An Exhaustive Study of Particular Cases Leading to Robust and Accurate Motion Estimation

Diane Lingrand ${ }^{1}$
INRIA-RobotVis Project, B.P. 93, 06902 Sophia Antipolis Cédex, France

Received July 31, 2000; accepted April 8, 2002

For decades, there has been an intensive research effort in the Computer Vision community to deal with video sequences. In this paper, we present a new method for recovering a maximum of information on displacement and projection parameters in monocular video sequences without calibration. This work follows previous studies on particular cases of displacement, scene geometry, and camera analysis and focuses on the particular forms of homographic matrices. It is already known that the number of particular cases involved in a complete study precludes an exhaustive test. To lower the algorithmic complexity, some authors propose to decompose all possible cases in a hierarchical tree data structure but these works are still in development (T. Viéville and D. Lingrand, Internat. J. Comput. Vision 31, 1999, 5-29). In this paper, we propose a new way to deal with the huge number of particular cases: (i) we use simple rules in order to eliminate some redundant cases and some physically impossible cases, and (ii) we divide the cases into subsets corresponding to particular forms determined by simple rules leading to a computationally efficient discrimination method. Finally, some experiments were performed on image sequences acquired either using a robotic system or manually in order to demonstrate that when several models are valid, the model with the fewer parameters gives the best estimation, regarding the free parameters of the problem. The experiments presented in this paper show that even if the selected case is an approximation of reality, the method is still robust. © 2002 Elsevier Science (USA)

Key Words: particular cases; homographies; perspective; paraperspective and orthographic projections.

1. INTRODUCTION

For decades, there has been an intensive research effort in the computer vision community to deal with video sequences. Researchers have been interested in recovering 3D object

[^0]structures, and projection or displacement parameters from such sequences. In the general case, the acquisition device must be considered uncalibrated (for example, in the case of an auto-focus camera). In this paper, we consider uncalibrated monocular video sequences for which we intend to recover as much information as possible on displacement and projection parameters.

The motivations for such studies are threefold: (i) to eliminate singularities of general equations, (ii) to estimate the parameters with more robustness, and (iii) to retrieve parameters that cannot be retrieved in the general case.

The theory states that there exists relations between 2D projected points [9] but the system cannot be solved in the general case since there are more parameters than equations. Furthermore, these equations are degenerate or present singularities in some particular cases. However, we can solve the equations if we know or assume values or relations of some parameters.

In a previous study [26], we have shown that we increase the numerical precision of retrieved parameters by using the set of constraints that gives the smallest residual error given by a criterion (described in the cited paper).

This paper extends previous works [13, 14, 26] on particular displacement cases, scene geometry, and camera analysis. It focuses on the particular forms of fundamental and homographic matrices.

Several authors have already been interested in particular cases of projection [2, 6, 11, $19,23$] or displacement [$3,5,10,24,25]$. Some of them consider several particular cases, compare these different parameterizations, and identify which model is consistent with the data.

We will build an exhaustive list of particular cases of projection and displacement, setting some of the parameters to constant and/or known values and using known relations between parameters. This reduces the number of unknowns in the equations and also avoids some singular cases.

It is already known that the huge number of particular cases prevents exhaustive studies [13]. Some attempts in order to reduce the algorithmic complexity are based on tree structures but they are still in development [26]. In this paper, we introduce a new method in order to deal with all cases: (i) we use simple rules in order to eliminate some redundant cases and some physically impossible cases, and (ii) we divide the cases into subsets corresponding to particular forms determined by simple rules leading to a computationally efficient discrimination method. We will provide details for each of these steps in the sections hereafter.

2. STEREO FRAMEWORK

In this section, we describe the equations and the formalism of displacement and projection that allows us to achieve a minimal parameterization of the relations between 2D points into two frames.

In a video sequence, we will consider frames pairwise: two consecutives frames or the first one and the last one. This work could be easily extended to trifocal tensors. Adding some other constraints, the framework could also be extended to sequences, assuming for examples that the translation is constant between consecutives frames, or varies with constant acceleration (see Section 6).

FIG. 1. Stereo framework.

2.1. Rigid Displacements

We will consider a rigid scene or piecewise rigid scene. A 3D-point $\mathbf{M}_{\mathbf{1}}=\left[\begin{array}{lll}X_{1} & Y_{1} & Z_{1}\end{array}\right]^{\mathrm{T}}$ is moving onto the point $\mathbf{M}_{\mathbf{2}}=\left[\begin{array}{lll}X_{2} & Y_{2} & Z_{2}\end{array}\right]^{\mathrm{T}}$ by a rotation \mathbf{R} and a translation $\mathbf{t}=\left[\begin{array}{lll}t_{0} & t_{1} & t_{2}\end{array}\right]^{\mathrm{T}}$: $\mathbf{M}_{\mathbf{2}}=\mathbf{R} \mathbf{M}_{\mathbf{1}}+\mathbf{t}$ as shown in Fig. 1.

A rotation matrix \mathbf{R} depends only on three parameters $\mathbf{r}=\left[\begin{array}{lll}r_{0} & r_{1} & r_{2}\end{array}\right]^{\mathrm{T}}$ related to the rotation angle θ and to the rotation axis direction (represented by the unary vector \mathbf{u}) by $\mathbf{r}=2 \tan \left(\frac{\theta}{2}\right) \mathbf{u} \Leftrightarrow \theta=2 \arctan \left(\frac{\|\mathbf{r}\|}{2}\right)$.

Using the notation of the cross-product

$$
\tilde{\mathbf{r}}=\mathbf{r} \wedge=\left(\begin{array}{ccc}
0 & -r_{2} & r_{1} \\
r_{2} & 0 & -r_{0} \\
-r_{1} & r_{0} & 0
\end{array}\right)
$$

so that

$$
\forall \mathbf{x}, \quad \mathbf{r} \wedge \mathbf{x}=\tilde{\mathbf{r}} \mathbf{x}
$$

$\tilde{\mathbf{r}}$ is the antisymmetric matrix representing the cross-product by the \mathbf{r} operator.
The rotation matrix $\mathbf{R}=e^{\tilde{\mathbf{r}}}$ can be developed as a rational Rodrigues formula [20]:

$$
\begin{equation*}
\mathbf{R}=\mathbf{I}+\left[\frac{\tilde{\mathbf{r}}+\frac{1}{2} \tilde{\mathbf{r}}^{2}}{1+\frac{\mathbf{r}^{\mathrm{T}} \cdot \mathbf{r}}{4}}\right] . \tag{1}
\end{equation*}
$$

2.2. Camera Projection

The most commonly accepted hypothesis states that a 3 D point \mathbf{M} is projected with a perspective projection onto an image plane on a 2 D point $\mathbf{m}=\left[\begin{array}{lll}u & v & 1\end{array}\right]^{\mathrm{T}}$.
2.2.1. The perspective model. Choosing a reference frame attached to the camera, the projection equation is

$$
Z\left(\begin{array}{c}
u \tag{2}\\
v \\
1
\end{array}\right)=\left(\begin{array}{cccc}
\alpha_{u} & \gamma & u_{0} & 0 \\
0 & \alpha_{v} & v_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right),
$$

where α_{u} and α_{v} represent the horizontal and vertical lengths, u_{0} and v_{0} correspond to the image of the optical center, and γ is the skew factor.

