (inheritance/addition/classifier_feature/method/free)
or even to allow (also allowed), only the addition of imple-
mentation method, i.e. methods not exported and used only
by the body of the redefined methods (inheritance/.../method/constraint/implementation).

Moreover one or more rules is associated to each node
of the classification. They define the semantics of the adap-
tation and depend naturally on the value associated with the
property constraint.
sample of rule:

– node considered: inheritance/...method/body/free
– for each inheritance relationship R, R.S is its source

classifier and R.T is its target classifier,
– R.MST is the set of method of R.S which are redefined

within R.T,
– constraint = forbidden implies R.MST = the empty set

The suggested classification wants to be independent of the
languages; it is thus probable that certain adaptations do not
have any meaning in a given language. For example the re-
definition of signature does not exist in Java whereas it is
one of the facilities offered by the Eiffel language.

3. Towards the definition of an annotation

Our objective in this section is to show in an intuitive
way how starting, from classifications of the state of the art
dealing with the use of inheritance (figures 1 and 2), and
also from the referential classification (figure3), it will be
possible i) to give a definition of a classification node, ii)
to highlight the fact that it is important to be able to custo-
mize the contents of these nodes and iii) to define what an
annotation represents.

3.1. To define a node of taxonomy

We propose an approach for modeling and enrich in-
formation associated with an existing classification (mainly

that of B. Meyer or X. Girod). Most of the time, informa-
tion which describes the types of inheritance (nodes of the
classification), is given in the form of a text or explanatory
examples that may be understood differently according to
who is reading. We propose at the same time, to extract
from these comments, when it is possible, some formal rules
which define their semantics, and to organize all informa-
tion that may be catch in three categories 5:

– Information of adaptation: they describe the adap-
tation capabilities of the source classifier and it can
thus be described by a set of nodes of the classifica-
tion of reference (it is called the initial definition). Of
course this description is as much subjective as the ex-
planations associated with classification are fuzzy or
ambiguous and it depends on the expressiveness of the
inheritance mechanism of the language. In the worst
case one will associate the root of the classification of
reference to a node.

– Information on the structure of the hierarchy: they
depend on the total hierarchy. For example, in the case
of a sub-typing relationship if B is a sub-type of A and
C is also a sub-type of A, then the sets of the instances
of A and B are disjoint. This information corresponds
to constraints and they could be defined using meta-
assertions

– Intuitive information: they correspond to textual des-
criptions or samples of the inheritance semantics. It is
in this category that we will place information which
could not be formalized and which are the most diffi-
cult to check.

In the rest of the paper we consider only the first two cate-
gories; third is out of the scope of this paper. The set of rules
which will be listed on the level of a node N of taxonomy
is equal to the union of the rules associated with its ances-
tors. These rules can be understood as being assertions at
the meta-level of the application. It is pointed out that the
set of rules which are part of the definition of adaptation in-
formation were defined in each node of the referential clas-
sification (see section 2.3).

3.2. To be able to customize a taxonomy

To know how to describe one node of a taxonomy like
those of the figures 1 and 2 is not sufficient, it is necessary
to be able to customize it in a specific way. This is due to the
fact that one can be able, for some inheritance relationships
taking part in the description of a library of classes, to spe-
cify the use of the inheritance relationship, more precisely
than it is done in the initial definition of the node which is

5. It should be noted that any node of a taxonomy may refer to other
nodes as it is the case in the figure 2.

4

considered. Our approach consists to allow the developer to
modify, when it is necessary, the contents of the information
of adaptation (i.e. the set of nodes which corresponds to the
initial definition). We believe that the ability to put stronger
constraints on the contents of a source classifier makes pos-
sible to increase at the same time the capabilities of control
and automation of certain tasks related to the maintenance
(or evolution) of the application. This contribution will be
discussed again more in detail in the section 4.3, but let us
consider right here possible samples of customization of the
initial definition.

Extension inheritance

Valid use of inheritance

... Model inheritanceVariation inheritance
Uneffecting inheritance
Type variation inheritance
Functional variation inheritance

...

Inheritance

addition

method
classifier feature

redefinition

classifier feature
method

body

constraint
after

free

constraint
implementation

FIG. 4 –. Samples of customization

In the figure 4 who contains extracts of the taxonomy
of B. Meyer and of the referential classification we pro-
pose two examples of personalization. The first relates to
the extension inheritance which allows the source classifier
to freely redefine new methods, which was not authorized
in the initial definition of this node.

