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Minimal parameterization of fundamental matrices3

using motion and camera properties4
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7

Abstract8

This paper addresses the optimal recovery of the displacement and projection parameters from uncalibrated monocular
video sequences. We study the particular cases of camera and objects displacements and camera projection in order to extract
an optimized parameterization of the problem of parameters recovery for each cases.

9

10

11

This work follows previous studies on particular cases of displacement, scene geometry and camera analysis and focuses
on the particular forms of fundamental matrices. This paper introduces the idea of using not all particular cases as individual
cases but grouping these cases into a tractable number of sets, using properties on fundamental matrices.

12

13

14

Some experiments were performed in order to demonstrate that if several models are correct, the model with the least
parameters gives the best estimate, corresponding to the true case. © 2002 Published by Elsevier Science B.V.

15
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1. Introduction19

This paper deals with video sequences taken by an20

uncalibrated camera in an unknown environment. Our21

interest is to estimate as many parameters as possi-22

ble on the camera and objects motion and the camera23

projection using a strategy of hypothesis testing.24

Many efforts have been made in the Computer Vi-25

sion community for determining motion and camera26

parameters from video sequences. Relations between27

2D views exist [7] as the fundamental matrixF, but,28

in the general case, we cannot extract all the unknown29

parameters from thisF matrix. It is however possible30

in some particular situations.31

This work follows previous work on particular cases32

of displacement, scene geometry and camera analysis33

[10,11,18]. It focuses on the particular forms of fun-34

damental matrices.35

E-mail address: diane.lingrand@sophia.inria.fr (D. Lingrand).

Several authors have already been interested in par-36

ticular cases of projection [2,5,9,13,14,16] or displace-37

ment [3,4,8,17]. Some of them consider several cases38

and compare each result, in order to automatically de-39

termine which case was performed. 40

We call by general case the situation where we do41

not know anything about motion or camera projection.42

A particular case is when we know (or make the hy-43

pothesis) that a parameter is null, constant or known,44

or related to other parameters. A particular case has45

fewer parameters and/or simpler equations than the46

general one. 47

The motivations for these studies are threefold: 48

• to eliminate singularities of general equations by49

considering each case that may conduct to singular-50

ity, 51

• to estimate the parameters with more robustness52

using a simplified model (an adapted model gives53

more accuracy than the general one as shown in54

[18]), 55

1 0921-8890/02/$ – see front matter © 2002 Published by Elsevier Science B.V.
2 PII: S0921-8890(02)00202-6
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• to retrieve parameters that cannot be retrieved in56

the general case because we eliminate some un-57

knowns that are meaningless in the particular case58

studied.59

It is already known that the large number of par-60

ticular cases prevent examining all the cases linearly.61

In this paper, we introduce a new way to deal with62

this amount of cases in three steps. (1) We eliminate,63

with some simple rules, some redundant cases and64

some physically impossible cases. (2) We divide the65

set of cases into two sets, each corresponding to homo-66

graphic or fundamental relations. (3) We divide again67

the fundamental cases into sets corresponding to par-68

ticular forms. We will provide details for each of these69

steps in the following sections.70

2. Stereo framework71

In this section, we present the stereo framework and72

the notations we will use in this paper.73

2.1. Rigid displacements74

We consider a rigid or piecewise rigid scene. A75

3D-point M = [X Y Z1]T is moving onto M′ =76

[X′ Y ′ Z′1]T by a rotationR followed by a translation77

t = [t0 t1 t2]T:78

M′ = RM + t.79

A rotation matrixR depends only on three parameters80

r = [r0r1r2]T related to the rotation angleθ and axis81

u by82

r = 2 tan(1
2θ)u ⇔ θ = 2 arctan(1

2‖r‖).83

A rigid displacement is then parameterized by six pa-84

rameters.85

We note bỹr the antisymmetric matrix representing86

the cross productr ∧ ·:87

r̃x = r ∧ x ∀ x.88

The rotation matrixR = er∧· = er̃ can be developed89

as a rational Rodrigues formula [15]90

R = I +
[

r̃ + (1/2)r̃2

1 + rT · r/4

]
.

91

2.2. Camera projection 92

The most commonly camera model states that a93

3D-point M = [X Y Z1]T is projected with a per- 94

spective projection onto an image plane on a 2D-point95

m = [uv1]T. In the reference frame attached to the96

camera, the projection equation is 97

Zm =




αu γ u0 0

0 αv v0 0

0 0 1 0




︸ ︷︷ ︸
A

M, (1)

98

whereαu and αv represent the horizontal and verti-99

cal lengths,u0 andv0 correspond to the image of the100

optical center andγ is the skew factor. Those param-101

eters are the intrinsic parameters and are collected in102

the projection matrixA. 103

2.3. Considering two frames 104

Let I1 and I2 denote two images. In the general105

case, there exists a fundamental relation [7] between106

pointsm2 in I2 and pointsm1 in I1: 107

mT
2Fm1 = 0, 108

whereF is called the fundamental matrix and is related109

to the intrinsic and extrinsic parameters by 110

F = (Ã2t)A2RA−1
1 , 111

whereA1 andA2 are the projection matrix for the first112

and second frames, respectively, see (1). 113

This kind of relationship vanishes if the displace-114

ment is a pure rotation or if the scene is planar. The115

relation between points is homographic: 116

m2 = Hm1, 117

whereH is called the homographic matrix. Another118

study on homographic matrices can be found in [11].119

3. Deriving all particular cases 120

In order to study all particular cases of cameras,121

object displacements and camera projection, we will122

examine each particular value, considering each pa-123

rameter at a time. A particular model is obtained by124

combining several particular values. 125
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3.1. Particular cases of intrinsic parameters126

