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Abstract

This paper addresses the optimal recovery of the displacement and projection parameters from uncalibrated monocular
video sequences. We study the particular cases of camera and objects displacements and camera projection in order to extract

an optimized parameterization of the problem of parameters recovery for each cases.

This work follows previous studies on particular cases of displacement, scene geometry and camera analysis and focuses
on the particular forms of fundamental matrices. This paper introduces the idea of using not all particular cases as individual

cases but grouping these cases into a tractable number of sets, using properties on fundamental matrices.

Some experiments were performed in order to demonstrate that if several models are correct, the model with the least

parameters gives the best estimate, corresponding to the true case. © 2002 Published by Elsevier Science B.V.

Keywords: Fundamental matrix; Particular displacement; Parameters estimation

1. Introduction Several authors have already been interested in pas-
ticular cases of projection [2,5,9,13,14,16] or displacesz

This paper deals with video sequences taken by anment [3,4,8,17]. Some of them consider several casas
uncalibrated camera in an unknown environment. Our and compare each result, in order to automatically des
interest is to estimate as many parameters as possitermine which case was performed. 40
ble on the camera and objects motion and the camera We call by general case the situation where we da
projection using a strategy of hypothesis testing. not know anything about motion or camera projectior2
Many efforts have been made in the Computer Vi- A particular case is when we know (or make the hyss
sion community for determining motion and camera pothesis) that a parameter is null, constant or knowm
parameters from video sequences. Relations betweenor related to other parameters. A particular case has

2D views exist [7] as the fundamental matfx but, fewer parameters and/or simpler equations than the
in the general case, we cannot extract all the unknown general one. 47
parameters from thiE matrix. It is however possible The motivations for these studies are threefold: 4s

in some particular situations.

This work follows previous work on particular cases
of displacement, scene geometry and camera analysis
[10,11,18]. It focuses on the particular forms of fun-
damental matrices.

¢ to eliminate singularities of general equations byo
considering each case that may conduct to singulat-
ity, 51
e to estimate the parameters with more robustness
using a simplified model (an adapted model givess
more accuracy than the general one as shown im

E-mail address: diane.lingrand@sophia.inria.fr (D. Lingrand). [18]), 55

0921-8890/02/$ — see front matter © 2002 Published by Elsevier Science B.V.
PIl: S0921-8890(02)00202-6
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e to retrieve parameters that cannot be retrieved in 2.2. Camera projection 92
the general case because we eliminate some un-
knowns that are meaningless in the particular case The most commonly camera model states thatsa
studied. 3D-pointM = [X Y Z1]" is projected with a per- 94
spective projection onto an image plane on a 2D-poin

It is already known that the large number of par-
y g P m = [uv1]". In the reference frame attached to thes

ticular cases prevent examining all the cases linearly.

In this paper, we introduce a new way to deal with Camera. the projection equation is o
this amount of cases in three steps. (1) We eliminate, ay y wuo O

with some simple rules, some redundant cases andzm =| 0 «, vy O |M, (1)
some physically impossible cases. (2) We divide the 0 0 1 0

set of cases into two sets, each corresponding to homo-

graphic or fundamental relations. (3) We divide again A %8

the fundamental cases into sets corresponding to par-wherew, anda, represent the horizontal and verti-oo
ticular forms. We will provide details for each of these ¢z lengthsuo andvg correspond to the image of theoo

steps in the following sections. optical center and is the skew factor. Those paramto1
eters are the intrinsic parameters and are collectedan
the projection matridA. 103
2. Stereo framework
2.3. Considering two frames 104

In this section, we present the stereo framework and

the notations we will use in this paper. Let /; and I> denote two images. In the generabs

case, there exists a fundamental relation [7] betwees

2.1. Rigid displacements pointsmy in I> and pointsmy in Iy: 107
T .

We consider a rigid or piecewise rigid scene. A m; PTG 108
3D-point M = [XY Z1]" is moving ontoM’ = whereF is called the fundamental matrix and is relateds
[X'Y’ Z'1]" by a rotationR followed by a translation  to the intrinsic and extrinsic parameters by 110
t=[ron tz]TZ - 1

F = (A2t)AoRAT -, 111
/ —
M"=RM +t. whereA1 andA; are the projection matrix for the firsti12
A rotation matrixR depends only on three parameters and s_ecc_)nd frames,_ respgcnvel_y, see (1) . 113
r = [rorir2]T related to the rotation angteand axis This kind of relationship vanishes if the displace14
u by ment is a pure rotation or if the scene is planar. The
relation between points is homographic: 116
r = 2tan(36)u < 0 = 2arctan(3||r ).
my = Hmy, 117

A rigid displacement is then parameterized by six pa-
rameters.

