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Abstract— Thanks to their sucess on image recognition, deep
neural networks achieve best classification accuracy on videos.
However, traditional methods or shallow architectures remain
competitive and combinations of different network types are
the usual chosen approach. A reason for this less important
impact of deep methods for video recognition is the motion
representation.

The time has a stronger redundancy, and an important
elasticity compared to the spatial dimensions. The temporal
redundancy is evident, but the elasticity within an action class
is well less considered. Several instances of the action still widely
differ by their style and speed of execution.

In this article, we analyze the temporal dimension by focusing
on its singular dynamism, and we focus on the normalization
of temporal elasticity on sequences to reduce speed variation
within a class. We propose a framework to temporally align
video instance in a classification task using the latest tem-
poral warping method, Generalized Canonical Time Warping
(GCTW). We evaluate our strategy on video datasets where the
intra-class variations lie in temporal dimension rather than in
spatial dimensions. Finally, we show the interest of accounting
for temporal elasticity for a better video classification and
we draw perspectives on more efficient ways to normalize
simultaneously temporal and spatial intra-class variations.

I. INTRODUCTION

Current state-of-the-art methods for video classification
are based on deep networks. The last decade has seen striking
improvements in image classification thanks to the improve-
ments of deep learning modeling, the increase of annotated
visual contents and the fast development of computer power.
In this context, the most intuitive strategy to extend these
impressive results on images to video content has been to
adapt the convolutional neural networks to the additional
third dimension, the temporal dimension. Although deep
architectures for images converged to state-of-the-art, there
is not yet clear best video architecture topology for video
classification. The current main deep networks for video can
be described by three shared properties: (i) the convolutional
kernels have two or three dimensions; (ii) the network input
is the original RGB video, or the video optical flow or
both (2-stream network); and (iii) the temporal information
aggregation is made either by simple fusion (mean, maxi-
mum, etc.) or with a recurrent analysis. The best accuracies
are generally obtained with deep neural networks with 2-
stream approaches combined with 3D kernels and temporal
aggregation [5], [23]. Consequently, there is no clear best
architecture for all the video classification tasks, but each of
them extracts diverse and meaningful information. One can

see, by these different architectures and all the current works
in the domain of video content representation, an effort to
find a good way to characterize the time dimension. In CVPR
2017, a workshop entitled “Brave new ideas for motion
representations” was opened in order to propose original
ideas and to open discussions about motion, and the time
dimension in video content.

The time has two main properties: redundancy and elas-
ticity. The temporal elasticity named the fact that an action
is executed with a variation of speed and style. Several
papers focus on reducing the time redundancy without taking
into account the elasticity. Recently, Wang et al. proposed
the Temporal Segment Network, a 2-stream network with a
uniform sampling on the temporal dimension on each input
video [23]. Thus, the temporal dimension is intermittent
and the motion cannot be fully described. On the last
ActivityNet Challenges, the less recognized classes represent
motions as washing face and rock-paper-scissors, and the
most recognized classes have a clear static visual cue as
camel ride and ice fishing [6].

In this paper, we build a framework in order to classify
video actions by focusing on the motion. We use an ex-
tension of the Dynamical Time Warping (DTW) to align
actions on the same speed and thus reduce the intra-class
temporal elasticity. Then we train and classify the aligned
videos using a 3D deep network. In the next section, we
present several applications of DTW or its adaptation in the
video classification domain. In section III-A, we will present
GCTW, the extension of DTW for a set of sequences. Finally,
we will present our experiments to normalize the speed, and
the improvement of the action classification thanks to this
alignment.