Authors generally make several hypotheses regard-127

ing intrinsic parameters. For example, the most gen-128

eral auto-calibration hypothesis states that the intrinsic129

parameters are constant. They can be known or un-130

known. However, usually, some parameters are con-131

stant while others are not.132

• The principal point of coordinates(u0, v0) can be133

fixed and/or known in some cases (e.g. in the image134

center), thus changing the reference frame, regard-135

ing the principal point position.136

• The γ parameter is usually assumed to be null or,137

at least, considered to be a constant value.138

• Enciso [6] has experimentally proven that for a large139

number of camerasαu/αv can be considered to be140

constant even if other intrinsic parameters change.141

We express this asf = αu = αv.142

Table 1 summarizes, for each intrinsic parameter,143
the particular cases of interest (constant values are in-144
dexed by zero). Subsequently, we will refer to each145
case by the label given in the first column. For exam-146
ple,g1 means that theγ parameter is null.147

3.2. Particular cases of displacement148

3.2.1. Discrete motion–continuous motion149

In an image sequence, if the displacement between150
two frames is small, we can approximate the rotation151
equations by their first order:152

R = er̃ = I + r̃ + o(r̃)153

Table 1
Table of particular cases of intrinsic parameters for two frames

g1 γ = 0 γ constant and null
g2 γ = γ0 γ constant
g3 γ = γ (τ) γ free
s1 αu = αv(τ ) αu/αv constant and known
s2 αu = αu(τ) αu free
f1 αv = 1 αv constant and known
f2 αv = f0 αv constant
f3 αv = αv(τ ) αv free
c1 u0 = v0 = 0 u0 and v0 constant and known
c2 u0 = u00 and

v0 = v00

u0 and v0 constant

c3 u0 = u0(τ ) and
v0 = v0(τ )

u0 and v0 free

which occurs frequently in images sequences except154

with high speed objects. 155

If the motion is larger, we can also consider the156

second order expansion 157

R = I + r̃ + 1
2 r̃2 + o(r̃2). 158

3.2.2. About extrinsic parameters 159

The rotation parameters are related to the rotation160

axis and the rotation angle byr = 2 tan(θ/2)u, where 161

u is a unitary vector giving the direction of the rotation162

axis. 163

Some components ofu can be known or null. Some164

value ofθ may yield singularities;θ = π/4 and the 165

rotation axis is parallel to the translation vector for a166

screw displacement. 167

Some robotic systems give precise values of the168

robot displacements (angle, axis, translation). Some169

values may be known (we denote byθ0 a constant and170

known value of a parameterθ ). Other informations 171

regarding parallelism or orthogonality to a known di-172

rection or to an other vector may also be available:173

• the rotation axis is orthogonal to the translation174

plane (e.g. planar motion): 175

r ⊥ t ⇔ r.t = 0, 176

• screw displacement: 177

r‖t ⇔ ∃κ/r = κt. 178

3.2.3. All constraints on motion 179

All these constraints, also called “atomic particu-180

lar cases”, have simple expressions that can be easily181

combined. In this purpose, we use the fact thatu is 182

a unitary vector and that, for monocular systems, the183

norm of translation cannot be recovered. To parame-184

terize these vectors with only two parameters, we di-185

vide each component by a non-zero component. Then,186

the dot product and scalar product induce linear rela-187

tions. For example,t2 = 1 andt ⊥ r are equivalent 188

to t0u0 + t1u1 + u2 = 0 ⇒ u2 = −t0u0 − t1u1. All 189

cases are collected in Table 2. 190

3.2.4. Generating all cases 191

All particular cases, each called a “molecular case”,192

are generated by combining the atomic cases and solv-193
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Table 2
Table of particular cases of displacements

u1 u0 = u2 = 0, u1 = 1 Rotation axis‖ y-axis R1 R = I Null rotation
u2 u0 = 0, u1 = 1 Rotation axis⊥ x-axis R2 R = I + r̃ First order
u3 u2 = 0, u1 = 1 Rotation axis⊥ z-axis R3 R = I + r̃ + 1

2 r̃2 Second order
u4 u1 = 1 General case R4 R = I + (r̃ + 1/2r̃2)/

(1 + rTr/4)