We note by the antisymmetric matrix representing
the cross produat A -

whereH is called the homographic matrix. Anotheris
study on homographic matrices can be found in [11]e

FX=F AX VX. 3. Deriving all particular cases 120
The rotation matrixR = € = € can be developed In order to study all particular cases of cameras;
as a rational Rodrigues formula [15] object displacements and camera projection, we wib
. > examine each particular value, considering each pz
R =] [M} ) rameter at a time. A particular model is obtained hys
14+rT.r/4 combining several particular values. 125
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3.1. Particular cases of intrinsic parameters which occurs frequently in images sequences excefat
with high speed objects. 155
If the motion is larger, we can also consider thes

157

Authors generally make several hypotheses regard-
ing intrinsic parameters. For example, the most gen- second order expansion
eral auto-calibration hypothesis states that the intrinsic
parameters are constant. They can be known or un-R =147 + %FZ + o(F?).
known. However, usually, some parameters are con-
stant while others are not.

158

3.2.2. About extrinsic parameters 159

The rotation parameters are related to the rotatien
axis and the rotation angle bby= 2tan(6/2)u, where 161
u is a unitary vector giving the direction of the rotatioms2
axis. 163

Some components ofcan be known or null. Someziss
value ofd may yield singularitiesp = /4 and the 165
rotation axis is parallel to the translation vector for ias
screw displacement. 167

Some robotic systems give precise values of the
robot displacements (angle, axis, translation). Some
values may be known (we denote I8y a constant and17o

Table 1 summarizes, for each intrinsic parameter, known value of a paramete}). Other informations 171
the particular cases of interest (constant values are in-regarding parallelism or orthogonality to a known div2
dexed by zero). Subsequently, we will refer to each rection or to an other vector may also be available:17s

e The principal point of coordinate@:g, vg) can be
fixed and/or known in some cases (e.g. in the image
center), thus changing the reference frame, regard-
ing the principal point position.

e The y parameter is usually assumed to be null or,
at least, considered to be a constant value.

e Enciso [6] has experimentally proven that for a large
number of cameras, /a, can be considered to be
constant even if other intrinsic parameters change.
We express this ag = o, = ay.

case by the label given in the first column. For exam-
ple,gl means that the: parameter is null.

3.2. Particular cases of displacement

3.2.1. Discrete motion—continuous motion

In an image sequence, if the displacement between
two frames is small, we can approximate the rotation
equations by their first order:

R=¢& =1+7+o0(f)

Table 1
Table of particular cases of intrinsic parameters for two frames
gl y=0 y constant and null
g2 Y =% y constant
g3 y =y() y free
sl oy = oy(T) a, /oy, constant and known
s2 o, = oy, (1) a, free
fil oy =1 a, constant and known
f2 oy = fo a, constant
f3 oy = ay(T) o, free
cl up=v9=0 uop andvg constant and known
c2 ug = uq, and ug andvg constant
Vo = Vo,
c3 ug = uog(tr) and ug andvg free
vo = vo(7)

e the rotation axis is orthogonal to the translatians
plane (e.g. planar motion): 175

ritert=0, 176

e screw displacement: 177

rt< Jc/r = «t. 178
3.2.3. All constraints on motion 179
All these constraints, also called “atomic particuso
lar cases”, have simple expressions that can be easily
combined. In this purpose, we use the fact thds 1s2
a unitary vector and that, for monocular systems, tha
norm of translation cannot be recovered. To parames
terize these vectors with only two parameters, we dis
vide each component by a hon-zero component. Thed,
the dot product and scalar product induce linear relaz
tions. For exampler; = 1 andt L r are equivalent 1ss
to rouo + fiur +ur = 0 = up = —toug — tiuy. All 189
cases are collected in Table 2. 190

3.2.4. Generating all cases 191
All particular cases, each called a “molecular casa8;
are generated by combining the atomic cases and sods-
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Table 2