This model can be refined, by taking optical distortions into account [4, 7, 22]. In this paper, we will consider that the needed corrections have been done as a preprocessing step.

Two approximation models of the projection equation (2) have been proposed in the literature: the paraperspective and the orthoperspective projection.
2.2.2. The paraperspective model. The perspective projection model is approximated to its first order with respect to the 3D coordinates [2, 11, 18]. This is equivalent to approximating the perspective projection in two steps (see Fig. 2): (i) a projection parallel to the gaze direction onto an auxiliary plane \mathbf{P}_{a}, which is parallel to the image plane and passes through the scene center $\mathbf{M}_{0}=\left[\begin{array}{lll}X_{0} & Y_{0} & Z_{0}\end{array}\right]^{\mathrm{T}}$ followed by (ii) a perspective projection onto the image plane. This so-called paraperspective model yields linear equations

$$
\left(\begin{array}{c}
u \tag{3}\\
v \\
1
\end{array}\right)=\left(\begin{array}{cccc}
\alpha_{u} & \gamma & \beta_{u} & u_{0} \\
0 & \alpha_{v} & \beta_{v} & v_{0} \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

where

$$
\left\{\begin{array}{l}
\beta_{u}=\alpha_{u} \frac{X_{0}}{Y_{0}}+\gamma \frac{Y_{0}}{Z_{0}} \\
\beta_{v}=\alpha_{v} \frac{Y_{0}}{Z_{0}} .
\end{array}\right.
$$

However, its parameters depend on the gaze direction of the scene (β_{u} and β_{v} are related to the other intrinsic parameters and to the gaze direction). This equation corresponds to the

FIG. 2. The paraperspective projection.

image plane
FIG. 3. The orthographic projection.
most general case of paraperspective projection, although more simple expressions have been proposed [19].
2.2.3. The orthographic model. The zero-order development with respect to the 3D depth consists of a rougher approximation. It is also equivalent to another two-step approximation: (i) an orthogonal projection onto the auxiliary plane \mathbf{P}_{a} followed by (ii) a perspective projection onto the image plane (see Fig. 3). This approximation, called the orthographic model (4), is well adapted to foveal attention and is characterized by linear equations without any new parameters. It is an approximation of the paraperspective model when the observed objects are in the fovea, i.e., close to the optical axis:

$$
\left(\begin{array}{c}
u \tag{4}\\
v \\
1
\end{array}\right)=\left(\begin{array}{cccc}
\alpha_{u} & \gamma & 0 & u_{0} \\
0 & \alpha_{v} & 0 & v_{0} \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Those three projection models can be integrated in the expression

$$
\kappa \mathbf{m}=\underbrace{\left(\begin{array}{cccc}
\alpha_{u} & \gamma & \lambda \beta_{u}+\mu u_{0} & (1-\mu) u_{0} \tag{5}\\
0 & \alpha_{v} & \lambda \beta_{u}+\mu v_{0} & (1-\mu) u_{0} \\
0 & 0 & \mu & (1-\mu)
\end{array}\right)}_{\mathbf{A}} \mathbf{M}
$$

with

Projection case	λ	μ
Perspective projection	1	1
Orthographic projection	0	0
Paraperspective projection	1	0

2.3. General Equations between Two Frames

Let I_{1} and I_{2} denote two images. In the general case, there exists a fundamental relation between an image point $\mathbf{m}_{\mathbf{2}}$ in I_{2} and its corresponding image point $\mathbf{m}_{\mathbf{1}}$ in I_{1}

$$
\left\{\begin{array}{l}
\kappa_{1} \mathbf{m}_{1}=\mathbf{A}_{1} \mathbf{M}_{\mathbf{1}} \\
\kappa_{2} \mathbf{m}_{\mathbf{2}}=\mathbf{A}_{\mathbf{2}} \mathbf{M}_{\mathbf{2}} \\
\mathbf{M}_{\mathbf{2}}=\mathbf{R} \mathbf{M}_{\mathbf{1}}+\mathbf{t}
\end{array} \Rightarrow\left|\begin{array}{cc}
\mathbf{m}_{\mathbf{1}} & \left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\mathbf{A}_{\mathbf{1}} \\
\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) & \mathbf{m}_{2} \\
\mathbf{A}_{\mathbf{2}}[\mathbf{R} \| \mathbf{t}]
\end{array}\right|=0,\right.
$$

which is a bilinear form in $\mathbf{m}_{\mathbf{1}}$ and $\mathbf{m}_{\mathbf{2}}$ (see [12] for details). This equation can be rewritten in a more common way

$$
\mathbf{m}_{2}^{\mathrm{T}} \mathbf{F} \mathbf{m}_{\mathbf{1}}=\mathbf{0},
$$

where \mathbf{F} is called the fundamental matrix [9].
However, this relation is not defined in some singular cases. For example, it is well known that, in the perspective projection case, if the displacement is a pure rotation, or if the scene is planar, the relation between points is homographic

$$
\mathbf{m}_{2}=\mathbf{H m}_{1},
$$

where \mathbf{H} is called the homographic matrix. In the case of a pure rotation, $\mathbf{H}=\mathbf{H}_{\infty}=\mathbf{A}_{\mathbf{2}} \mathbf{R} \mathbf{A}_{1}^{-1}$. In the case of a plane with normal \mathbf{n} and distance to the origin $d, \mathbf{H}=\mathbf{A}_{\mathbf{2}}\left(\mathbf{R}+\frac{\mathbf{m}^{\mathbf{T}}}{\mathbf{d}}\right) \mathbf{A}_{1}^{-\mathbf{1}}$ which goes to \mathbf{H}_{∞} when d goes to $\infty . \mathbf{H}_{\infty}$ is the homography of the plane at infinity.

Our first new contribution in this paper will be explained in the following two Sections 2.4 and 2.5. It consists of determining in which case of displacement or structure, the relation between corresponding 2D points is homographic when the projection is paraperspective (2.4) or orthographic (2.5).

2.4. Homographic Relation in the Paraperspective Case

In the paraperspective case, we write the projection and displacement equations by extracting the third column from matrix \mathbf{A}

$$
\left(\begin{array}{c}
u \\
v \\
1
\end{array}\right)=\underbrace{\left(\begin{array}{ccc}
\alpha_{u} & \gamma & u_{0} \\
0 & \alpha_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right)}_{(\mathbf{A})_{-3}} \underbrace{\left(\begin{array}{c}
X \\
Y \\
1
\end{array}\right)}_{\underline{\mathbf{M}}}+Z \underbrace{\left(\begin{array}{c}
\beta_{u} \\
\beta_{v} \\
1
\end{array}\right)}_{(\mathbf{A})_{3}}=(\mathbf{A})_{-3} \underline{\mathbf{M}}+Z(\mathbf{A})_{3}
$$

where (A) $)_{-3}$ is an invertible square matrix since

$$
\operatorname{det}\left((\mathbf{A})_{-3}\right)=\alpha_{u} \alpha_{v} \neq 0
$$