General case

u5 u0 = u2 = 0, u1 = −1 Rotation axis‖ y-axis
u6 u0 = 0, u1 = −1 Rotation axis⊥ x-axis a1 θ = π/2 Quarter turn
u7 u2 = 0, u1 = −1 Rotation axis⊥ z-axis a2 θ Free angle
u8 u1 = −1 General case
u9 u0 = u1 = 0, u2 = 1 Rotation axis‖ z-axis t1 t1 = t2 = 0, t0 = 1 Translation‖ x-axis
u10 u0 = 0, u2 = 1 Rotation axis⊥ x-axis t2 t1 = 0, t0 = 1 Translation⊥ y-axis
u11 u1 = 0, u2 = 1 Rotation axis⊥ y-axis t3 t2 = 0, t0 = 1 Translation⊥ z-axis
u12 u2 = 1 General case t4 t0 = 1 General translation
u13 u0 = u1 = 0, u2 = −1 Rotation axis‖ z-axis t5 t0 = t2 = 0, t1 = 1 Translation‖ y-axis
u14 u0 = 0, u2 = −1 Rotation axis⊥ x-axis t6 t0 = 0, t1 = 1 Translation⊥ x-axis
u15 u1 = 0, u2 = −1 Rotation axis⊥ y-axis t7 t2 = 0, t1 = 1 Translation⊥ z-axis
u16 u2 = −1 General case t8 t1 = 1 General translation
u17 u1 = u2 = 0, u0 = 1 Rotation axis‖ x-axis t9 t0 = t1 = 0, t2 = 1 Translation‖ z-axis
u18 u1 = 0, u0 = 1 Rotation axis⊥ y-axis t10 t0 = 0, t2 = 1 Translation⊥ x-axis
u19 u2 = 0, u0 = 1 Rotation axis⊥ z-axis t11 t1 = 0, t2 = 1 Translation⊥ y-axis
u20 u0 = 1 General case t12 t2 = 1 General translation
u21 u1 = u2 = 0, u0 = −1 Rotation axis‖ x-axis
u22 u1 = 0, u0 = −1 Rotation axis⊥ y-axis Z1 t · u = 0 Translation⊥ rotation axis
u23 u2 = 0, u0 = −1 Rotation axis⊥ z-axis Z2 t ∧ u = 0 Screw displacement
u24 u0 = −1 General case Z3 No relation

ing the constraints by a substitution.1 A molecular194

case is composed of one case in each family, a family195

being named by a letter (g, s, f or c for projection196

as seen in Table 1 andu, R, a, t or Z for motion as197

seen in Table 2). Thus, a molecular case is identified198

by the sequence:199200

g[1–3]f[1–3]s[1–3]c[1–3]R[1–4]a[1–2]201

u[1–24]t[1–12]Z[1–3],202

whereg[1–3] means “one atomic case amongg1, g2203

andg3”.204

3.2.5. How many cases do we have?205

If we look at the expression of the particular206

above-mentioned cases, we obtain 6× 106 particular207

cases. However, this is not the real number because208

of the incompatibility of some atomic cases and the209

redundancy of some constraints. Two different sets of210

1 This was done using Maple software for symbolic computa-
tions.

atomic constraints can generate the same simplified211

model. 212

It is easy to eliminate incompatible constraints. It213

is not possible to deal with redundant constraints, be-214

cause this requires to compare each set of combined215

constraints with all others in order to determine the216

similarity. The complexity of this process is O(n2). 217

Although we cannot remove redundant cases, we218
propose an adapted strategy to deal with the large num-219

ber of cases. The idea of this paper is: (i) to eliminate220

some of the redundant cases by using some consider-221

ations on the atomic cases and (ii) to limit the number222

of cases by studying the particular forms of the matri-223

ces. 224

3.2.6. Reducing the number of cases 225

Some redundancy are obvious 226

• In case (R1), one case of axis and angle is consid-227

ered. 228

• In cases (R2) and (R3), we do not consider (a1) 229

whenθ is equal toπ/2. 230

• The case (a1) is only considered ifr‖t, (Z2). 231
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Fig. 1. Images forx-axis translation, small pan rotation and auto-focus.
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This reduces the amount of cases of fundamental232

relations to only 216 756 cases.233

4. Forms of fundamental matrices234

We have significantly reduced the number of cases235

but this is not small enough to be computation-236

ally tractable. We now split fundamental relations237

in sets of matrices by forms. The matrix form is238

determined using simple rules in order to obtain a239

very simple parameterization. We consider (3× 3)240

matrices having nine parameters (coefficients). If a241

coefficient is equal to zero, then there is one less242

parameter. If a coefficient has the same expression243

or is opposite to another, there is one less param-244

eter again. These operations are very simple and245

can be rapidly computed in each case. Furthermore,246

we know that a fundamental matrix is defined up247

to a scale factor, and that its determinant is fixed248

to 0 (removing in most cases one parameter). This249

process reduces the 216 756 cases to only 188 sub-250

groups.251

The table in Appendix A shows all the simpli-252

fied forms obtained, and for each form, an exam-253

ple of case that has generated it. This table will254

be useful for people who want to implement the255

algorithm.256

5. Experiments257

We have recorded several video sequences for258

which the camera displacement induces a funda-259

mental relation between image pointsm1 and m2.260

From each particular matrix form, we have estimated261

the fundamental matrix parameters with the robust262

least median square method in order to minimize263

the distance between a 2D pointm1 and its epipolar264

line Fm2. To deal with cases with different degrees265

of freedom, we use an appropriate Akaike criterion266

[1].267

For each recorded video sequence, we have veri-268

fied that the model with the minimal residual error ef-269

fectively corresponds to the displacement performed270

by the robotic system. We present one experiment in271

Fig. 1 for which the camera has performed a small272

pan rotation followed by a translation parallel to the273

x-axis. The auto-focus was also enabled. The case with274

the minimal residual error corresponds to the funda-275

mental matrix form number59 in the table given in 276

Appendix A 277

F =




0 0 0

x0 x1 x2

0 −x2 x3


 .