II. RELATED WORKS

Nowadays, Dynamic Time Warping is applied in diverse
domains as computer graphics or bioinformatics [4], [1].
However, DTW has originally been applied on speech recog-
nition [14]. DTW is an algorithm to temporally align a pair
of sequences by optimizing temporal warps to maximize the
similarity between them. The output of a DTW process is
then a correlation score and the two temporal warping paths
to obtain the aligned sequences. Some other methods like
HMM, RNN or Action Spectogram [15], [3], [13] temporally
compare sequences, however, their use is made more for
sequence segmentation and matching based on vocabulary
than for temporal alignment.978-1-7281-0089-0/19/$31.00 c©2019 IEEE



The computed correlation in the DTW algorithm depends
on the representation’s element and the chosen distance.
As for the temporal warping, the representation and the
distance can also be optimized by DTW in order to increase
the correlation and thus, reduce the intra-class variation.
Optimizing the representation to this end is equivalent to
make this representation specific for common content and
ignoring individual information. Hsu et al. [9] suggest keep-
ing residual information to retain the pace of the individual
style of a motion. They present the Iterative Motion Warping
(IMW) method, which alternates between time warping and
spatial transformation. Junejo et al. [11] use alignment to
match two viewpoints of the same scene and find a robust
descriptor to viewpoint changes. Spatial transforms and com-
plex representations have then emerged, in particular, thanks
to the introduction of spatiotemporal manifold model (STM)
to align 3D motion capture data and the associated geodesic
distance [20], [7]. Consequently, DTW is mainly used for
searching robust representations.

After being adapted to specific cases, DTW was also
extended to more generalized cases. First, following the idea
of IMW to introduce an alternated spatial transform to the
temporal transform, DTW has been naturally extended thanks
to the Canonical Correlation Analysis (CCA), which linearly
projects the representations into a common latent space:
Canonical Time Warping (CTW) [26]. This linear projec-
tion manages the impact of each feature in the correlation
estimation. More generally, CTW is multi-modal because
each sequence has its own spatial projection, and thus, two
different representations can be projected into a common
space to compute their similarity. Then Trigeorgis et al. [19]
propose a spatial transform made by a neural network to
extend spatial projections to non-linear transforms.

While the alignment is still made by pairs in CTW and
DCTW, Zhou et al. present the Generalized Canonical Time
Warping (GCTW) [27]. This approach models the correlation
on a set of sequences by the sum of the correlation of each
pair, inspired by mCCA [8]. Moreover, GCTW uses a Gauss-
Newton temporal warping, parametrized by a monotonic
function basis.

Consequently, DTW and its extensions are useful methods
to match common elements (the action, the scene) and reduce
individual information (the view, the style, the speed). As a
direct consequence, several tasks can take benefit from the
reduction of these intra-class variations. Wang et al. [22]
put more weights on early matching in GCTW (TCTW)
in favour of a fast decision to predict the action with a k-
NN classification. In [18], they combine DCTW with LDA,
called DDATW, to align their temporal labels with each video
in a temporal annotation task.

In this article, we present a generic video classification
framework based on GCTW and we analyze the impact of
temporal warping on the classification accuracy.

III. CLASSIFICATION WITH ALIGNMENT

A. GCTW for temporal alignment

For the temporal alignment, we choose the General-
ized Canonical Time Warping (GCTW) [27] for its multi-
sequence alignment capacity. Given a collection of m time
series, {Xi}mi=1, GCTW searches for all sequence Xi of
length ni, Xi = [xi1, · · · , xini

] ∈ Rdi×ni , a linear spatial
transform Vi ∈ Rdi×d and a non-linear temporal transform
Wi = W (pi) ∈ {0, 1}ni×l parametrized by pi ∈ {1 : ni}l,
such that these output series V T

i XiWi ∈ Rd×l are aligned
all together. GCTW minimizes the sum:

min
{Vi}i∈Φ,{pi}i∈Ψ

Jgctw =

m∑
i=1

m∑
j=1

1

2
‖V T

i XiWi − V T
j XjWj‖2F

+

m∑
i=1

(φ(Vi) + ψ(pi))

(1)
where F indicates the Frobenius norm, φ(·) and Φ are
respectively the regularization term and space of the spatial
transform Vi ans ψ(·) and Ψ are the regularization term and
space of the temporal transform Wi (see [27] for details).

B. Video Alignment

We aim at reducing the speed variation within a class, and
we choose GCTW for its capacities to simultaneously align
a set of sequences, its spatial transform to select features and
its parametrized temporal mapping.