Table of particular cases of displacements

ul uo=u»=0,u1 =1 Rotation axig|| y-axis R1 R=I Null rotation

u2 u=0,u1=1 Rotation axisl x-axis R2 R=1+TF First order

u3 up =0, u1 =1 Rotation axisL z-axis R3 R=I1+TF+ %FZ Second order

ud =1 General case R4 R=I+F+1/2f%)/ General case
1+rTr/4

us up=u2=0,u; =-1 Rotation axis|| y-axis

ué up=0,u1 =-1 Rotation axisL x-axis al 0=m/2 Quarter turn

u7 up =0, u1 =-1 Rotation axisl z-axis a2 0 Free angle

u8 uy =-1 General case

u9 upo=u1=0,u=1 Rotation axis|| z-axis tl n=t=0,6n=1 Translation| x-axis

ulo uo=0,up =1 Rotation axisL x-axis t2 n1=01n=1 TranslationL y-axis

ull ur=0,up =1 Rotation axisl y-axis t3 =01n=1 TranslationL z-axis

ul2 up; =1 General case t4 =1 General translation

ul3 uo=u1=0,up=-1 Rotation axis|| z-axis t5 to=t2=0,n=1 Translation| y-axis

uls up=0,up =-1 Rotation axisL x-axis t6 t0=0,n=1 TranslationL x-axis

uls ur =0, up =-1 Rotation axisl y-axis t7 nh=0n=1 TranslationL z-axis

ulé up = —1 General case t8 =1 General translation

ul7 ur=u»=0,ug=1 Rotation axis|| x-axis t9 tn=t1=0,n=1 Translation|| z-axis

ul8 up =0,up=1 Rotation axisl y-axis t10 10=0n=1 TranslationL x-axis

ul9 up =0, ug=1 Rotation axisl z-axis t11 n=0mn=1 TranslationL y-axis

u20 up=1 General case t12 =1 General translation

u21 ur =u» =0,ug=-1 Rotation axis|| x-axis

u22 uy =0,up=-1 Rotation axisl y-axis Z1 t-u=0 TranslationL rotation axis

u23 up =0, up=-1 Rotation axisl z-axis z2 tAu=0 Screw displacement

u24 up= -1 General case Z3 No relation

ing the constraints by a substitutidn A molecular

atomic constraints can generate the same simplified

case is composed of one case in each family, a family model. 212

being named by a letteg( s, f or ¢ for projection

as seen in Table 1 and R, a, t or Z for motion as
seen in Table 2). Thus, a molecular case is identified
by the sequence:

9[1-3]f [1-3]s[1-3]c[1-3]R[1-4]a[1-2]
u[1-24} [1-12]7[1-3],

whereg[1-3] means “one atomic case amayy, g2
andg3”.

It is easy to eliminate incompatible constraints. 4i3
is not possible to deal with redundant constraints, bes
cause this requires to compare each set of combined
constraints with all others in order to determine thes
similarity. The complexity of this process is(&¥). 217

Although we cannot remove redundant cases, wg
propose an adapted strategy to deal with the large num-
ber of cases. The idea of this paper is: (i) to eliminatm
some of the redundant cases by using some considar-
ations on the atomic cases and (ii) to limit the number
of cases by studying the particular forms of the mateks

3.2.5. How many cases do we have? ces. 224
If we look at the expression of the particular

above-mentioned cases, we obtaix G0° particular ~ 3.2.6. Reducing the number of cases 225

cases. However, this is not the real number because Some redundancy are obvious 226

of the incompatibility of some atomic cases and the
redundancy of some constraints. Two different sets of

1 This was done using Maple software for symbolic computa-
tions.

e In case R1), one case of axis and angle is considz7

ered. 228
e In cases R2) and R3), we do not considerall) 229
whené is equal torr/2. 230

e The casedl) is only considered if ||t, (Z2). 231
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Fig. 1. Images forx-axis translation, small pan rotation and auto-focus.
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This reduces the amount of cases of fundamental x-axis. The auto-focus was also enabled. The case with

relations to only 216 756 cases. the minimal residual error corresponds to the fundas
mental matrix form numbeB9 in the table given in 276
Appendix A 277
4. Forms of fundamental matrices
0O 0 O
We have significantly reduced the number ofcases F=| xg x1 x2
but this is not small enough to be computation-
0 —x2 x3 278

ally tractable. We now split fundamental relations
in sets of matrices by forms. The matrix form is This particular form was obtained from cases where
determined using simple rules in order to obtain a the rotation was approximated to its first and secorsd
very simple parameterization. We consider {33) order, the translation is parallel to theaxis, the ro- 2s1
matrices having nine parameters (coefficients). If a tation axis is orthogonal to the optical axis and thez
coefficient is equal to zero, then there is one less intrinsic parameters are free. 283
parameter. If a coefficient has the same expression
or is opposite to another, there is one less param-
eter again. These operations are very simple and6. Conclusion 284
can be rapidly computed in each case. Furthermore,
we know that a fundamental matrix is defined up In an earlier study on homographic matrices [11ks
to a scale factor, and that its determinant is fixed we have shown that it is possible to reduce the amousat
to 0 (removing in most cases one parameter). This of particular cases in order to make the case selectien
process reduces the 216756 cases to only 188 sub-computationally feasible. In this paper, we have showss
groups. that a similar result can be obtained with fundamenta
The table in Appendix A shows all the simpli- matrices using redundancies. We have experimentatly
fied forms obtained, and for each form, an exam- confirmed that our system is able to automatically ses
ple of case that has generated it. This table will lectthe case corresponding to the performed displage-
be useful for people who want to implement the ment. 293
algorithm. The applications are twofold: (i) an incrementabs
reconstruction of the scene and (ii) the segmens
tation of objects moving with different displacezgs

5. Experiments ments or with different geometric properties in viden?
sequences. 298

We have recorded several video sequences for This work has also been extended to meso
which the camera displacement induces a funda- tion estimation of human head inside MRI scaneo
mental relation between image poims; and my. ner, improving the registration of fMRI volumeso1
From each particular matrix form, we have estimated [12]. 302
the fundamental matrix parameters with the robust
least median square method in order to minimize

the distance between a 2D poimi, and its epipolar ~ Appendix A. Table of particular forms of 303
line Fm,. To deal with cases with different degrees fundamental matrices 304
of freedom, we use an appropriate Akaike criterion