The second relates to the functional variation inheritance.
Here it is added two constraints to the source classifier which
relate to the addition and the redefinition of characteristics;
from now it is not possible:

– to redefine a method declared in the target classifier ex-
cept if the redefinition only adds additional code after
a call to the original method;

– to add methods except if they are called in the new
body of the methods redefined in the source classifier
and if they are not exported to classifiers other than
itself;

– neither to redefine, nor to add other characteristics to
the source classifier.

Of course they are only examples and other many inter-
esting personalizations are possible for these two types of
inheritance. Thus an alternative could be to authorize the
free redefinition of the methods instead of constraining it.
Another example not described in the figure 4, would be to
consider the reification inheritance. It will be for example
interesting to decline it either in a rather free form where
the principal constraint would be to make compulsory the
concretization of the set of features, or on the contrary in
more strict forms which may rely on following assump-
tions:

– both source and target classifiers have the same inter-

face (i.e. it is forbidden to add, modify or remove si-
gnatures) or,

– it is forbidden to redefine the concrete characteristics
in the target classifier or,

– it is forbidden to modify the assertions or to add a
clause to the invariant of the classifier.

Of course, other types of (compatible) constraint may be
extracted from the classification of reference.

3.3. Definition of an annotation

Intuitively our needs according to an annotation are two-
fold. On the first hand we may associate a use U (for example
variation inheritance) to an inheritance relationship R which
could exist between two classifiers of a library. On the other
hand we may record a possible redefinition of the initial de-
finition of U. So that an annotation will contain following
information:

– the name associated with a node of a taxonomy (for
example variation inheritance if one considers the taxo-
nomy of B. Meyer). It should be noted that this en-
tity contains in particular a set (its initial definition),
constituted of elements of the form:

– a name of node of the classification of reference,
– a value among allowed/mandatory/forbidden

– a set of nodes of the referential classification which re-
presents, when it is needed, a redefinition of the initial
definition of U (it is called redefinition).

The handling of the initial definition and of its redefini-
tion will require to be equipped with set operators but also
with operators making possible i) to add/remove elements
to/from these sets, ii) to modify the value (allowed, manda-
tory or forbidden) associated to one of the elements of a set.
We will detail a little more the implementation in the section
5.5, but one can already specify that the use of these anno-
tations will lead to the definition of actions to be performed
according to the result of the evaluation of the rules. These
actions depend naturally on functionalities that one wants
to introduce (for example in a programming environment),
through the use of the annotations. Examples of functiona-
lities are given in the section 4.

4. Possible contribution of the approach

We propose to study the contribution of the introduction
of annotations into a library of data structures. We showed
above the existence of two taxonomies, but others can also
being considered; their various uses deal with the improve-
ment of documentation, of reusability, of robustness, of the

5

SET

BOX COLLECTION

CONTAINER

BAG

ARRAYED_LIST LINKED_LIST

LIST DYNAMIC_CHAIN

CHAIN UNBOUNDED

INDEXABLE TO_SPECIALRESIZABLE

DYNAMIC_LISTARRAY

FIG. 5 –. A part of an Eiffel library of classes

adaptability of a library of classes or finally of its design.
We aim hereafter to address these various topics through
the example described in figure 5.

The figure 5 represents a piece of the data-structure li-
brary of the Eiffel language 6. We notice two classes at the
bottom of the hierarchy, ARRAYED_LIST and LINKED_LIST,
which implement in two different ways the concept of "tra-
ditional list" modeled by the class DYNAMIC_LIST. It will
be noted that the latter is different from class LIST by the
presence of characteristics such as one which make possible
to add elements at the beginning and at the end of the list.

The super-hierarchy on the right-hand side of the figure
represents the classification which allows to model the concept
of CONTAINER (abstract data-structure representing a set
of elements) and its various refinements such as COLLEC-
TION (which includes features for adding or removing ele-
ments), SET (which guarantees the unicity of elements),
BAG (which on the contrary leaves free the number of oc-
currences of an element), CHAIN (sequence, circular or not,
of elements), etc.

Also on the figure, the left-hand side super-hierarchy spe-
cifies the concept of table. We included it mainly to show
that it takes part in the implementation of class ARRAYED_LIST.