278

This particular form was obtained from cases where279

the rotation was approximated to its first and second280

order, the translation is parallel to thex-axis, the ro- 281

tation axis is orthogonal to the optical axis and the282

intrinsic parameters are free. 283

6. Conclusion 284

In an earlier study on homographic matrices [11],285

we have shown that it is possible to reduce the amount286

of particular cases in order to make the case selection287

computationally feasible. In this paper, we have shown288

that a similar result can be obtained with fundamental289

matrices using redundancies. We have experimentally290

confirmed that our system is able to automatically se-291

lect the case corresponding to the performed displace-292

ment. 293

The applications are twofold: (i) an incremental294

reconstruction of the scene and (ii) the segmen-295

tation of objects moving with different displace-296

ments or with different geometric properties in video297

sequences. 298

This work has also been extended to mo-299

tion estimation of human head inside MRI scan-300

ner, improving the registration of fMRI volumes301

[12]. 302

Appendix A. Table of particular forms of 303

fundamental matrices 304

We denote byno the form number, byp the 305

number of parameters (we have not taken into ac-306

count the fact that the fundamental matrix is de-307

fined up to a scale factor and that detF = 0 but 308

we do so in our implementation) and byn the 309

number of molecular cases that have generated a310

form. 311
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no p Simplified form of fundamental matrix For example generated by n

1 1 [0 0 0 0 0 x6 0 −x6 0] g1f1s1c1t1R1u24Z3a2 24
2 1 [0 0 x3 0 0 0 −x3 0 0] g1f1s1c1t5R1u24Z3a2 4
3 1 [0 x2 0 −x2 0 0 0 0 0] g1f1s1c1t9R1u24Z3a2 5
4 2 [0 0 0 0 0 x6 0 −x6 x9] g1f1s1c3t1R1u24Z3a2 12
5 2 [0 0 0 0 0 x6 0 x8 0] g1f3s1c1t1R1u24Z3a2 6
6 2 [0 0 0 0 0 x6 x7 −x6 0] g1f1s1c1t1R2u13Z2a2 16
7 2 [0 0 0 0 x5 x6 0 −x6 x5] g1f1s1c1t1R2u17Z1a2 396
8 2 [0 0 0 x4 0 x6 0 −x6 0] g1f1s1c1t1R2u1Z2a2 16
9 2 [0 0 x3 0 0 0 −x3 0 x9] g1f1s1c3t5R1u24Z3a2 2

10 2 [0 0 x3 0 0 0 −x3 x8 0] g1f1s1c1t5R2u13Z2a2 8
11 2 [0 0 x3 0 0 0 x7 0 0] g1f1s2c1t5R1u24Z3a2 4
12 2 [0 0 x3 0 0 x6 −x3 −x6 0] g1f1s1c1t3R1u24Z3a2 17
13 2 [0 x2 0 −x2 0 x6 0 −x6 0] g1f1s1c1t11R1u24Z3a2 8
14 2 [0 x2 0 −x2 0 x6 0 0 0] g1f1s1c1t9R2u1Z2a2 24
15 2 [0 x2 0 −x2 x5 0 0 0 0] g2f3s1c1t9R1u24Z3a2 4
16 2 [0 x2 0 x4 0 0 0 0 0] g1f1s2c1t9R1u24Z3a2 3
17 2 [0 x2 x3 −x2 0 0 −x3 0 0] g1f1s1c1t10R1u24Z3a2 4
18 2 [0 x2 x3 −x2 0 0 0 0 0] g1f1s1c1t9R2u17Z2a2 12
19 2 [0 x2 x3 0 0 0 −x3 0 0] g1f1s1c1t5R2u17Z2a2 8
20 2 [x1 0 x3 0 0 0 −x3 0 x1] g1f1s1c1t5R2u1Z1a2 66
21 2 [x1 x2 0 −x2 x1 0 0 0 0] g1f1s1c1t10R2u11Z1a2 198
22 3 [0 0 0 0 0 x6 0 x8 x9] g1f3s1c2t1R1u24Z3a2 12
23 3 [0 0 0 0 0 x6 x7 −x6 x9] g1f1s1c2t1R2u13Z2a2 32
24 3 [0 0 0 0 0 x6 x7 x8 0] g1f1s1c1t1R3u13Z2a2 200
25 3 [0 0 0 0 x5 x6 0 −x6 x9] g1f2s1c1t1R2u17Z1a2 396
26 3 [0 0 0 0 x5 x6 x7 −x6 x5] g1f1s1c1t1R2u11Z2a2 16
27 3 [0 0 0 x4 0 x6 0 x8 0] g1f1s1c1t1R3u1Z2a2 56
28 3 [0 0 0 x4 0 x6 x7 −x6 0] g1f1s1c1t1R2u10Z2a2 32
29 3 [0 0 0 x4 x5 x6 0 −x6 0] g2f1s1c1t1R2u1Z2a2 32
30 3 [0 0 0 x4 x5 x6 0 −x6 x5] g1f1s1c1t1R2u19Z2a2 16
31 3 [0 0 x3 0 0 0 −x3 x8 x9] g1f1s1c2t5R2u13Z2a2 16
32 3 [0 0 x3 0 0 0 x7 0 x9] g1f1s2c2t5R1u24Z3a2 8
33 3 [0 0 x3 0 0 0 x7 x8 0] g1f1s1c1t5R3u13Z2a2 64
34 3 [0 0 x3 0 0 x6 −x3 −x6 x9] g1f1s1c3t3R1u24Z3a2 13
35 3 [0 0 x3 0 0 x6 −x3 x8 0] g2f1s1c1t5R2u13Z2a2 22
36 3 [0 0 x3 0 0 x6 x7 −x6 0] g1f1s2c1t3R1u24Z3a2 4
37 3 [0 x2 0 −x2 0 x6 0 x8 0] g1f3s1c1t11R1u24Z3a2 2
38 3 [0 x2 0 −x2 x5 x6 0 −x6 0] g3f1s1c1t11R1u24Z3a2 4
39 3 [0 x2 0 −x2 x5 x6 0 0 0] g2f3s1c1t9R2u1Z2a2 12
40 3 [0 x2 0 x4 0 x6 0 −x6 0] g1f1s2c1t11R1u24Z3a2 4
41 3 [0 x2 0 x4 0 x6 0 0 0] g1f1s1c1t9R3u1Z2a2 60
42 3 [0 x2 0 x4 x5 0 0 0 0] g2f1s2c1t9R1u24Z3a2 6
43 3 [0 x2 x3 −x2 0 0 x7 0 0] g1f3s1c1t10R1u24Z3a2 2
44 3 [0 x2 x3 −x2 0 x6 −x3 −x6 0] g1f1s1c1t12R1u24Z3a2 40
45 3 [0 x2 x3 −x2 0 x6 0 0 0] g1f1s1c1t9R2u19Z2a2 60
46 3 [0 x2 x3 0 0 0 −x3 x8 0] g1f1s1c1t5R2u11Z2a2 16312
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Appendix A (Continued )313