Thus,

$$
\left\{\begin{array}{l}
\mathbf{m}_{\mathbf{1}}=\left(\mathbf{A}_{\mathbf{1}}\right)_{-3} \mathbf{M}_{\mathbf{1}}+Z_{1}\left(\mathbf{A}_{\mathbf{1}}\right)_{3} \tag{6}\\
\Rightarrow \underline{\mathbf{M}}_{\mathbf{1}}=\left(\left(\mathbf{A}_{\mathbf{1}}\right)_{-3}\right)^{-1} \mathbf{m}_{\mathbf{1}}-Z_{1}\left(\left(\mathbf{A}_{1}\right)_{-3}\right)^{-1}\left(\mathbf{A}_{\mathbf{1}}\right)_{3} \\
\mathbf{m}_{\mathbf{2}}=\mathbf{A}_{\mathbf{2}} \mathbf{M}_{\mathbf{2}} \\
\mathbf{M}_{\mathbf{2}}=[\mathbf{R} \mid \mathbf{t}] \mathbf{M}_{\mathbf{1}} .
\end{array}\right.
$$

Let us denote

$$
\mathbf{K}=\left(\mathbf{A}_{\mathbf{2}}[\mathbf{R} \mid \mathbf{t}]\right)_{3}-\left(\mathbf{A}_{\mathbf{2}}[\mathbf{R} \mid \mathbf{t}]\right)_{-3}\left(\left(\mathbf{A}_{\mathbf{1}}\right)_{-3}\right)^{-1}\left(\mathbf{A}_{\mathbf{1}}\right)_{3}
$$

and

$$
\mathbf{H}_{\infty_{\text {para }}}=\left(\mathbf{A}_{\mathbf{2}}[\mathbf{R} \mid \mathbf{t}]\right)_{-3}\left(\left(\mathbf{A}_{\mathbf{1}}\right)_{-3}\right)^{-1} .
$$

Equation (6) leads to $\mathbf{m}_{\mathbf{2}}=\mathbf{H}_{\infty_{\text {para }}} \mathbf{m}_{1}+Z_{1} \mathbf{K}$.
This relation is homographic if and only if $\mathbf{K}=0$ or if there exists a (3×3) matrix $\mathbf{H}_{\mathbf{z}}$ such that $Z_{1} \mathbf{K}=\mathbf{H}_{\mathbf{z}} \mathbf{m}_{\mathbf{1}}$. The first condition induces a displacement constraint. It leads to the simple equation $\mathbf{r}=\theta \mathbf{M}_{\mathbf{0}}$, meaning that the rotation axis is parallel to the gaze direction. In that case, the homography is $\mathbf{H}_{\infty_{\text {para }}}$ as defined above. The second condition induces a geometric relation on the 3D point: Z_{1} is an affine function of X_{1} and Y_{1}, meaning that the 3D points must belong to a plane \mathbf{P}, which cannot contain the optical axis and the gaze direction (see [12] for a demonstration). In that case, the homographic matrix is
$\mathbf{H}_{\text {para }}=\mathbf{H}_{\infty_{\text {para }}}+\left[\left(\mathbf{A}_{2}[\mathbf{R} \mid \mathbf{t}]\right)_{3}-\left[\left(\mathbf{A}_{\mathbf{2}}[\mathbf{R} \mid \mathbf{t}]\right)_{-3}\left(\left(\mathbf{A}_{\mathbf{1}}\right)_{-3}\right)^{-1}\left(\mathbf{A}_{\mathbf{1}}\right)_{3}\right] \mathbf{n}\left[\left(\mathbf{A}_{\mathbf{1}}\right)_{-3}+\left(\mathbf{A}_{\mathbf{1}}\right)_{3} \mathbf{n}\right]^{-1}\right.$.

2.5. Homographic Relation in the Orthographic Case

The orthographic case is a particular case of paraperspective projection for which the gaze direction is the optical axis. Following a demonstration similar to the paraperspective case, we also obtain two constraints; the displacement constraint states that the rotation axis must be parallel to the optical axis, giving a homographic matrix

$$
\mathbf{H}_{\infty_{\text {ortho }}}=\left(\mathbf{A}_{2}[\mathbf{R} \mid \mathbf{t}]\right)_{-3}\left(\left(\mathbf{A}_{\mathbf{1}}\right)_{-3}\right)^{-1}
$$

and the geometric constraint states that the 3D-points must belong to the same plane which does not contain the optical axis. The homographic matrix is

$$
\mathbf{H}_{\text {ortho }}=\mathbf{H}_{\infty_{\text {ortho }}}\left(\mathbf{A}_{2}[\mathbf{R} \mid \mathbf{t}]\right)_{3} \mathbf{n}^{\mathrm{T}}\left(\left(\mathbf{A}_{\mathbf{1}}\right)_{-3}\right)^{-1} .
$$

All constraints on displacement and scene geometry for homographic relations are summarized in the following table:
Projection Displacement constraint Geometric constraint

Perspective	$\mathbf{t}=0$	Plane	
Paraperspective	$\mathbf{r} \\| \mathbf{C M}_{\mathbf{0}}$	Plane $Z=f(X, Y)$	
Orthographic	$\mathbf{r} \\| \mathbf{0}$	Plane $Z=f(X, Y)$	

3. ALL PARTICULAR CASES DESCRIPTION

In order to do an exhaustive study of particular cases combinations, we first study every elementary particular case. We begin with particular camera parameter values, and then particular displacements of the camera.

3.1. Particular Cases of Projection and Intrinsic Parameters

In the previous Section 2.2, we studied particular cases of projection and their simplifications. Let $\mathbf{p 1}, \mathbf{p 2}$, and $\mathbf{p 3}$ denote the different kinds of projection:

p1	$\lambda=0$	and	$\mu=0$	Orthographic
p2	$\lambda=1$	and	$\mu=0$	Paraperspective projection
p3	$\lambda=1$	and	$\mu=1$	Perspective projection

If no auto-focus and no zoom is used, for instance, it is possible to parameterize the model with fewer parameters than in the general case. This is one reason to study particular cases of intrinsic parameters.

Authors generally make several hypotheses regarding intrinsic parameters. For example, usually, in case of auto-calibration, common hypothesis states that the intrinsic parameters are constant. They may or may not be known. However, usually, some parameters are constant and some others are not.

We now detail all prior knowledge on parameters leading to particular cases.
3.1.1. The principal point. The principal point of coordinates $\left(u_{0}, v_{0}\right)$ is not fixed at the image plane in the general case but can be fixed in some cases and its position can be known (for example, at the image center). We then change the reference frame, regarding the principal point position.
3.1.2. The γ parameter. This parameter is usually assumed to be zero or, at least, considered a constant value. Furthermore, the numerical precision of the model obtained by this parameter is not crucial for the paraperspective or the orthographic projection cases.
3.1.3. The α_{u} and α_{v} parameters. Enciso and Víeville [8] have experimentally proven that, for a large number of cameras, the $\frac{\alpha_{u}}{\alpha_{v}}$ ratio can be considered as a constant value even if other intrinsic parameters change. The constancy of this ratio can be expressed by the equality $f=\alpha_{u}=\alpha_{v}$, and the transformation

$$
\left(\begin{array}{cccc}
\alpha_{u} & \gamma & \lambda \beta_{u}+\mu u_{0} & (1-\mu) u_{0} \\
0 & \alpha_{v} & \lambda \beta_{v}+\mu v_{0} & (1-\mu) v_{0} \\
0 & 0 & \mu & (1-\mu)
\end{array}\right)=\left(\begin{array}{cccc}
f & \gamma & \lambda \beta_{u}+\mu u_{0} & (1-\mu) u_{0} \\
0 & f & \lambda \beta_{v}+\mu v_{0} & (1-\mu) v_{0} \\
0 & 0 & \mu & (1-\mu)
\end{array}\right) \cdot\left(\begin{array}{cccc}
\frac{\alpha_{u}}{\alpha_{v}} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