6. More precisely, this is the library which comes with EiffelStudio 5.3.

Subtype

Subtype Subtype

ARRAYED_LIST LINKED_LIST

LIST DYNAMIC_CHAIN

CHAIN UNBOUNDED

INDEXABLE TO_SPECIALRESIZABLE

Uneffecting

Implementation

Implementation

Reification

Structure Structure

Reification

Extention

DYNAMIC_LISTARRAY

FIG. 6 –. Annotations on data-structure library

4.1. Documentation and consistency

The figure 6 proposes a description of the use of inhe-
ritance according to the taxonomy suggested in the section
2.1. The a posteriori extraction of the use of inheritance, ac-
cording to the information associated to the contents of the
original library is a difficult work whose result is subject to
polemic. It is thus likely to be called into doubt as we will
show it later on. Our approach provides a formalism which
allows the developer to annotate an inheritance relationship
in order to describe its use according to this classification.
It will be for him a way to justify the use of inheritance
each time that it is needed. Such further thought is accor-
ding to us essential in the process of both software design
and implementation. It will be all the more useful as it is
also possible to control that these annotations are consistent
according to the implementation code.

To be able to justify to its project leader the use of in-
heritance compared to other solutions privileging the use of
aggregation or client-supplier relationship is of course po-
sitive. But to offer also a first level of control (to ensure
that the specified entities comply with some minimal rules
associated with the various types of inheritance), is also im-
portant. To achieve such control we rely on the evaluation
of the rules which describe the initial definition of each type
of inheritance that is used. It will be interesting to try to re-
cognize the types of inheritance in the main libraries and to
check that they are consistent according to the source code;
one will be able for example to generate checking-reports
highlighting the possible inconsistencies.
The figure 7 allows to look at a piece of the data-structure
library under a different point of view: the one expressed
by the taxonomy of X. Girod (section 2.2). Thus its use al-
lows to better address the problems related to the design in
particular by taking into account the dependencies between
several inheritance relationships; it thus favors the imple-
mentation of reverse-engineering processes. In the figure
it is mentioned in particular a use of the combined inhe-

6

BehaviorBehavior

Implantation Reification
Combined

Reification

Implementation

Specialization

Specialization

Specialization

ARRAYED_LIST LINKED_LIST

LIST DYNAMIC_CHAIN

CHAIN UNBOUNDED

INDEXABLE TO_SPECIALRESIZABLE

Merge

Merge

DYNAMIC_LISTARRAY

FIG. 7 –. Justification of the design choices

Subtype

Subtype Subtype

LIST DYNAMIC_CHAIN

CHAIN UNBOUNDED

Uneffecting

Extention

DYNAMIC_LIST

FIG. 8 –. Points of view on library of classes

ritance and two of the merge inheritance. Thus the class
ARRAYED_LIST implements the deferred methods of the
class DYNAMIC_LIST with the ones defined in class AR-
RAY. In the same way the class DYNAMIC_LIST inherits in
an equal way from the functionalities of the classes LIST
and DYNAMIC_CHAIN and it customizes them when it is
necessary.

4.2. Visualization of points of views

The figure 8 shows another benefit to annotate the inhe-
ritance relationship. Thus the annotations provide informa-
tion which could be exploited to visualize various points of
view of a library of classes and to present a less complex
vision of the hierarchy. The interest is obvious: to allow the
programmer to focus on the inheritance relationships it wor-
ries about in order for example to be convinced that the use
of the sub-typing inheritance is consistent for the classes
that are visualized in the figure. Another use of this infor-
mation by programming environments can be to provide to
a developer, which did not take part in the design of the li-
brary, the accurate vision in order to understand it gradually
and calmly and to better consider its reuse or even its evo-
lution.

4.3. Help for programming and debugging

This section is strongly based on the composition of clas-
sification presented in detail in section 2.3. In the develop-
ment and debugging phase of an application it is important,
for the developer, to take advantage from the maximum help
of the programming environment. For example, according
to the type of inheritance used within one class a specific
text-editor could assist the programmer in its description.
In the same way, still according to the type of inheritance,
controls could be performed in order to inform the develo-
per of possible errors. These controls will be as much re-
levant as what should be made in the descendant will be
precisely described by the type of inheritance used. This is
why we propose to redefine the initial definition associated
with the nodes of taxonomy (figures 1 and 2). To be able
to adapt the semantics of the inheritance use, probably by
putting more constraints on it (and in any case by making
sure that it keeps its relevance), allows to consider the au-
tomation of some activities of maintenance and also some
assistances dealing with edition and debugging purposes.
According to that, one will be able to add, exchange or re-
move elements which takes part in its initial definition. This
is what is called in section 3.3 the redefinition.