[1]. We denote byn® the form number, byp the 305

For each recorded video sequence, we have veri- number of parameters (we have not taken into aas
fied that the model with the minimal residual error ef- count the fact that the fundamental matrix is des7
fectively corresponds to the displacement performed fined up to a scale factor and that éeet= 0 but so0s
by the robotic system. We present one experiment in we do so in our implementation) and hy the 309
Fig. 1 for which the camera has performed a small number of molecular cases that have generatedia
pan rotation followed by a translation parallel to the form. 311
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7

n° p Simplified form of fundamental matrix For example generated by n
11 [0 0o o0 O 0 x O —xg 0] glf 1slclt 1R1u24Z3a2 24
2 1 [0 0 x3 O 0 0 —x3 O 0] glf 1slclt 5R1u24Z3a2 4
31 [0 x2 0 —x 0 0 O 0 0] glf 1slclt 9R1u24Z3a2 5
4 2 [0 0O O O 0 x O —xg  X9] glf 1s1c3t 1R1u2473a2 12
5 2 [0 0 0 O 0 x O X8 0] glf 3slclt 1R1u24Z3a2 6
6 2 0 0 O O 0 xg x7 —xg 0] glf 1slclt 1R2ul13Z2a2 16
7 2 [0 0 O O x5 x¢ O —xg  X5] glf 1slclt 1R2ul7Z1a2 396
8 2 [0 0 0 x4 0 x O —xg 0] glf 1slclt 1R2ulZ2a2 16
9 2 [0 0 x3 O 0 0 —x3 O xg] glf 1s1c3t 5Rlu24Z3a2 2

10 2 [0 0 «x3 O 0 0O —x3 xs 0] glf 1slclt 5R2ul3Z2a2 8
11 2 [0 0 x3 O 0 0 xy 0 0] glf 1s2cl1t 5R1u24Z3a2 4
12 2 [0 0 x3 O 0 x6 —x3 —xs O] glf 1slclt 3R1u24Z3a2 17
13 2 [0 x 0 —x 0 x5 O —xg O] glf1slclt 11Rlu24Z3a2 8
14 2 [0 x2 0 —x 0 x5 O 0 0] glf 1slclt 9R2ulZz2a? 24
15 2 [0 x2 0 —x x5 0 O 0 0] g2f 3slclt 9R1u24Z3a2 4
16 2 [0 x2 0 x4 0O 0 O 0 0] glf 1s2clt 9R1u24Z3a2 3
17 2 [0 x2 x3 —x2 0 0 —x3 O 0] glf 1slclt 10R1lu24Z3a2 4
18 2 [0 x2 x3 —x2 0 0 O 0 0] glf 1slclt 9R2ul7Z2a2 12
19 2 [0 x2 x3 O 0 0 —x3 O 0] glf 1s1clt 5R2ul7Z2a2 8
20 2 [x2 0O x3 O 0 0 —x3 O x1] glf 1slclt 5R2ulZzla? 66
21 2 [x1 x2 0 —x2 xx 0 O 0 0] glf 1slclt 10R2ullZla2 198
2 3 [0 0 0 O 0 x O X8 xg] glf 3slc2t 1R1lu24Z3a2 12
23 3 [0 0 O O 0 xg x7 —xg  Xg] glf 1slc2t 1R2ul13Z2a2 32
24 3 [0 0O O oO 0 xg x7 xg 0] glf1slclt 1R3ul3Z2a2 200
25 3 [0 0 O O x5 xg O —xg  Xx9] glf 2s1clt 1R2ul7Z1a2 396
26 3 [0 0 O O X5 X X7 —xg  X5] glf 1slclt 1R2ullZ2a?2 16
27 3 [0 0 0 x4 0 x5 O X8 0] glf 1slclt 1R3ulZ2a? 56
28 3 [0 0 O x4 0 x x7 —xg 0] glf 1slclt 1R2ul10Z2a2 32
29 3 [0 0 0 x4 x5 x¢ O —xg O] g2f 1slclt 1R2ulZz2a? 32
30 3 [0 0 0 xa x5 xg O —Xxg Xs] glf 1siclt 1R2ul972a2 16
33 3 [0 0 x3 O 0 O —x3 xs8 xg] glf 1s1c2t 5R2ul3Z2a2 16
32 3 [0 0 x3 O 0 0 xy 0 xg] glf 1s2c2t 5R1u24Z3a2 8
33 3 [0 0 x3 O 0 0 xy X8 0] glf 1slclt 5R3ul3Z2a2 64
34 3 [0 0 «x3 O 0 x6 —x3 —x6 X9 glf 1s1c3t 3R1lu24Z3a2 13
35 3 [0 0O x3 O 0O xg —x3 xg 0] g2f 1s1clt 5R2ul3Z2a2 22
36 3 [0 0 x3 O 0 xg x7 —xg O] glf 1s2c1t 3R1u2473a2 4
37 3 [0 x2 0 —x2 0 x5 O X8 0] glf 3slclt 11R1u24Z3a2 2
388 3 [0 x2 0 —x2 x5 x O —xg 0] g3f 1slclt 11R1u24Z3a2 4
39 3 [0 x2 0 —x2 x5 x5 O 0 0] g2f 3slclt 9R”2ulz2a? 12
40 3 [0 x2 0 x4 0 xg O —xg O] glf1s2clt 11Rlu24Z3a2 4
41 3 [0 x2 0 x4 0 x5 O 0 0] glf 1slclt 9R3ulZ2a2 60
42 3 [0 x2 0 x4 xs 0 O 0 0] g2f 1s2cl1t 9R1u24Z3a2 6
43 3 [0 x2 x3 —x2 0 0 «x7 0 0] glf 3slclt 10R1lu24Z3a2 2
4 3 [0 x2 x3 —x2 0 xg —x3 —xg O] glf 1slclt 12R1u24Z3a2 40
45 3 [0 x2 x3 —x2 0 x5 O 0 0] glf 1slclt 9R2u1972a2 60
46 3 [0 x2 x3 O 0 0O —x3 xg 0] glf 1s1clt 5R2ullz2a? 16
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313  Appendix A Continued)