3.1.4. The β_{u} and β_{v} parameters. These parameters are zero except in the paraperspective projection case.

In the paraperspective case, β_{u} and β_{v} are related to the other intrinsic parameters by

$$
\left\{\begin{array}{l}
\beta_{u}=\alpha_{u} \frac{X_{0}}{Z_{0}}+\gamma \frac{Y_{0}}{Z_{0}} \\
\beta_{v}=\alpha_{v} \frac{Y_{0}}{Z_{0}} .
\end{array}\right.
$$

TABLE 1
Particular Cases of Intrinsic Parameters for 2 Frames

Label	Case	Description
$\mathbf{g 1}$	$\gamma=0$	γ constant and zero
$\mathbf{g 2}$	$\gamma=\gamma_{0}$	γ constant
$\mathbf{g 3}$	$\gamma=\gamma(\tau)$	γ free
f1	$\alpha_{v}=1$	α_{v} constant and known
$\mathbf{f 2}$	$\alpha_{v}=f_{0}$	α_{v} constant
$\mathbf{f 3}$	$\alpha_{v}=\alpha_{v}(\tau)$	α_{v} free
$\mathbf{s 1}$	$\alpha_{u}=\alpha_{v}(\tau)$	$\frac{\alpha_{u}}{\alpha_{v}}$ constant and known
$\mathbf{s 2}$	$\alpha_{u}=\alpha_{u}(\tau)$	α_{u} free
$\mathbf{b 1}$	$\beta_{v}=0$	β_{v} constant and zero
$\mathbf{b 2}$	$\beta_{v}=\beta_{0}$	β_{v} constant
$\mathbf{b 3}$	$\beta_{v}=\beta_{v}(\tau)$	β_{v} free
B1	$\beta_{u}=\beta_{v}(\tau)$	β_{u} and β_{v} equal
$\mathbf{B 2}$	$\beta_{u}=\beta_{v}(\tau)$	$\frac{\beta_{u}}{\beta_{v}}$ constant
	$\beta_{u}=\beta_{u}(\tau)$	$\frac{\beta_{u}}{\beta_{v}}$ free
B3	$u_{0}=v_{0}=0$	u_{0} and v_{0} constant and known
c1	$u_{0}=u_{0_{0}}$ and $v_{0}=v_{0_{0}}$	u_{0} and v_{0} constant
c2	$u_{0}=u_{0}(\tau)$ and $v_{0}=v_{0}(\tau)$	u_{0} and v_{0} free
c3		

Their ratio is

$$
\frac{\beta_{u}}{\beta_{v}}=\frac{\alpha_{u} X_{0}+\gamma Y_{0}}{\alpha_{v} Y_{0}}
$$

Thus, if we neglect γ with respect to $\alpha_{u} \frac{X_{0}}{Y_{0}}$, we obtain

$$
\frac{\beta_{u}}{\beta_{v}}=\frac{\alpha_{u}}{\alpha_{v}} \frac{X_{0}}{Y_{0}}
$$

which is also a constant ratio, known if the $\frac{X_{0}}{Y_{0}}$ value is known.
Table 1 summarizes, for each intrinsic parameter, the particular cases (constant values are indexed by 0).

Subsequently, we refer to each case by the label given in the first column.

3.2. Particular Cases of Displacement

A rigid displacement is parameterized by the rotation \mathbf{R} and the translation \mathbf{t} parameters.
3.2.1. Discrete motion-continuous motion. In an image sequence, if the displacement between two frames is small, we can approximate the rotation equations by their first-order expansion, using the notations $\mathbf{r}=\theta \mathbf{u}$:

$$
\mathbf{R}=e^{\tilde{\mathbf{r}}}=\mathbf{I}+\tilde{\mathbf{r}}+o(\tilde{\mathbf{r}})=\left(\begin{array}{ccc}
1 & -r_{2} & r_{1} \\
r_{2} & 1 & -r_{0} \\
-r & r_{0} & 1
\end{array}\right)
$$

Otherwise, if the motion is larger, we can also consider the second-order expansion

$$
\mathbf{R}=\mathbf{I}+\tilde{\mathbf{r}}+\frac{\tilde{\mathbf{r}}^{2}}{2}+o\left(\tilde{\mathbf{r}}^{2}\right)=\left(\begin{array}{ccc}
1-\left(r_{1}^{2}+r_{2}^{2}\right) & r_{1} r_{0}-r_{2} & r_{2} r_{0}+r_{1} \\
r_{1} r_{0}+r_{2} & 1-\left(r_{0}^{2}+r_{2}^{2}\right) & r_{2} r_{1}-r_{0} \\
r_{2} r_{0}-r_{1} & r_{2} r_{1}+r_{0} & 1-\left(r_{0}^{2}+r_{1}^{2}\right)
\end{array}\right) .
$$

3.2.2. About extrinsic parameters. The rotation parameters are related to the rotation axis and the rotation angle by $\mathbf{r}=2 \tan \frac{\theta}{2} \mathbf{u}$, in the general case and $\mathbf{r}=\theta \mathbf{u}$, in the first or second order of expansion. The vector \mathbf{u} is an unary vector giving the direction of the rotation axis.

Some components of \mathbf{u} can be known or assumed zero. Some values of θ may yield singularities; for example, $\theta=0$ corresponds to a null rotation. Another particular case is the screw displacement for which $\theta=\frac{\pi}{4}$ and the rotation axis is parallel to the translation vector. The case $\theta=\pi$ is not considered in this paper but must be considered if the camera has an angle of view greater than 180°.

Some robotic systems give precise values of the robot displacements (angle, axis, translation). Some values may be known (we denote by θ_{0} a constant and known value of a parameter θ). Other information on parallelism or orthogonality to a known direction may be available.

For the translation vector, some components can also be known or assumed zero.
3.2.3. Relations between axis and direction. These relations in which we are interested are orthogonality and parallelism:

- The rotation axis is orthogonal to the translation plane (e.g., planar motion): $\mathbf{r} \perp \mathbf{t} \Leftrightarrow$ $\mathbf{r} \cdot \mathbf{t}=0 \Leftrightarrow r_{0} t_{0}+r_{1} t_{1}+r_{2} t_{2}=0$,
- Screw displacement:

$$
\mathbf{r} \| \mathbf{t} \Leftrightarrow \exists \kappa / \mathbf{r}=\kappa \mathbf{t} \Leftrightarrow \exists \kappa /\left\{\begin{array}{l}
r_{0}=\kappa t_{0} \\
r_{1}=\kappa t_{1} \\
r_{2}=\kappa t_{2}
\end{array}\right.
$$

- The rotation axis or the translation direction is parallel or orthogonal to a known direction denoted by $\mathbf{g}\left(\mathbf{r}\right.$ or $\left._\mathbf{t}\right)$.
3.2.4. All constraints on motion. All these constraints, also called "atomic particular cases," have simple expressions that can easily be combined. For this purpose, we use the fact that \mathbf{u} is an unary vector and that, for monocular systems, the norm of translation cannot be recovered. To parameterize these vectors with only two parameters, we divide each component by a nonzero component. Then, the dot product and scalar product induce linear relations. For example, if $t_{2}=1, \mathbf{t} \perp \mathbf{r}$ is equivalent to $t_{0} u_{0}+t_{1} u_{1}+u_{2}=0 \Rightarrow u_{2}=$ $-t_{0} u_{0}-t_{1} u_{1}$.