As we have seen in the related work, it is necessary to
choose a representation to apply DTW extensions. Due to
the video redundancy and the computational cost, we use a
representation framework inspired by the challenge YouTube
8M [2]. The frames are described using Google Net [16],
and then the features are reduced using a PCA. Using the
PCA features and the Euclidean distance, we align all video
sequences within each class. In this way, we only use the
deep representations to compute the temporal transform Wi

by GCTW and we apply them directly on the video frame
sequences (illustrated in figure 1). Thus, we end the process
with the original video (of different lengths ni) and the
aligned video (of length l).

C. From alignment to classification

Using GCTW and our framework, we can assume that the
classification problem can benefit from this class variation
reduction. Then, given a database with C class, each class
having m videos, we apply GCTW on each group of m
videos within each class to get aligned videos. Thus, the
GCTW framework gives us a database with no temporal
elasticity within a class. We can now train our classifier on
this new database. In the experiments, we will use the C3D
Network as our baseline classifier, but any type of video
classifier could be considered. In the experiments, we analyze
the impact of the temporal alignment on this classification
baseline through different testing protocols.



Fig. 1. Alignment Framework using GCTW within one class.

IV. EXPERIMENTS

A. Data

To focus on speed normalization, we choose a database
that contains low intra-class variation except the speed vari-
ation: the American Sign Language ASL [24]. The ASL
database is composed of 1204 RGB videos of size 320×240,
with ni = 20 to 170 frames, illustrating 43 different signs.
Although there are 14 different subjects, two illumination
directions and some silent video parts, the intra-class spatial
variations are actually low in this base (Fig. 2).

Conversely, the intra-class temporal variation is significant
in this database. Figure 3 shows the video duration distribu-
tion per class. If we neglect the silent frames, the length is
a good indicator of the speed variation inside a given class.
This database is suitable to analyze the temporal elasticity
as the major intra-class variation.

We also consider the IsoGD database [21], which is com-
posed of 47933 videos of 21 subjects making 249 gestures.
We only considered the RGB frames like for ASL. This
database contains several languages: deaf language, diving
language, Italian expression signs, etc. We can thus evaluate
our framework with diverse class instances for the alignment
and more sample per class for the training.

Fig. 2. Example of images from the ASL database: fives subjects doing
the same sign.

B. Alignment and classification

Frames are represented by the 1024 length feature output
from Google Net [16]. Then we reduce the dimensionality
of feature space using a PCA with di = 10 coefficients
(preserving 92% of the variance). For the classification step,
we choose to use the C3D deep network [17] for its capacity
to extract discriminative spatiotemporal patterns from learned
three-dimensional filters. The classification network C3D is
one of the admitted state of the art approaches for video
classification.

Fig. 3. Statistical box plot diagram showing the video length distribution
within each class. The video length is usually around 50 and class 9 contains
both the longest and the shortest videos.

Fig. 4. Images from the IsoGD database: four subjects doing the same
sign.

The C3D Network takes as input fixed-length videos[25].
To normalize all videos’ length while preserving the original
speed distribution, either we pad each short video with the
last frames until 140 frames or we crop the 140 centred
frames of a long video. C3D does not learn filters from
padding frames since static parts should not be discriminant.
Thus, we do not add noise in the baseline classification. For
computational reasons, we uniformly reduce the frame rate
per second, taking 1 frame on 4. On the illustration Fig. 5,
one can see the shortest video on the first line after the length
normalization and thus the sign is preserved. From now on,
the normalized database will refer to this size-normalized
database with the original speed distribution. In opposition,
the aligned database will refer to the videos aligned from
GCTW, with l = 35 to obtain the same size videos, and thus
the aligned database is normalized by size and by speed.

In order to evaluate our classification framework, we have
designed 4 protocols.