n° p Simplified form of fundamental matrix For example generated by n
47 3 [0 x2 x3 O 0 0 x7 0 0] glf 1s1cl1t 5R3ul7Z2a2 64
48 3 [0 x2 x3 x4 0 0 0 0 0] glf 1s1lclt 9R3ul7Z2a2 60
49 3 [x1 0 x3 O 0 0 —x3 O x9] glf 2s1clt5R2ulZla2 66
50 3 [x21 0 x3 O 0 O —x3 xg x1] glf 1slclt 5R2ul0Z2a2 8
51 3 [x1 x2 O —x2 x1 x¢ O 0 0] glf 1s1clt 9R2ul0Z2a2 24
523 [x1 x2 x3 —x2 x1 O 0 0 0] glf 1s1clt 9R2ullz2a? 24
53 3 [x1 x2 x3 O 0 0O —x3 O x1] glf 1slclt 5R2ul9Z2a2 8
54 4 [0 0 0 0 0 xg x7 Xg x9] glf 1slc2t 1R3ul3Z2a2 400
55 4 [0 0 O O x5 xg O xg x9] glf1slc2t 1R2ul7Z1a2 2772
56 4 [0 0 O O X5 X X7 —xg  Xxg] glf 2siclt 1R2ullz2a? 16
57 4 [0 0 0 0 X5 X X7 Xg x5] g2f 1slclt 1R2ullz2a? 32
58 4 |O 0 0 xa 0 x x7 xg 0] glf 3slclt 1R2ul0Z2a2 16
50 4 [0 0 0 xa x5 xg O —xg  Xxg] glf 2slclt 1R2ul9Z2a2 80
60 4 [0 O O x4 x5 xg O xg 0] g2f 1slclt 1R3ulZz2a?2 112
61 4 [0 0 0 xa X5 X X7 —xg Xs] glf 1siclt 1R2ul272a? 24
62 4 [0 0 x3 O 0 0 x7 X8 x9] glf 1s1c2t 5R3ul3Zz2a? 128
63 4 [0 0O x3 O 0O xg —x3 Xxg x9] g2f 1s1c2t 5R2ul3Z72a? 44
64 4 |0 0O x3 O 0 xg x7 —xg Xxg] glf 1s2c2t 3R1lu24Z3a2 8
65 4 [0 0 x3 O 0 xg x7 Xg 0] glf 1slclt 3R2ul3Z2a2 588
66 4 [0 x2 0 —x2 x5 x O xg 0] g2f 3s1clt 11Rlu24Z3a2 4
67 4 [0 x2 0 x4 0 xg O Xg 0] glf1siclt 11R2ulZ2a? 146
68 4 [0 x2 0 x4 x5 xg O —xg O] g2f 1s2c1t 11R1u24Z73a?2 8
69 4 [0 x2 0 xa x5 xg O 0 0] g2f 1slclt 9R3ulZ2a2 120
70 4 [0 x2 x3 —x2 0 xg —x3 —xg X9 glf 3s1c2t 9R1u24z3a2 9
71 4 [0 x2 x3 —x2 x5 xg O —xg Xxs5] glf1slclt 11R2ul7Z2a2 8
72 4 [0 x2 x3 —x2 x5 xg O 0 0] g2f 3s1clt 9R2ul7Z72a2 36
73 4 [0 x2 x3 O 0 0 x7 Xg 0] glf 1s2c1t 5R2ull1z72a? 32
74 4 [0 x2 x3 O x5 xg —x3 —xg O] g2f 1slclt 5R2ul7Z2a2 12
7 4 [0 x2 x3 0 X5 X —X3 —Xg )C5] glf 1slclt 3R2ul7Z2a2 8
76 4 [0 x2 x3 x4 0 0 xy 0 0] glf 1slclt 10R2ul7Z2a2 150
77 4 [0 x2 x3 x4 0 xg O 0 0] glf 1s2c1t 9R2ul972a2 24
78 4 [x1 0 x3 O 0 O —x3 xsg x9] glf 2s1clt 5R2ul0Z2a2 8
79 4 [x1 0 x3 O 0 0 x7 0 x9] glf 1slc2t 5R2ulZzla? 1056
80 4 [xl 0 X3 X4 0 X —X3 —Xg xl] glf 1slclt 3R2ulZz2a? 8
81 4 [xl x2 O —X2 X1 X X7 —X6 0] glf 1slclt 11R2ul3Z2a2 16
82 4 [x1 x2 0 x4 x5 O 0 0 0] glf 1s2clt 10R2ullZla?2 990
83 4 [x1 x2 x3 —x2 0 xg —x3 O x1] glf 1siclt 10R2ulZ2a2 8
84 4 [x1 x2 x3 —x2 x1 O —X3 X8 0] glf 1slclt 10R2ul13Z2a2 16
8 4 [x1 x2 x3 —x2 x1 x5 O 0 0] glf 1slclt 9R2ul2Z2a2 36
86 4 [x1 x2 x3 O 0 0O —x3 O x9] glf 2slclt 5R2ul9Z2a2 8
87 4 [x1 x2 x3 O 0 0 —X3 X8 x1] glf 1s1clt 5R2ul2Z72a2 12
8 5 [0 0 O O X5 X X7 xg x9] glf 1s1c2t 1R2ullz2a? 368
89 5 [0 0 0 xa 0 xg x7 Xg x9] glf 1s1c2t 1R2ul0Z2a2 240
3.4 90 5 [0 0 0 xa x5 xg O Xg x9] glf 3slclt 1R2ul9Z2a2 48
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315  Appendix A (Continued)