All cases are collected in Table 2.

3.3. Generation of All Cases

In this section, we combine all previous constraints in order to generate all possible cases. We then generate the simplified equations of our vision problem, i.e., the \mathbf{F} or \mathbf{H} matrix coefficients, depending of the cases.

TABLE 2
Particular Cases of Displacements

R1	$\mathbf{R}=\mathbf{I}$	Null rotation	W1	$\mathbf{r} . _\mathbf{r}=0$	Axis \perp known axis			
R2	$\mathbf{R}=\mathbf{I}+\tilde{\mathbf{r}}$	First order	W2	$\mathbf{r} \wedge$ _r $=0$	Axis \|	known axis		
R3	$\mathbf{R}=\mathbf{I}+\tilde{\mathbf{r}}+\frac{1}{2} \tilde{\mathbf{r}}^{2}$	Second order	W3		General case			
R4	$\mathbf{R}=\mathbf{I}+\frac{\tilde{\mathbf{r}}+\frac{1}{2} \tilde{\mathbf{r}}^{2}}{1+\frac{\mathbf{r}^{T} \mathbf{r}}{4}}$	General case	u1 u2 u3	$\begin{aligned} & u_{0}=u_{2}=0, u_{1}=1 \\ & u_{0}=0, u_{1}=1 \\ & u_{2}=0, u_{1}=1 \end{aligned}$	Axis \|	y axis Axis $\perp x$ axis Axis $\perp z$ axis		
r1	$\mathbf{r}=2 \tan \left(\frac{\theta}{2}\right) \frac{\mathbf{u}}{\\|\mathbf{u}\\|}$	General case	u4 u5	$\begin{aligned} & u_{1}=1 \\ & u_{0}=u_{2}=0, u_{1}=-1 \end{aligned}$	General case Axis \|	y axis		
a1	$\theta=\frac{\pi}{2}$	Quarter turn	u6	$u_{0}=0, u_{1}=-1$	Axis $\perp x$ axis			
a2	θ	Free angle	u7	$u_{2}=0, u_{1}=-1$	Axis $\perp z$ axis			
T1	$\mathbf{t}=0$	Null translation	u8	$u_{1}=-1$	General case			
T2	$\mathbf{t}=\left[t_{0} t_{1} t_{2}\right]^{T}$	Translation	u9	$u_{0}=u_{1}=0, u_{2}=1$	Axis \\| z axis			
t1	$t_{1}=t_{2}=0, t_{0}=1$	Trans. \|	x axis	u10	$u_{0}=0, u_{2}=1$	Axis $\perp x$ axis		
t2	$t_{1}=t_{2}=0, t_{0}=1$ $t_{1}=0, t_{0}=1$	Trans. $\perp y$ axis	u11 $\mathbf{u 1 2}$	$u_{1}=0, u_{2}=1$ $u_{2}=1$	Axis \perp y axis			
t3	$t_{2}=0, t_{0}=1$	Trans. $\perp z$ axis	u12	$u_{2}=1$ $u_{0}=u_{1}=0, u_{2}=-1$	General case Axis $\\| z$ axis			
t4	$t_{0}=1$	General trans.	u14	$u_{0}=u_{1}=0, u_{2}=-1$ $u_{0}=0, u_{2}=-1$	Axis $\perp x$ axis			
15 $t 6$	$t_{0}=t_{2}=0, t_{1}=1$ $t_{0}=0, t_{1}=1$	Trans. \|	y axis	u15	$u_{1}=0, u_{2}=-1$	Axis \perp y axis		
t7	$t_{0}=0, t_{1}=1$	Trans. $\perp z$ axis	u16	$u_{2}=-1$	General case			
t8	$t_{1}=$	General trans.	u17	$u_{1}=u_{2}=0, u_{0}=1$	Axis \\| x axis			
t9	$t_{0}=t_{1}=0, t_{2}=1$	Trans. \\|	z axis	u18	$u_{1}=0, u_{0}=1$	Axis $\perp y$ axis		
$t 10$	$t_{0}=0, t_{2}=1$	Trans. $\perp x$ axis	u19	$u_{2}=0, u_{0}=1$	Axis $\perp z$ axis			
t11	$t_{1}=0, t_{2}=1$	Trans. \perp y axis	u20	$u_{0}=1$	General case			
t12	$t_{2}=1$	General trans.	u21	$u_{1}=u_{2}=0, u_{0}=-1$	Axis \\| x axis			
		General trans.	u22	$u_{1}=0, u_{0}=-1$	Axis $\perp y$ axis			
D1	$\mathbf{t} \cdot \mathbf{t}=0$	Trans. \perp known axis	u23	$u_{2}=0, u_{0}=-1$	Axis $\perp z$ axis			
D2	$\mathbf{t} \wedge$ _t $=0$	Trans. \|	known axis	u24	$u_{0}=-1$	General case		
D3		No relation						
Z1	$\mathbf{t} \cdot \mathbf{u}=0$	Trans. \perp rotat. axis						
Z2	$\mathbf{t} \wedge \mathbf{u}=0$	Screw displacement						
Z3		No relation						

We call each case described above atomic. By combining atomic cases, we produce molecular cases, i.e., all possible particular cases. For each molecular case, constraints are solved by combining the atomic cases and solving the constraints by substitution ${ }^{2}$ with some rules: one projection mode, one rotation mode, etc. This corresponds to choosing one case in each family, a family being named by a label. For example, in the R family, we must choose one of $R 1, R 2, R 3$, and $R 4$. We denote by $R[1-3]$ the set $\{R 1$, $R 2, R 3\}$ and by $R[1 ; 3]$ the set $\{R 1, R 3\}$. Thus, a molecular case is identified by the sequence

$$
\begin{aligned}
& \mathrm{p}[1-3] \mathrm{g}[1-3] \mathrm{f}[1-3] \mathrm{s}[1-3] \mathrm{b}[1-3] \mathrm{B}[1-3] \mathrm{c}[1-3] \mathrm{R}[1-4] \mathrm{r} 1 \mathrm{a}[1-2] \\
& \\
& \quad \mathrm{u}[1-24] \mathrm{W}[1-3] \mathrm{T}[1-2] \mathrm{t}[1-12] \mathrm{D}[1-3] \mathrm{Z}[1-3] .
\end{aligned}
$$

3.3.1. How many cases do we have? If we look at the expression of a particular case mentioned above, we obtain 3×10^{8} particular cases. However, this is not the real number

[^1]of particular cases due to:

- Incompatibility of some atomic cases, for instance (the symbol \otimes means "AND"),

$$
(\mathbf{r} \| \mathbf{t}) \otimes(\mathbf{r} \perp \mathbf{t}) \otimes(\mathbf{r} \neq 0) \otimes(\mathbf{t} \neq 0) .
$$

- Redundancy of some constraints; two different set of atomic constraints can generate the same simplified model. For instance,

$$
\left(r_{0}=0\right) \otimes(\mathbf{t} \perp \mathbf{r}) \text { is the same case as }\left(t_{1}=0\right) \otimes\left(t_{2}=0\right) \otimes(\mathbf{t} \perp \mathbf{r})
$$

It is easy to eliminate incompatible constraints. To deal with redundant constraints requires comparing each set of combined constraint with the others in order to determine the similarity. The complexity of this process is $O\left(n^{2}\right)$, which makes this elimination intractable for large values of n.