4.4. To guarantee a better robustness

Another important aspect that it is possible to take into
account with annotations is related to the protection of the
classes with respect to those which may become their des-
cendants (heirs). Although this aspect of the description of
a program is associated to the use of "modifiers” most of
the time, it can be interesting to annotate a class so that it
specifies a little better what is likely to break its consistency
if of adventure the heir classes use it badly. These anno-
tations would be seen as information which could be used
for example to generate a report which would synthesize
the potential errors of design/programming and the poten-
tial risks that they could imply for the robustness of the ap-
plication which is considered. Among the constraints that a
class can wish to see applied by descendants one can quote:

– the use by the heir classes (when they inherit from it)
of only some dedicated types of inheritance,

– limitation of the classifier that inherits from it to cor-
respond to some specific type of classifier (interface,
class, etc).

5. Integration of annotations for Eiffel

The choice to rather propose here an integration in the
Eiffel language than in another one like Java for example,

7

may be explained by several observations:

– Java proposes several inheritance relationships iden-
tified explicitly by various keywords (extends, imple-
ments) or implicitly by the type of target classifier (in-
terface, class). Eiffel proposes a single mechanism;

– Both classification found in the state of the art rely par-
tially on facilities provided only by Eiffel (multiple in-
heritance, covariance, advanced mechanism of asser-
tion, etc.).

5.1. Annotation of inheritance: basic mechanism

The Eiffel language proposes already an indexing clause
described mainly before the description of a class; it al-
lows to give additional information on the class which is
intended to be used by external tools or programming envi-
ronments. This information is described using several inde-
pendent lines that contain i) a name indicating the type of
information, ii) the character ":" and iii) one string which
corresponds either to a sentence for comment purpose, or a
sequence of words separated by commas.

example:
description: “this class ...”
keywords: “word1, word2, ...”
...

The list of the types of information (here description and
keywords) is free and can be extended according to the needs
of the developer. It is particularly important to ensure a per-
fect uniformisation of the keywords that are used at least
inside the same library, because it makes possible then to
consider implementation of systematic searches of infor-
mation. Our approach integrates the concept of annotation
through the extension of the inheritance clause (inherit) with
an indexing clause (indexing). The declaration below de-
fines an example of use. One can note that the choice to add
this information in the clause indexing rather than through
other syntactic additions insists on the fact that the seman-
tics of the language is not modified and that information will
be used by external tools. Just as for the clause indexing as-
sociated to a class, the clause indexing of inheritance is op-
tional. In this example, the clause indexing specifies that the
classification used (taxonomy) is the one described in the fi-
gure 1 and that the node chosen within the classification
represents a reification inheritance (use).

class LINKED_LIST [G]
inherit
DYNAMIC_LIST [G]
rename

....
redefine

....
indexing

taxonomy: “valid_use_inherit”
use: “reification_inheritance”
end

...
end -- class

5.2. To constraint inheritance annotations

The example below is dealing with the same situation
as previous one but it wishes to indicate in this class se-
veral specific limitations through the use of the contents of
the classification of reference (figure 3). To avoid making
the class less readable by using the full path of the nodes
as it is made in the section 2.3 we preferred to give here a
name which wants to be as significant as possible. It should
be noted that the operators +, - and = respectively mean
to add, remove and replace an element of the initial defini-
tion. In the diagram below, the programmer means through
their evocation that it is possible i) to redefine in a constrai-
ned way the body of the routines (it was free before, and
he must contain from now, before the added code, the call
to the original version of the method), ii) to add attributes
or implementation methods which should not be exported
to other classes, and iii) to make effective all the methods
(before it was optional). The letters A, F and M correspond
respectively to allowed, forbidden and mandatory (see sec-
tion 2.3).

indexing
...
taxonomy_inherit: “valid_use_inherit”

class LINKED_LIST [G]
inherit
DYNAMIC_LIST [G]
....
indexing
use: “reification_inheritance”
redefinition: “

- method_redefinition_body

+ method_redefinition_after (A),
+ add_implementation_feature (A),
= method_body_definition (M)”

end
...
end -- class

It will be noted that if the indexing clause associated to
each inheritance relationship which is annotated relates to
the same classification, it could be interesting to factorize
this information in the indexing clause of the class in order
not to repeat several times the same information.