no p Simplified form of fundamental matrix For example generated by n

47 3 [0 x2 x3 0 0 0 x7 0 0] g1f1s1c1t5R3u17Z2a2 64
48 3 [0 x2 x3 x4 0 0 0 0 0] g1f1s1c1t9R3u17Z2a2 60
49 3 [x1 0 x3 0 0 0 −x3 0 x9] g1f2s1c1t5R2u1Z1a2 66
50 3 [x1 0 x3 0 0 0 −x3 x8 x1] g1f1s1c1t5R2u10Z2a2 8
51 3 [x1 x2 0 −x2 x1 x6 0 0 0] g1f1s1c1t9R2u10Z2a2 24
52 3 [x1 x2 x3 −x2 x1 0 0 0 0] g1f1s1c1t9R2u11Z2a2 24
53 3 [x1 x2 x3 0 0 0 −x3 0 x1] g1f1s1c1t5R2u19Z2a2 8
54 4 [0 0 0 0 0 x6 x7 x8 x9] g1f1s1c2t1R3u13Z2a2 400
55 4 [0 0 0 0 x5 x6 0 x8 x9] g1f1s1c2t1R2u17Z1a2 2772
56 4 [0 0 0 0 x5 x6 x7 −x6 x9] g1f2s1c1t1R2u11Z2a2 16
57 4 [0 0 0 0 x5 x6 x7 x8 x5] g2f1s1c1t1R2u11Z2a2 32
58 4 [0 0 0 x4 0 x6 x7 x8 0] g1f3s1c1t1R2u10Z2a2 16
59 4 [0 0 0 x4 x5 x6 0 −x6 x9] g1f2s1c1t1R2u19Z2a2 80
60 4 [0 0 0 x4 x5 x6 0 x8 0] g2f1s1c1t1R3u1Z2a2 112
61 4 [0 0 0 x4 x5 x6 x7 −x6 x5] g1f1s1c1t1R2u12Z2a2 24
62 4 [0 0 x3 0 0 0 x7 x8 x9] g1f1s1c2t5R3u13Z2a2 128
63 4 [0 0 x3 0 0 x6 −x3 x8 x9] g2f1s1c2t5R2u13Z2a2 44
64 4 [0 0 x3 0 0 x6 x7 −x6 x9] g1f1s2c2t3R1u24Z3a2 8
65 4 [0 0 x3 0 0 x6 x7 x8 0] g1f1s1c1t3R2u13Z2a2 588
66 4 [0 x2 0 −x2 x5 x6 0 x8 0] g2f3s1c1t11R1u24Z3a2 4
67 4 [0 x2 0 x4 0 x6 0 x8 0] g1f1s1c1t11R2u1Z2a2 146
68 4 [0 x2 0 x4 x5 x6 0 −x6 0] g2f1s2c1t11R1u24Z3a2 8
69 4 [0 x2 0 x4 x5 x6 0 0 0] g2f1s1c1t9R3u1Z2a2 120
70 4 [0 x2 x3 −x2 0 x6 −x3 −x6 x9] g1f3s1c2t9R1u24Z3a2 9
71 4 [0 x2 x3 −x2 x5 x6 0 −x6 x5] g1f1s1c1t11R2u17Z2a2 8
72 4 [0 x2 x3 −x2 x5 x6 0 0 0] g2f3s1c1t9R2u17Z2a2 36
73 4 [0 x2 x3 0 0 0 x7 x8 0] g1f1s2c1t5R2u11Z2a2 32
74 4 [0 x2 x3 0 x5 x6 −x3 −x6 0] g2f1s1c1t5R2u17Z2a2 12
75 4 [0 x2 x3 0 x5 x6 −x3 −x6 x5] g1f1s1c1t3R2u17Z2a2 8
76 4 [0 x2 x3 x4 0 0 x7 0 0] g1f1s1c1t10R2u17Z2a2 150
77 4 [0 x2 x3 x4 0 x6 0 0 0] g1f1s2c1t9R2u19Z2a2 24
78 4 [x1 0 x3 0 0 0 −x3 x8 x9] g1f2s1c1t5R2u10Z2a2 8
79 4 [x1 0 x3 0 0 0 x7 0 x9] g1f1s1c2t5R2u1Z1a2 1056
80 4 [x1 0 x3 x4 0 x6 −x3 −x6 x1] g1f1s1c1t3R2u1Z2a2 8
81 4 [x1 x2 0 −x2 x1 x6 x7 −x6 0] g1f1s1c1t11R2u13Z2a2 16
82 4 [x1 x2 0 x4 x5 0 0 0 0] g1f1s2c1t10R2u11Z1a2 990
83 4 [x1 x2 x3 −x2 0 x6 −x3 0 x1] g1f1s1c1t10R2u1Z2a2 8
84 4 [x1 x2 x3 −x2 x1 0 −x3 x8 0] g1f1s1c1t10R2u13Z2a2 16
85 4 [x1 x2 x3 −x2 x1 x6 0 0 0] g1f1s1c1t9R2u12Z2a2 36
86 4 [x1 x2 x3 0 0 0 −x3 0 x9] g1f2s1c1t5R2u19Z2a2 8
87 4 [x1 x2 x3 0 0 0 −x3 x8 x1] g1f1s1c1t5R2u12Z2a2 12
88 5 [0 0 0 0 x5 x6 x7 x8 x9] g1f1s1c2t1R2u11Z2a2 368
89 5 [0 0 0 x4 0 x6 x7 x8 x9] g1f1s1c2t1R2u10Z2a2 240
90 5 [0 0 0 x4 x5 x6 0 x8 x9] g1f3s1c1t1R2u19Z2a2 48314
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Appendix A (Continued)315