Furthermore, redundant cases are not the main reason for the large amount of particular cases. Thus suppressing redundancies is not sufficient for reducing the huge number of cases to a computationally tractable amount.

We now propose an adapted strategy in order to deal with all cases. Previous works have tried to build a hierarchy of cases but they encounter problems in order to manage it. The idea of this paper is (i) to eliminate some of the redundant cases by some considerations on the atomic cases and (ii) to limit the number of cases by the study of the particular forms of the matrices. For this second step, we will separate cases into two subgroups: cases inducing homographies and cases inducing fundamental relations.

3.4. Reducing the Number of Cases

Some redundancies are obvious:

- in the case of a null rotation, (R1), we do not consider every case of axis and angle, one is sufficient;
- in the case of first and second-order rotation, (R2) and (R3), we do not consider the case (a1) where θ is equal to $\frac{\pi}{2}$;
- the case (a1) where θ is equal to $\frac{\pi}{2}$ is only considered if the rotation axis and the translation direction are parallel, (Z2);
- in the case of a null translation, we do not consider any relation of orthogonality or parallelism to other directions;
- in the case of nonparaperspective projection, (p1) and (p3), β_{u} and β_{v} are equal to 0 .

We also consider the following experimental simplifications:

- when approximating a perspective projection, (p1) and (p2), we neglect the parameter γ with respect to other approximations;
- following previous studies [8,27], we assume that the ratio $\frac{\alpha_{u}}{\alpha_{v}}$ is constant;
- these two previous items imply that the $\frac{\beta_{u}}{\beta_{v}}$ ratio is also constant.

Then there only remains, from the intrinsic parameters part, 117 cases and, from the extrinsic parameters part, 21,709 cases, leading to a total of $2,539,953$ particular cases. This is approximately 100 times less than previously determined (see Appendix C for details).

3.5. Fundamental and Homographic Matrices

For each case, we have computed the set of reduced equations. Now, for each case, we compute the fundamental or homographic matrix expression.

As previously studied in Sections 2.3, 2.4, and 2.5, the displacements inducing homographic relations are;

- in the orthographic case (p1): $\mathbf{u} \| O z$. The relations between \mathbf{t} and \mathbf{r} are equivalent to the nullity of some vector components. We will not consider (Z1) and (Z2). Previous studies on orthographic displacement have shown that the displacement is retinal $(\mathrm{t}[1 ; 3 ; 5 ; 7])$.
- in the paraperspective case (p2): $\mathbf{u} \|\left[X_{0} Y_{0} Z_{0}\right]$ (D2). Since the view axis has at least a component on the optical axis, we set $u_{2}= \pm 1$. Moreover the view axis is not exactly the optical axis; thus we cannot have $u_{0}=0$ and $u_{1}=0$.
- in the perspective case (p3): $\mathbf{t}=0$. Therefore we do not consider the parallelism and orthogonality constraints on \mathbf{t}.

We also note that, since we are dealing with only 2 views, relations between \mathbf{r} or \mathbf{t} with a known vector \mathbf{g} will not simplify the \mathbf{H} matrix form, except in the paraperspective case, if $\mathbf{g}=\mathbf{M}_{\mathbf{0}}$.

The homographic relation cases lead to 351 cases of orthographic homographic relations, 18,360 cases of paraperspective homographic relations, and 2,619 cases of perspective homographic relations, leading to a total 21,330 cases of homographic relations (see explanations in Appendix C).

We will not study paraperspective and orthographic projection for fundamental matrices since the domain of validity of such projection approximations is included in conditions of existence of homographic relation. In the case of perspective projection, (p3): $\mathbf{t \neq \mathbf { 0 }}$ thus $u_{0}= \pm 1$ or $u_{1}= \pm 1$.

For perspective projection, there are 72,252 different cases as shown in Appendix C.

4. MATRIX FORMS

In the previous section, we have significantly reduced the number of cases in both fundamental matrices and homographic matrices sets. However, we still have to deal with a huge amount of cases that is numerically intractable. In this section, we introduce a new idea of splitting the two sets of matrices into a two-level tree.

Each set of matrices is first split into subsets of matrices, depending on their form. We determine a matrix form by a very simple parameterization. We consider (3×3) matrices to have 9 parameters (coefficients) and we use two simple rules:

- If a coefficient is equal to 0 , then there is one less parameter.
- If a coefficient has the same expression or is opposite to another, then there is one less parameter again.

These operations are very simple and can be computed in each case in a reasonable time (approximately one day for the entire process to determine the matrix form).

This process, as illustrated in Fig. 4, reduces the 21,330 cases of homography matrices to only 108 subgroups and the 72,252 cases of fundamental matrices to only 188 subgroups.

The table in Appendix A shows all the particular forms of homography matrices and the table in Appendix B shows all the particular forms of fundamental matrices.

FIG. 4. Set of cases that generates the same matrix form. The central column shows an example of the homography matrix form (number 19 in the table form Appendix A).

Homography and fundamental matrices are defined up to a scale factor. This parameter has not been eliminated here. We take it into account in the numerical implementation. Fundamental matrices must also satisfy the constraint $\operatorname{det} \mathbf{F}=0$, We must check whether this constraint is satisfied in order to determine whether the number of degrees of freedom is reduced. This is important in order to properly use the Akaike [1] criterion at the numerical stage (see next section).

For each matrix form, we have collected all the cases that have generated them. Once the matrix form corresponding to an experiment is determined, it is possible to backtrack the source cases.

5. EXPERIMENTS

In a previous paper [26], we demonstrated, for several specific displacements, that the case which minimizes a error criterion is that corresponding to the motion performed by a robotic system. We present here two cases (one for homographies, another for fundamental matrices), performed by a precise robotic system. We then present an extension to real approximative displacements.

5.1. Forms of Homography

We have recorded several video sequences for which the camera displacement induces a homographic relation between image points $\mathbf{m}_{\mathbf{1}}$ and $\mathbf{m}_{\mathbf{2}}$. We have first extracted points of interest and determined matching points using the image-matching algorithm from Zhang et al. [29]. From each matrix form enumerated in Table A1, we have estimated the
homography parameters with the robust least median of squares method [21] in order to minimize the distance between a 2 D point $\mathbf{m}_{\mathbf{1}}$ and its projected estimation $\mathbf{H m}_{\mathbf{2}}$,

$$
\left\|\mathbf{m}_{\mathbf{2}}-\frac{\mathbf{H} \mathbf{m}_{1}}{\left(\left(\mathbf{h}^{2}\right)^{T} \mathbf{m}_{1}\right)}\right\|^{2}
$$

where $\mathbf{h}^{\mathbf{2}}$ represents the last line of the \mathbf{H} matrix and $\mathbf{m}_{\mathbf{1}}$ and $\mathbf{m}_{\mathbf{2}}$ are normalized.
It is not possible to have a symmetric criterion without inverting the \mathbf{H} matrix (and we do not want to invert it).

To deal with cases with different degrees of freedom, we use an appropriate Akaike criterion [1].