5.3. To allow the use of combined inheritance

Our mechanism fits also to the use of other classifications
as the one described in the figure 2 which wants to express

8

that several inheritance relationships have to coexist in or-
der to express a need. This is why one specifies a different
name for taxonomy_inherit: it identifies the taxonomy of X.
Girod.

indexing
...

taxonomy_inherit: “use_of_inherit”
class ARRAYED_LIST [G]
inherit

DYNAMIC_LIST [G]
....
indexing
use: “realization”
encompassed_type: “combined_inherit 1”

end
ARRAY [G]
....
indexing
use: “implementation”
encompassed_type: “combined_inherit 1”

end
...
end -- class

In the example above it is specified the type of inheritance
associated to the reuse of classes DYNAMIC_LIST and AR-
RAY which are respectively reification and implementation
inheritances. However it is also stated that the inheritance of
these two classes takes part in the implementation of a more
complex inheritance use which is called combined_inheritance.
The added number (here 1) is optional. It is only used to
avoid any ambiguity in the event of the use of several com-
bined inheritances.

5.4. Annotation of classifiers

It can be interesting to specify in a class that its pos-
sible use by another class through an inheritance relation-
ship, must satisfy a set of constraints. For example, as it
is proposed below, a class agrees to be a target only when
the corresponding inheritance relationship is associated to a
precise use (inherit_restrict).

indexing
...

inherit_restrict: “type_variation_inherit,
functional_variation_inherit”

class ARRAYED_LIST [G]
inherit

DYNAMIC_LIST [G]
ARRAY [G]

...
end -- class

Class ARRAYED_LIST allows only variation inheritance (ei-
ther according to the type or to the functional aspects). the
reader will note that to force the descendants of a class to
check certain properties, does not imply to annotate the in-
heritance in the class itself; however in order to be able to
always provide a better control, we recommend it.

5.5. Implementation of the annotation mechanism

To implement our approach requires to be able to des-
cribe all characteristics dealing with the mechanism of an-
notations, especially the rules and the constraints which al-
low to describe each node of the referential classification.
These rules rely on the reification of an application such as
for example the methods or the attributes of a class, the list
of the redefined methods, etc. We want to carry out this im-
plementation starting from the OFL/J API which offers a
full object reification 7 of the set of entities of an applica-
tion, and is equipped with functionalities to integrate new
meta-entities. The extension of model OFL defined in [13]
makes it possible to define meta-assertions that will rely on
the reification proposed by the model. The reification of an
annotation and of all elements necessary for the description
of a taxonomy will be added to the OFL/J library. For more
simplicity for the one who is in charge of the description of
classifications, the set of the meta-assertions and rules could
be described in OCL (Object Constraint Language - UML)
[15], and then transformed in order to be integrated into the
reification of the application.

The generation of the set of objects that participate to the
reification could be carried out by an external tool included
in the programming environment or the compiler. Naturally
for efficiency reasons we will reify only information strictly
necessary to the exploitation of the annotations. Some of
the actions to be performed were highlighted in the section
4 but the list is not exhaustive (generation of report, dis-
play following various points of views, consistency checks,
etc.), could be integrated by the programming environment
by using approaches by Separation of Concerns or simply
through the design pattern visitor [14].

6. Related work

First of all [8] proposes thanks to the use of a meta-object
protocol (MOP), to specify the nature of the classes, i.e. to
specify some specific properties like to be abstract or not to
be able to have subclasses. The paper deals with ClassTalk
which is based on the SmallTalk language with the addition
of a MOP. Other characteristics are introduced like the pos-
sibility to specify the set of methods to be redefined by the
subclasses or to forbid the modification of the interface. All
these characteristics are encapsulated in meta-classes; it is
the role of each class to specify the meta-class it is an ins-
tance of. These characteristics should influence the possible
future inheritance relationships between a class (instance of
one given meta-class) and of its (future) subclasses. In a
certain manner, the paper proposes to allow a class to put
constraints on the future inheritance relationships that may

7. This library is a first implementation of meta-model OFL and for the
moment it is written in Java.

9

declare it as target. It concentrates on the improvement of
the structural organization of the classes but not on proper-
ties making possible to consider additional controls on the
hierarchies. However, by increasing the understanding of a
component, it proposes a use for the improvement of the
programming environments.