no p Simplified form of fundamental matrix For example generated by n

91 5 [0 0 0 x4 x5 x6 x7 −x6 x9] g1f2s1c1t1R2u12Z2a2 24
92 5 [0 0 0 x4 x5 x6 x7 x8 −x5] g1f1s1c1t1R3u10Z2a2 32
93 5 [0 0 0 x4 x5 x6 x7 x8 0] g2f1s1c1t1R2u10Z2a2 96
94 5 [0 0 0 x4 x5 x6 x7 x8 x5] g1f1s1c1t1R3u11Z2a2 64
95 5 [0 0 x3 0 0 x6 x7 x8 x9] g1f1s1c2t3R2u13Z2a2 1176
96 5 [0 x2 0 x4 x5 x6 0 x8 0] g2f1s1c1t11R2u1Z2a2 292
97 5 [0 x2 x3 −x2 0 x6 −x3 x8 x9] g1f1s1c2t9R2u1Z2a2 26
98 5 [0 x2 x3 −x2 0 x6 x7 −x6 x9] g1f1s1c2t9R2u17Z2a2 14
99 5 [0 x2 x3 −x2 0 x6 x7 x8 0] g1f3s1c1t12R1u24Z3a2 3

100 5 [0 x2 x3 −x2 x5 x6 −x3 x8 0] g3f1s1c1t10R1u24Z3a2 10
101 5 [0 x2 x3 −x2 x5 x6 0 −x6 x9] g1f2s1c1t11R2u17Z2a2 8
102 5 [0 x2 x3 −x2 x5 x6 0 x8 x5] g2f1s1c1t11R2u17Z2a2 12
103 5 [0 x2 x3 0 0 0 x7 x8 x9] g1f1s1c2t5R2u11Z2a2 240
104 5 [0 x2 x3 0 x5 x6 −x3 −x6 x9] g1f2s1c1t3R2u17Z2a2 32
105 5 [0 x2 x3 0 x5 x6 −x3 x8 0] g2f1s1c1t5R2u11Z2a2 36
106 5 [0 x2 x3 0 x5 x6 x7 −x6 x5] g1f1s1c1t3R3u17Z2a2 40
107 5 [0 x2 x3 x4 0 x6 x7 −x6 0] g1f1s2c1t12R1u24Z3a2 6
108 5 [0 x2 x3 x4 x5 x6 0 −x6 x5] g1f1s1c1t11R3u17Z2a2 40
109 5 [0 x2 x3 x4 x5 x6 0 0 0] g2f1s1c1t9R3u17Z2a2 168
110 5 [x1 0 x3 0 0 0 x7 x8 x9] g1f1s1c2t5R2u10Z2a2 128
111 5 [x1 0 x3 x4 0 x6 −x3 −x6 x9] g1f2s1c1t3R2u1Z2a2 8
112 5 [x1 0 x3 x4 0 x6 −x3 x8 x1] g1f1s1c1t3R3u1Z2a2 16
113 5 [x1 x2 0 −x2 x1 x6 x7 x8 0] g1f1s1c1t11R3u13Z2a2 56
114 5 [x1 x2 0 x4 x5 x6 0 0 0] g1f1s2c1t9R2u10Z2a2 120
115 5 [x1 x2 x3 −x2 0 x6 −x3 0 x9] g1f2s1c1t10R2u1Z2a2 8
116 5 [x1 x2 x3 −x2 x1 0 x7 x8 0] g1f1s1c1t10R3u13Z2a2 56
117 5 [x1 x2 x3 0 0 0 −x3 x8 x9] g1f2s1c1t5R2u12Z2a2 12
118 5 [x1 x2 x3 0 0 0 x7 0 x9] g1f1s2c1t5R2u19Z2a2 32
119 5 [x1 x2 x3 0 0 0 x7 x8 −x1] g1f1s1c1t5R3u11Z2a2 16
120 5 [x1 x2 x3 0 0 0 x7 x8 x1] g1f1s1c1t5R3u10Z2a2 32
121 5 [x1 x2 x3 x2 x5 x6 −x3 −x6 x1] g2f1s1c1t5R2u1Z1a2 70
122 5 [x1 x2 x3 x4 −x1 x6 0 0 0] g1f1s1c1t9R3u19Z2a2 48
123 5 [x1 x2 x3 x4 0 x6 −x3 0 x1] g1f1s1c1t10R3u1Z2a2 16
124 5 [x1 x2 x3 x4 x1 x6 0 0 0] g1f1s1c1t9R3u10Z2a2 96
125 5 [x1 x2 x3 x4 x5 0 0 0 0] g1f1s2c1t9R2u11Z2a2 24
126 6 [0 0 0 x4 x5 x6 x7 x8 x9] g1f1s1c1t1R3u12Z2a2 5160
127 6 [0 x2 x3 −x2 0 x6 x7 x8 x9] g1f1s1c2t9R2u19Z2a2 199
128 6 [0 x2 x3 −x2 x5 x6 −x3 x8 x9] g2f3s1c2t11R1u24Z3a2 34
129 6 [0 x2 x3 −x2 x5 x6 0 x8 x9] g1f3s1c1t11R2u17Z2a2 44
130 6 [0 x2 x3 −x2 x5 x6 x7 x8 0] g2f3s1c1t10R1u24Z3a2 10
131 6 [0 x2 x3 0 x5 x6 −x3 x8 x9] g3f1s1c1t3R2u17Z2a2 8
132 6 [0 x2 x3 0 x5 x6 x7 −x6 x9] g1f2s1c1t3R3u17Z2a2 40
133 6 [0 x2 x3 0 x5 x6 x7 x8 0] g2f1s1c1t5R3u17Z2a2 192
134 6 [0 x2 x3 0 x5 x6 x7 x8 x5] g1f1s1c1t3R2u11Z2a2 32316
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Appendix A (Continued)317