n° p Simplified form of fundamental matrix For example generated by n
99 5 [0 0 0 x4 X5 X6 X7 —xg  xg] glf 2slclt 1R2ul2Z2a2 24
92 5 [0 0 0 x4 X5 X6 X7 Xg —x5] glf 1slclt 1R3ul0Z2a2 32
93 5 [0 0 0 x4 X5 X6 X7 Xg 0] g2f 1s1clt 1R2ul0Z2a2 96
94 5 [0 0O O x4 X5 X X7 X8 x5] glf1slclt 1R3ullz2a2 64
9% 5 [0 0 x3 O 0 X X7 X8 x9] glf 1s1c2t 3R2ul3Z2a? 1176
% 5 [0 x2 0 x4 X5 x¢ O Xg 0] g2f 1slclt 11R2ulZ2a2 292
97 5 [0 x2 x3 —x2 O X6 —X3 X8 xg] glf 1slc2t 9R2ulZz2a? 26
98 5 [0 x2 x3 —x2 O X6 X7 —xg  Xg] glf 1s1c2t 9R2ul7Z2a2 14
9 5 [0 x2 x3 —x2 O X X7 Xg 0] glf 3slclt 12Rlu24Z3a2 3
100 5 [0 x2 x3 —x2 x5 X6 —Xx3 X8 0] g3f 1slclt 10R1u24Z3a2 10
100 5 [0 x2 x3 —x2 x5 x¢ O —xg  x9] glf 2slclt 11R2ul7Z2a2 8
102 5 [0 x» x3 —x2 x5 x¢ O Xg x5] g2f 1slclt 11R2ul7Z2a2 12
103 5 [0 x2 x3 O 0 0 x7 Xg x9] glf 1s1c2t 5R2ullz2a2 240
104 5 |[O x2 x3 O X5 X6 —X3 —Xxg X9 glf 2s1clt 3R”2ul7Z2a2 32
105 5 [0 x2 x3 O X5 X —X3 Xg 0] g2f 1s1clt 5R2ullz2a? 36
106 5 [0 x2 x3 O X5 X X7 —xg  X5] glf 1slclt 3R3ul7Z2a2 40
107 5 [0 x2 x3 x4 0 X6 X7 —xg 0] glf 1s2clt 12R1u24Z3a2 6
108 5 [0 x2 x3 x4 X5 x¢ O —xg X5] glf 1slclt 11R3ul7Z2a2 40
109 5 |[O X2 X3 X4 X5 x¢ O 0 0] g2f 1s1cl1lt 9R3ul7Z2a2 168
110 5 [x1 0 x3 O 0 0 x7 Xg x9] glf 1s1c2t 5R2ul0Z2a2 128
117 5 [x1 0 x3 x4 0 X6 —X3 —Xxg X9 glf 2s1clt 3R2ulZz2a? 8
112 5 [x1 0 x3 x4 0 X6 —X3 X8 x1] glf 1slclt 3R3ulZ2a?2 16
113 5 [x1 x2 0 —x2 x1 X6 X7 Xg 0] glf 1slclt 11R3ul3Z2a2 56
114 5 [x1 x2 0 x4 X5 x¢ O 0 0] glf 1s2c1t 9R2ul0Z2a2 120
115 5 [xl x2 x3 —x2 O xg —x3 O xg] glf 2slclt 10R2ulZz2a2 8
116 5 [x1 x2 x3 —x2 Xx1 0 x7 X8 0] glf 1slclt 10R3ul3Z2a2 56
117 5 [x1 x2 x3 O 0 0 —x3 xg x9] glf 2s1clt 5R2ul2Z2a2 12
118 5 [x1 x2 x3 O 0 0 x7 0 x9] glf 1s2c1t 5R2ul9Z2a2 32
119 5 [x1 x2 x3 O 0 0 x7 Xg —x1] glf 1s1clt5R3ullZ2a2 16
120 5 [x1 x2 x3 O 0 0 x7 Xxg x1] glf 1s1cl1lt 5R3ul0Z2a2 32
121 5 [x1 x2 x3 x2 X5 X6 —x3 —xg Xxi] g2f 1s1clt 5R2ulZzla? 70
122 5 [x1 x2 x3 x4 —x1 xg O 0 0] glf 1s1cl1t 9R3ul972a2 48
123 5 [x1 x2 x3 x4 0 x6 —x3 O x1] glf 1slclt 10R3ulZ2a2 16
124 5 [x1 x2 x3 x4 X1 x¢ O 0 0] glf 1s1cl1lt 9R3ul0Z2a2 96
125 5 [x1 x2 x3 x4 X5 0O O 0 0] glf 1s2c1t 9R2ullz2a2 24
126 6 [0 O O x4 X5 X6 X7 Xg x9] glf1slclt 1R3ul2Z2a2 5160
127 6 [0 x2 x3 —x2 O X X7 X8 x9] glf 1s1c2t 9R2ul1972a2 199
128 6 [0 x2 x3 —x2 x5 Xg —Xx3 X8 x9] g2f 3s1c2t 11R1u24Z73a?2 34
129 6 [0 x2 x3 —x2 x5 x¢ O Xg xg] glf 3slclt 11R2ul7Z2a2 44
130 6 [0 x2 x3 —x2 x5 X6 X7 Xg 0] g2f 3s1clt 10R1u24Z3a2 10
131 6 [0 x2 x3 O X5 Xg —X3 X8 x9] g3f1slclt 3R”2ul7Z2a2 8
132 6 [0 x2 x3 O X5 X X7 —Xxg  Xg] glf 2s1clt 3R3ul7Z2a2 40
133 6 [0 x2 x3 O X5 X6 X7 xg 0] g2f 1sl1clt 5R3ul7Z2a2 192
36 134 6 [0 x2 x3 O X5 X6 X7 Xg xs] glf 1slclt 3R2ullZ2a2 32
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317 Appendix A (Continued)