Fig. 5. Two video sequences of the same sign from the ASL database:
before alignment at the top and after the alignment at the bottom. The first
video is one of the shortest videos in ASL.

a) Baseline: The baseline is our reference result for our
study. C3D parameters are learned from the video database
Sport 1-Million [12] and fine-tuned on the normalized
database.

b) Protocol 1: C3D is trained on the aligned video sam-
ples (aligned samples) and test with diverse speed execution
samples (normalized samples).

c) Protocol 2: C3D is trained and test on similar
execution speed sample. This protocol is peculiar because
we place the classifier in the ideal context to analyze the
impact of this variation on the classification. Here we use
the testing labels to align test data samples.

d) Protocol 3: Protocol 3 consists of training C3D on
the aligned training set as for the two previous protocols.
In testing time, each test sample is aligned to each class
(already aligned samples). If there are C classes, then we
get C temporal transforms W c

new for one test sample. The
prediction score of class c for a new sample Xnew is
computed as the prediction of class c for this new sample
warped by an alignment with the class c. The predicted class
is then the class with the maximum prediction score on the
sample aligned with this class.

Fc
protocol3(Xnew) = Fc

C3D(XnewW
c
new) (2)

C. Results

The table I show the results for each protocol.
Firstly, we remark that protocol 1 falls in accuracy com-

pared to the baseline on ASL and on IsoGD. Indeed, the
network learns a sign always executed at the same speed but
it sees new execution speed at testing time. A strong temporal
variation between the train and the test set can thus hinder
C3D recognition.

Secondly, with the protocol 2, we can remark that, in
an ideal context without temporal elasticity within a class,
the recognition rate gains 15% on ASL and 35% on IsoGd
compared to the baseline. This implies that, if we build a
robust representation for temporal elasticity, usual ConvNets
can then be improved.

Finally, with protocol 3, we present a strategy to align
samples without using the label in testing time. The results
differ in ASL and IsoGD. The GCTW alignment is a
generative method since it only considers one class during
the process. Thus, it could either increase the similarity
between different classes, as observed in the ASL database,
or increase the discrimination between classes as observed

Classification ASL IsoGD
protocol top-1 acc top-5 acc top-1 acc top-5 acc
Baseline 76.7 96.2 45 89.05
Protocol 1 14.5 37.9 41.65 71.03
Protocol 2 91.7 98.7 81.27 97.01
Protocol 3 50.4 92 81.34 97.11

TABLE I
TOP-1 AND TOP-5 ACCURACIES ON THE ASL AND THE ISOGD

DATABASES ACCORDING TO TESTING PROTOCOLS.

in the IsoGD database. The alignment certainly reduces
the discrimination in ASL because of the small inter-class
variations and then, even if the sample is aligned to another
class than its ground-truth, GCTW found enough correlations
to warp it to this class. In the next section, we will discuss on
the discriminative improvement of the temporal alignment.

V. DISCUSSION

DTW approaches have two main drawbacks. First, the
generative aspect of DTW must be coupled with a discrim-
inative criterion as we have seen in the last protocol. In
DDATW [18], they combine DCTW and LDA to add a
discriminative constraint over the spatiotemporal transform
optimization. However, DDATW required temporal labelling
which is a very specific context. Moreover, adding a discrimi-
native criterion implies more sequence comparison and thus,
increases the computational cost. Secondly, the alignment
functions V c

i and W c
i depend on the sequence and on the

class to be aligned with. This implies the computation of
alignment during the test and with each existing class, to
obtain all the aligned versions. One solution we are currently
investigating is to learn the temporal alignment function T
that can directly output the temporal warp Wi , independently
from the class. Our preliminary work consists of extending
the principles of the Spatial Transformer Network [10] to
a temporal transformer network to learn a transform T
directly from the classification labels. In this configuration,
the temporal alignment T would not depend on the class and
would optimize T in a discrimination aim.

VI. CONCLUSION

In this article, we have been focusing on the impact of
temporally aligning videos in a video classification task.
We have introduced a generic video classification framework
combining GCTW for the alignment and C3D for the classi-
fication. Our system, and particularly the protocol 2, shows
that a deep learning network can improve its accuracy by
reducing the speed variation. When C3D is evaluated on an
aligned database in train and test, the accuracy rate gain 15%
from the baseline. We propose a particular protocol to make a
prediction from the network trained on the aligned database,
without knowing the class the sample has to be aligned with.
Finally, we discuss the alignment and its drawbacks. In future
works, we would adapt the Spatial Transformer Network to
temporal alignment.
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