no p Simplified form of fundamental matrix For example generated by n

135 6 [0 x2 x3 x4 0 x6 x7 x8 0] g1f3s2c1t12R1u24Z3a2 3
136 6 [0 x2 x3 x4 x5 x6 0 −x6 x9] g1f2s1c1t11R3u17Z2a2 40
137 6 [0 x2 x3 x4 x5 x6 0 x8 x5] g1f1s1c1t11R2u19Z2a2 32
138 6 [0 x2 x3 x4 x5 x6 x7 −x6 x5] g1f1s1c1t12R2u17Z2a2 84
139 6 [x1 0 x3 x4 0 x6 −x3 x8 x9] g1f2s1c1t3R3u1Z2a2 16
140 6 [x1 0 x3 x4 0 x6 x7 −x6 x9] g1f1s2c1t3R2u1Z2a2 16
141 6 [x1 0 x3 x4 0 x6 x7 −x6 x9] g1f2s2c1t6R2u5Z3a2 16
142 6 [x1 x2 0 x4 x1 x6 x7 x8 0] g1f1s1c1t11R2u10Z2a2 48
143 6 [x1 x2 0 x4 x5 x6 x7 −x6 0] g1f1s2c1t11R2u13Z2a2 16
144 6 [x1 x2 x3 −x2 0 x6 x7 0 x9] g1f3s1c1t10R2u1Z2a2 8
145 6 [x1 x2 x3 −x2 x1 x6 x7 x8 0] g1f1s1c1t12R2u13Z2a2 126
146 6 [x1 x2 x3 −x2 x5 x6 −x3 x6 x9] g1f1s1c1t10R2u10Z1a2 144
147 6 [x1 x2 x3 −x2 x5 x6 x3 −x6 x9] g1f1s1c1t11R2u11Z1a2 144
148 6 [x1 x2 x3 0 0 0 x7 x8 x9] g1f1s1c1t5R3u12Z2a2 1536
149 6 [x1 x2 x3 x2 x5 x6 −x3 −x6 x9] g1f1s1c1t3R2u19Z1a2 358
150 6 [x1 x2 x3 x2 x5 x6 −x3 x8 x1] g2f1s1c1t5R2u10Z2a2 12
151 6 [x1 x2 x3 x4 0 x6 −x3 0 x9] g1f2s1c1t10R3u1Z2a2 16
152 6 [x1 x2 x3 x4 0 x6 −x3 x8 x1] g1f1s1c1t12R2u1Z2a2 42
153 6 [x1 x2 x3 x4 0 x6 x7 0 x1] g1f1s1c1t10R2u19Z2a2 16
154 6 [x1 x2 x3 x4 x1 0 x7 x8 0] g1f1s1c1t10R2u11Z2a2 48
155 6 [x1 x2 x3 x4 x5 x6 −x3 −x6 x1] g2f1s1c1t3R2u1Z2a2 24
156 6 [x1 x2 x3 x4 x5 x6 0 0 0] g1f1s1c1t9R3u12Z2a2 1428
157 7 [0 x2 x3 −x2 x5 x6 x7 x8 x9] g1f1s1c2t11R2u17Z2a2 270
158 7 [0 x2 x3 0 x5 x6 x7 x8 x9] g1f1s1c2t3R2u11Z2a2 2480
159 7 [0 x2 x3 x4 0 x6 x7 x8 x9] g1f1s1c2t10R2u17Z2a2 912
160 7 [0 x2 x3 x4 x5 x6 0 x8 x9] g1f2s1c1t11R2u19Z2a2 536
161 7 [0 x2 x3 x4 x5 x6 x7 −x6 x9] g1f2s1c1t12R2u17Z2a2 84
162 7 [0 x2 x3 x4 x5 x6 x7 x8 0] g2f1s1c1t10R2u17Z2a2 318
163 7 [x1 0 x3 x4 0 x6 x7 x8 x9] g1f1s1c2t3R2u10Z2a2 640