n° p Simplified form of fundamental matrix For example generated by n
135 6 [0 x2 x3 x4 0 xg x7 xg 0] glf 3s2cl1t 12R1u24Z73a2 3
136 6 [0 x2 x3 x4 x5 xg O —xg  xg] glf 2slclt 11R3ul7Z2a2 40
137 6 [0 X2 X3 X4 x5 xg O Xxs x5] glf1sliclt 11R2ul9Z2a?2 32
138 6 [0 x2 x3 x4 X5 X X7 —Xxg Xs] glf 1slclt 12R2ul7Z2a?2 84
139 6 [x1 O x3 x4 0 xg —x3 xg x9] glf 2s1clt 3R3ulZz2a?2 16
140 6 [xl 0 X3 X4 0 X6 X7 —X6 xg] glf 1s2c1t 3R2ulZ2a2 16
141 6 [x1 O x3 x4 0 xg x7 —xg  Xxg] glf 2s2clt 6R2u5Z3a2 16
142 6 [x1 x2 0 x4 X1 X X7 Xg 0] glf1siclt 11R2ul0Z2a2 48
143 6 [x1 x2 O X4 X5 X X7 —xg O] glf 1s2clt 11R2ul3Z2a2 16
144 6 [x1 x2 x3 —x2 0 xg x7 0 x9] glf 3slclt 10R2ulZ2a2 8
145 6 [xl X2 X3 —X2 X1 X6 X7 Xg 0] glf 1slclt 12R2ul3Z2a2 126
146 6 [x1 X2 X3 —X2 X5 X —X3 X xg] glf 1slclt 10R2ul0Z1a2 144
147 6 [xl X2 X3 —X2 X5 X X3 —X6 xg] glf 1slclt 11R2ulilZzla? 144
148 6 [x1 x2 x3 O 0 0 xy Xxs x9] glf1slclt 5R3ul2Z2a2 1536
149 6 [x1 x2 x3 X2 X5 X —X3 —Xg Xg] glf 1siclt 3R2ul9Z71a2 358
150 6 [x1 x2 x3 x2 X5 Xg —X3 X8 x1] g2f 1s1clt 5R2ul0Z2a2 12
151 6 [x1 x2 x3 x4 0 x¢ —x3 O x9] glf 2s1clt 10R3ulZz2a2 16
152 6 [xl X2 X3 X4 0 X6 —X3 X8 xl] glf 1slclt 12R2ulZz2a? 42
153 6 [x1 x2 x3 x4 0 X X7 0 x1] glf 1slclt 10R2ul19Z2a2 16
154 6 [x1 x2 x3 x4 x1 0 x7 xg 0] glf 1slclt 10R2ullZ2a?2 48
155 6 [x1 x2 x3 x4 X5 xg —Xx3 —Xxg Xi] g2f 1s1clt 3R2ulZz2a? 24
156 6 [x1 x2 x3 x4 x5 xg O 0 0] glf 1s1cl1t 9R3ul272a? 1428
157 7 [0 X2 X3 —X2 X5 X X7 X8 xg] glf 1slc2t 11R2ul7Z2a2 270
158 7 [0 x2 x3 O X5 X X7 xg x9] glf 1slc2t 3R2ullZ2a2 2480
159 7 [0 X2 X3 X4 0 X X7 Xg x9] glf 1s1c2t 10R2ul7Z2a2 912
160 7 [0 x2 x3 x4 x5 xg O xg x9] glf 2s1clt 11R2ul19Z2a2 536
161 7 [0 x2 x3 x4 X5 X X7 —xg  Xg] glf 2slclt 12R2ul7Z2a?2 84
162 7 [0 x2 x3 x4 X5 X X7 xg 0] g2f 1slclt 10R2ul7Z2a2 318