For each video sequence, we have verified that the model with the smallest residual error indeed corresponds to the displacement performed by a robotic system. An example is proposed in Fig. 5. For each pair of consecutive images, the case with the least residual error is case 51 in the table in Appendix A, which corresponds to the matrix form

$$
\mathbf{H}_{51}=\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
-x_{2} & x_{1} & x_{6} \\
0 & 0 & x_{1}
\end{array}\right)
$$

FIG. 5. Frames 1, 2, and 8 of the video sequence. The robotic system performs a rotation around the optical axis.

FIG. 6. Approximate rotation around the optical axis and translation.

We observe that this case corresponds to a first-order rotation (R2). If we consider only the first and the last frame, the rotation is general (R4).

We also performed several experiments without the help of a precise robotic system. A human manipulated a camera by hand and tried to realize different particular displacements. Figure 6 shows two frames of a video sequence. The camera motion was approximately a rotation around its optical axis followed by a translation. As the previous experiment with a robotic system, for each pair of consecutive images, the case with smallest residual error is case 51 in the table in Appendix A. This result demonstrates the robustness of the analysis of displacement by particular cases. Even an approximative displacement is best recovered by a close particular case than the general equation.

5.2. Forms of Fundamental Matrices

We have done the same experiment for a displacement that induces a fundamental relation. The criterion is using the distance between a 2 D point $\mathbf{m}_{\mathbf{1}}$ and its epipolar line $\mathbf{F m} \mathbf{m}_{\mathbf{2}}$ [17, 28]:

$$
f_{m}(\mathbf{F})=\frac{\left|\mathbf{m}_{2}^{T} \mathbf{F} \mathbf{m}_{\mathbf{1}}\right|}{\sqrt{\left(\mathbf{F}^{\mathbf{T}} \mathbf{m}_{\mathbf{2}}\right)_{1}^{2}+\left(\mathbf{F}^{\mathbf{T}} \mathbf{m}_{\mathbf{2}}\right)_{2}^{2}}}
$$

The camera has performed a translation parallel to the x axis, and a small pan rotation, and corrected focal length with auto-focus (Fig. 7). The case with less residual error corresponds to the fundamental matrix form (case 59 in the table in Appendix B)

$$
\mathbf{F}_{59}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
x_{0} & x_{1} & x_{2} \\
0 & -x_{2} & x_{3}
\end{array}\right) .
$$

This particular form was obtained from cases where the rotation was approximated to its first and second order, the translation is parallel to the x axis, the rotation axis is orthogonal to the optical axis, and the intrinsic parameters are free.

FIG. 7. x-axis translation and small pan rotation, with auto-focus.

5.3. Discussion

An interesting study should be considering a large number of pairs of frames. The idea is to extract from the $108+188$ cases presented in this paper a subset of cases that are selected at least once with respect to the corresponding criterion. We believe that this subset is really smaller than the whole set of the 296 cases.

We did preliminary work on fMRI (functionnal magnetic resonance images) sequences in order to register each image volume with respect to the first one. We used a strategy similar to that explained in this paper but using a different parameterization (there were only displacement parameters generating 120 different cases). We experimented on 323 pairs of image volumes in which only 63 cases were selected at least once. All details of this study have already been published in [15].

The next idea is to avoid cases that do not occur often and that obtain a criterion error similar to another case that is often selected.

6. HOW TO EXTEND THIS WORK TO VIDEO SEQUENCES?

In this paper, we have dealt with video sequences with pairs of frames. Two major extensions could be done: (i) an extension of this work to trilinearities (relations between 2D points from three frames) and (ii) an extension to video sequences of n frames.

In order to consider sequences of n images, we need to introduce several displacement cases. We have constraints on translation, axis and angle or rotation, and zoom factor. For each of these quantities, the questions are is the displacement between two frames constant? Is the acceleration constant? linear? following a known rule?

In our formalism, we need to introduce these constraints in the Maple code, which will generate other equations with more constraints but we will also have more data (n images) and more parameters. It is also easy to change the criterion used to measure the equation of the model to the data (one C function to be rewritten).

We must think about the fact that some objects may disappear along a video sequence and that their movements may be detected only in a few images of the video sequences. This is a problem that will be examined in another paper.

7. CONCLUSION

We have studied how to deal with video sequences and with particular cases of displacement and projection that often occur in real situations (man walking on a flat road, objects far from the retina etc). The general equations of the vision problem present singularities in some particular cases that are usually avoided.

In the present paper, we have proposed an alternative approach to this problem, using such singularities and other particular cases in order to obtain more information than in the general case instead of avoiding them.

Our major contributions are:

- We have determined the conditions of existence of homographic relations between projected 2D points for the orthographic, the paraperspective, and the perspective projections.
- We have used these conditions and other obvious redundancy properties to reduce the amount of homographic particular cases to study. Thus, we have determined all particular forms of matrices, and we have obtained, for each particular form, the list of cases that have generated this form. This result is a first fundamental step for further studies.

This study might be extended in two ways: (i) to be able, given a form, to analyze the molecular constraints, to determine which are redundant and which correspond to the case we are dealing with, and (ii) to do the same analysis with geometrical property of the 3D scene, meaning homography induced by planes. The structure of this analysis is as general as possible to extend this work to other kinds of cameras (conic mirror, etc.).

The applications are twofold:

- an incremental reconstruction of the scene using different cases: each case studied has fewer parameters than the next one, giving the ability to recover some parameters from others already determined. We have already studied the control of a robot on a particular case [16].
- the segmentation of objects moving with different displacements or with different geometric properties in video sequences: using a v-trimmed square method instead of the least median square method, we can build sets of points with same matrix forms (and same numerical matrix forms).

APPENDIX A

Table of Particular Forms of Homographic Matrices

Table A1 shows the simplified forms obtained and, for each form, the cases that have generated them. We denote by \# the form number, by \mathbf{p} the number of parameters (we have not taken into account the fact that the homography matrix is defined up to a scale factor but we do it in our numerical implementation), and by \mathbf{n} the number of molecular cases that have generated a form.

The interest of this table is for the reader who wants to implement the method presented in this paper and to interpret the results the method gives. An electronic form of this table and some Maple and C code can be sent upon simple request to the author.