164 7 [x1 x2 0 x4 x5 x6 x7 x8 0] g1f1s2c1t11R2u10Z2a2 584
165 7 [x1 x2 x3 −x2 0 x6 x7 x8 x9] g1f1s1c2t10R2u1Z2a2 48
166 7 [x1 x2 x3 −x2 x1 x6 x7 x8 x9] g1f1s1c2t10R2u11Z1a2 1104
167 7 [x1 x2 x3 −x2 x5 x6 −x3 x8 x9] g1f1s1c1t10R2u10Z2a2 32
168 7 [x1 x2 x3 −x2 x5 x6 x7 −x6 x9] g1f1s1c1t11R2u11Z2a2 32
169 7 [x1 x2 x3 x2 x5 x6 −x3 x8 x9] g2f2s1c1t5R2u10Z2a2 12
170 7 [x1 x2 x3 x4 0 x6 −x3 x8 x9] g1f2s1c1t12R2u1Z2a2 42
171 7 [x1 x2 x3 x4 0 x6 x7 0 x9] g1f1s2c1t10R2u19Z2a2 168
172 7 [x1 x2 x3 x4 x5 0 x7 x8 0] g1f1s2c1t10R2u11Z2a2 120
173 7 [x1 x2 x3 x4 x5 x6 −x3 −x6 x9] g1f1s1c1t3R2u19Z2a2 104
174 7 [x1 x2 x3 x4 x5 x6 −x3 x8 0] g2f1s1c1t10R2u13Z2a2 32
175 7 [x1 x2 x3 x4 x5 x6 −x3 x8 x1] g2f1s1c1t10R2u1Z2a2 262
176 8 [0 x2 x3 x4 x5 x6 x7 x8 x9] g1f1s1c2t11R2u19Z2a2 5220
177 8 [x1 x2 x3 −x2 x5 x6 x7 x8 x9] g1f1s1c2t10R2u10Z1a2 1232
178 8 [x1 x2 x3 x2 x5 x6 x7 x8 x9] g1f1s1c2t3R2u19Z1a2 1564318
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Appendix A (Continued)319

no p Simplified form of fundamental matrix For example generated by n

179 8 [x1 x2 x3 x4 −x1 x6 x7 x8 x9] g1f1s1c2t9R3u19Z2a2 96
180 8 [x1 x2 x3 x4 0 x6 x7 x8 x9] g1f1s1c2t10R2u19Z2a2 1104
181 8 [x1 x2 x3 x4 x1 x6 x7 x8 x9] g1f1s1c2t10R2u11Z2a2 384
182 8 [x1 x2 x3 x4 x5 x6 −x3 x8 x9] g2f1s1c1t10R2u10Z1a2 774
183 8 [x1 x2 x3 x4 x5 x6 x3 x8 x9] g2f1s1c1t11R2u11Z1a2 288
184 8 [x1 x2 x3 x4 x5 x6 x7 −x6 x9] g1f1s2c1t11R2u11Z1a2 352
185 8 [x1 x2 x3 x4 x5 x6 x7 x6 x9] g1f1s2c1t10R2u10Z1a2 144
186 8 [x1 x2 x3 x4 x5 x6 x7 x8 −x1] g2f1s1c1t5R3u11Z2a2 32
187 8 [x1 x2 x3 x4 x5 x6 x7 x8 0] g1f1s2c1t12R2u13Z2a2 1078
188 8 [x1 x2 x3 x4 x5 x6 x7 x8 x1] g2f1s1c1t10R2u19Z2a2 128320
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