All work relating to the “reverse-engineering” is concer-
ned with problems of maintenance and evolution of hierar-
chies of classes. Research work of P. Clarke and B Malloy
[12] presents a taxonomy of class in order to better describe
the modification made in various versions of a component.
Thus they propose a set of properties which characterize
the classes, like to be generic, to be abstract, to represent a
thread, or to characterize its methods: to trigger an excep-
tion, or to declare protections. This taxonomy will allow to
instantiate a model on various versions of the components
closely connected to the change that are carried out. Among
other related works we should mention research around the
design models like UML (Unified Modeling Language of
the OMG) and more particularly the UML profiles [15].

7. Conclusion and perspectives

We proposed a flexible approach to annotate the classi-
fiers and more precisely the inheritance between classifiers.
We showed that to write a classifier by annotating it requires
a further thought and a greater rigor. However we are per-
suaded that the benefit which it is possible to get when these
annotations are taken into account by the programming en-
vironments is the improvement, of the reuse, the adaptabi-
lity, the documentation and the robustness of the libraries
of classes. The risk is that by restricting the objective of a
classifier as the use of the annotations seems to encourage
it, we note a proliferation of classifiers. To avoid this draw-
back, it will be necessary to use the annotations only when
that brings something significant. Some points are still to
improve; they deal in particular with the description and the
handling of classification for which we must better take into
account the state of the art. The same applies to the study of
problems connected to reverse-engineering. Finally it could
be interesting to extend our approach in such manner that it
is also possible to define the possible uses of classifiers.

References

[1] T. Lawson, C. Hollinshead, and M. Qutaishat, "The
potential for Reverse Type Inheritance in Eiffel", Tech-
nology of Object-Oriented Languages and Systems
TOOLS13, Prentice Hall, 1994, pp. 349-357.

[2] P. Crescenzo, and P. Lahire, "Using both Specialisa-
tion and Generalisation in a Programming Language:

Why an How?", Advances in Object-Oriented Infor-
mation Systems OOIS 2002 Workshops, Montpellier,
September 2002, pp. 64-73.

[3] M. Sakkinen, "Exheritance, Class Generalization Re-
vived", Object Oriented Programming ECOOP-2002
The Inheritance Workshop, June 2002.

[4] P. Crescenzo, OFL: Un modèle pour paramétrer la sé-
mantique opérationelle des langages à objets - appli-
caton aux relations inter-classes, PhD. Thesis, Uni-
versity of Nice-Sophia Antipolis, December 2001.

[5] B. Meyer, Object-Oriented Software Construction 2nd
edition, Prentice-Hall, 1997.

[6] G.L. Steele, Common Lisp the Language 2nd edition,
Digital Press, 1990.

[7] X. Girod, Conception par objets - MECANO:
une méthode et un environnemnet de construction
d’application par objets, PhD. Thesis, University of
Joseph Fourier Grenoble I, Grenoble, June 1991.

[8] T. Ledoux, and P. Cointe, "Les métaclasses explicites
comme outil pour améliorer la conception des biblio-
thèques de classes", GDR’95, Grenoble, 1995.

[9] G. Ardourel, Modélisation des mécanismes de protec-
tion dans les langages à objets, PhD Thesis, Univer-
sity of Montpellier II, Montpellier, December 2002.

[10] A. Taivalsaari, "On the Notion of Inheritance", ACM
Computing Surveys, ACM press, September 1996, Vol.
28 No. 3 pp. 438-479.

[11] D.C Halbert, and P.D O’Brien, "Using Types and In-
heritance in Object-Oriented Languages", Object Ori-
ented Programming ECOOP-1987, 1987, pp. 20-31.

[12] P. Clarcke, B. Malloy, and P. Gibson, "Using a Taxon-
omy Tool to Identify Changes in Object-Oriented Soft-
ware", to appear in Conference on Software Mainte-
nance and Re-engineering 2003, 2003.

[13] D. Pescaru, and P. Lahire, “Modifiers in OFL - An Ap-
proach For Access Control Customization”, I3S Lab-
oratory Research Report, May 2003, pp. 10.

[14] E. Gamma, and all, “Design Patterns - Elements of
Reusable Object-Oriented Software, Addison-Wesley
Professional Computing Series, April 1996.

[15] Object Management Group, “Unified Modeling Lan-
guage Specification(UML), Version 1.5, Mars 2003.

10