163 7 [x1 O x3 x4 0 xg x7 xg x9] glf 1slc2t 3R2ul0Z2a2 640
164 7 [x1 x2 O X4 X5 X X7 Xxg 0] glf 1s2clt 11R2ul0Z2a2 584
165 7 [x1 x2 x3 —x2 0 =x¢ x7 Xg x9] glf 1s1c2t 10R2ulZ2a2 48
166 7 [x1 x2 x3 —x2 X1 X X7 X8 x9] glf1s1c2t 10R2ull1z1a2 1104
167 7 [x1 x2 x3 —Xx2 X5 Xg —X3 X8 x9] glf 1slclt 10R2u10Z2a2 32
168 7 [xl X2 X3 —X2 X5 X X7 —X6 xg] glf 1slclt 11R2ullZz2a? 32
169 7 [xl X2 X3 X2 X5 X —X3 X8 xg] g2f 2slclt 5R2ul10Z2a2 12
170 7 [x1 x2 x3 x4 0 xg —x3 xg x9] glf 2slclt 12R2ulZ2a2 42
177 7 [x1 x2 x3 x4 0 xg x7 0 x9] glf 1s2c1t 10R2u19Z72a2 168
172 7 [x1 x2 x3 x4 x5 0  x7 Xg 0] glf 1s2cl1t 10R2ul1Z72a?2 120
173 7 [x1 X2 X3 X4 X5 X —X3 —Xg xg] glf 1slclt 3R2ul9Z72a2 104
174 7 [xl X2 X3 X4 X5 X —X3 X8 0] ng 1slclt 10R2ul3Z2a2 32
175 7 [x1 x2 x3 x4 X5 Xg —X3 X8 x1] g2f 1s1clt 10R2ulZ2a2 262
176 8 [0 x2 x3 x4 X5 Xg X7 Xg x9] glf1slc2t 11R2ul1972a2 5220
177 8 [x1 x2 x3 —Xx2 X5 X X7 Xg x9] glf 1s1c2t 10R2u10Z1a2 1232
318 178 8 [x1 x2 x3 x2 X5 X X7 X8 x9] glf 1slc2t 3R2ul9Z1a2 1564
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Appendix A (Continued)
n°® p Simplified form of fundamental matrix For example generated by n
179 8 [x1 X2 X3 X4 —X1 X X7 X8 xg] glf 1sl1lc2t 9R3ul9Z72a2 96
180 8 [x1 x2 x3 x4 O X6 X7 X8 x9] glf 1slc2t 10R2u19Z2a2 1104
181 8 [x1 x2 x3 x4 x1 Xg X7 X8 x9] glf1slc2t 10R2ullZ2a?2 384
182 8 [x1 x2 x3 x4 X5 Xg —Xx3 X8 x9] g2f 1s1clt 10R2ul10Z1a2 774
183 8 [x1 x2 x3 x4 x5 X X3 Xg x9] g2f1siclt 11R2ullZ1a?2 288
184 8 [x1 x2 x3 x4 X5 X X7 —xg  Xxg] glf 1s2clt 11R2ullZ1a?2 352
185 8 [x1 X2 X3 X4 X5 X6 X7 X6 xg] glf 1s2cl1t 10R2ul0Z1a2 144
186 8 [xl X2 X3 X4 X5 X6 X7 X8 —xl] ng 1slclt 5R3ullZz2a? 32
187 8 [x1 x2 x3 x4 x5 X6 X7 Xs 0] glf 1s2clt 12R2ul3Z2a2 1078
188 8 [x1 x2 x3 x4 x5 X X7 Xg x1] g2f 1s1clt 10R2u19Z2a2 128
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