TABLE A1
 Particular Forms of Homography and Cases that Have Generated Them

\#	p	Simplified form of homography	Generated by	n
1	1	$\left[\begin{array}{lllllllll}x_{1} & 0 & 0 & 0 & x_{1} & 0 & 0 & 0 & x_{1}\end{array}\right]$	$\begin{aligned} & \text { p1g1f[1;2]b1B1c[1;2]T1t13R1u4Z3a2 } \oplus \\ & \text { p3g1f[1;2]b1B1c[1;2]T1t13R1u4Z3a2 } \oplus \\ & \text { p3g2f1b1B1c[1;2]T1t13R1u4Z3a2 } \oplus \\ & \text { p3g2f2b1B1c1T1t13R1u4Z3a2 } \end{aligned}$	11
2	1	$\left[\begin{array}{lllllllll}x_{1} & 0 & 0 & 0 & x_{1} & x_{1} & 0 & 0 & x_{1}\end{array}\right]$	p1g1f1b1B1c[1;2]T2t[5;7]R1u4Z3a2	4
3	1	$\left[\begin{array}{llllllllll}x_{1} & 0 & x_{1} & 0 & x_{1} & 0 & 0 & 0 & x_{1}\end{array}\right]$	p1g1f[1;2]b1B1c[1;2]T2t1R1u4Z3a2	4
4	2	$\left[\begin{array}{lllllllll}x_{1} & 0 & 0 & 0 & x_{1} & x_{6} & 0 & -x_{6} & x_{1}\end{array}\right]$	p3g1f1b1B1c1T1t13R2u[17;21]23a2	2
5	2	$\left[\begin{array}{llllllllll}x_{1} & 0 & 0 & 0 & x_{1} & x_{6} & 0 & 0 & x_{1}\end{array}\right]$	p1g1f2b1B1c[1;2]T2t[5;7]R1u4Z3a2	4
6	2	$\left[\begin{array}{lllllllll}x_{1} & 0 & 0 & 0 & x_{5} & 0 & 0 & 0 & x_{1}\end{array}\right]$	p1g1f3b1B1c1T1t13R1u4Z3a2 \oplus p3g[1;2]f3b1B1c1T1t13R1u4Z3a2	3
7	2	$\left[\begin{array}{llllllllll}x_{1} & 0 & x_{1} & 0 & x_{1} & x_{6} & 0 & 0 & x_{1}\end{array}\right]$	$\mathrm{p} 1 \mathrm{~g} 1 \mathrm{f}[1 ; 2] \mathrm{b} 1 \mathrm{~B} 1 \mathrm{c}[1 ; 2] \mathrm{T} 2 \mathrm{t} 3 \mathrm{R} 1 \mathrm{u} 4 \mathrm{Z} 3 \mathrm{a} 2$	4
8	2	$\left[\begin{array}{llllllllll}x_{1} & 0 & x_{1} & 0 & x_{5} & 0 & 0 & 0 & x_{1}\end{array}\right]$	p1g1f3b1B1c1T2t1R1u4Z3a2	1
9	2	$\left[\begin{array}{llllllllll}x_{1} & 0 & x_{3} & 0 & x_{1} & 0 & -x_{3} & 0 & x_{1}\end{array}\right]$	p3g1f[1;2]b1B1c1T1t13R2u[1;5]Z3a2	4
10	2	$\left[\begin{array}{lllllllll}x_{1} & 0 & x_{3} & 0 & x_{1} & 0 & 0 & 0 & x_{1}\end{array}\right]$	p3g2f2b1B1c2T1t13R1u4Z3a2	1
11	2	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & 0 & -x_{2} & x_{1} & 0 & 0 & 0 & x_{1}\end{array}\right]$	$\mathrm{p}[1 ; 3] \mathrm{g} 1 \mathrm{f1b1B1c1T1t13R2u[13;9]Z3a2}$	4
12	2	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & 0 & -x_{2} & x_{1} & x_{1} & 0 & 0 & x_{1}\end{array}\right]$	p1g1f1b1B1c1T2t[5;7]R2u[13;9]Z3a2	4
13	2	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & 0 & 0 & x_{1} & 0 & 0 & 0 & x_{1}\end{array}\right]$	p3g3f1b1B1c1T1t13R1u4Z3a2	2
14	2	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & x_{1} & -x_{2} & x_{1} & 0 & 0 & 0 & x_{1}\end{array}\right]$	p1g1f[1;2]b1B1c1T2t1R2u13Z3a2	2
15	3	$\left[\begin{array}{llllllllll}x_{1} & 0 & 0 & 0 & x_{1} & x_{6} & 0 & x_{8} & x_{1}\end{array}\right]$	$\mathrm{p} 3 \mathrm{~g} 1 \mathrm{f} 2 \mathrm{~b} 1 \mathrm{~B} 1 \mathrm{c} 1 \mathrm{~T} 1 \mathrm{t} 13 \mathrm{R} 2 \mathrm{u}[17$; 21]Z3a2	2
16	3	$\left[\begin{array}{llllllllll}x_{1} & 0 & 0 & 0 & x_{5} & x_{6} & 0 & -x_{6} & x_{5}\end{array}\right]$	p3g1f1b1B1c1T1t13R3u[17;21]z3a2 \oplus p3g1f1b1B1c1T1t13R4u[17;21]z3a[1;2]	6
17	3	$\left[\begin{array}{lllllllll}x_{1} & 0 & 0 & 0 & x_{5} & x_{6} & 0 & 0 & x_{1}\end{array}\right]$	```p1g1f3b1B1c[1;2]T2t[5;7]R1u4Z3a2 } p1g1f3b1B1c2T1t13R1u4Z3a2 } p3g1f3b1B1c2T1t13R1u4Z3a2```	6
18	3	$\left[\begin{array}{llllllllll}x_{1} & 0 & x_{1} & 0 & x_{5} & x_{6} & 0 & 0 & x_{1}\end{array}\right]$	p1g1f3b1B1c[1;2]T2t3R1u4Z3a2 \oplus p1g1f3b1B1c2T2t1R1u4Z3a2	3
19	3	$\left[\begin{array}{llllllllll}x_{1} & 0 & x_{3} & 0 & x_{1} & 0 & -x_{3} & x_{8} & x_{1}\end{array}\right]$	p3g2f[1;2]b1B1c1T1t13R2u[1;5]Z3a2	4
20	3	$\left[\begin{array}{llllllllll}x_{1} & 0 & x_{3} & 0 & x_{1} & x_{6} & -x_{3} & -x_{6} & x_{1}\end{array}\right]$	p3g1f1b1B1c1T1t13R2u[2;6;19;23]Z3a2	4
21	3	$\left[\begin{array}{llllllllll}x_{1} & 0 & x_{3} & 0 & x_{1} & x_{6} & 0 & -x_{6} & x_{1}\end{array}\right]$	p3g2f1b1B1c1T1t13R2u[17;21]Z3a2	2
22	3	$\left[\begin{array}{llllllllll}x_{1} & 0 & x_{3} & 0 & x_{1} & x_{6} & 0 & 0 & x_{1}\end{array}\right]$	```p1g1f[1;2]b1B1c3T1t13R1u4Z3a2 } p1g1f[1;2]b1B1c3T2t[1;3;5;7]R1u4Z3a2 } p3g[1;2]f[1;2]b1B1c3T1t13R1u4Z3a2```	14
23	3	$\left[\begin{array}{llllllllll}x_{1} & 0 & x_{3} & 0 & x_{5} & 0 & -x_{3} & 0 & x_{1}\end{array}\right]$	```p3g1f[1-3]b1B1c1T1t13R3u[1;5]z3a2 } p3g1f3b1B1c1T1t13R2u[1;5]Z3a2 } p3g1f[1-3]b1B1c1T1t13R4u[1;5]Z3a[1;2]```	20
24	3	$\left[\begin{array}{llllllllll}x_{1} & x_{2} & 0 & -x_{2} & x_{1} & 0 & 0 & 0 & x_{9}\end{array}\right]$	pp [1; 3]g1f1b1B1c1T1t13R3u[9;13]z3a2 \oplus p[1;3]g1f1b1B1c1T1t13R4u[9;13]Z3a[1;2]	12
25	3	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & 0 & -x_{2} & x_{1} & x_{6} & 0 & -x_{6} & x_{1}\end{array}\right]$	p3g1f1b1B1c1T1t13R2u[11;15;18;22]Z3a2	4
26	3	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & 0 & -x_{2} & x_{1} & x_{6} & 0 & 0 & x_{6}\end{array}\right]$	p1g1f1b1B1c1T2t[5;7]R[3;4]u[9;13]z3a2	8
27	3	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & 0 & 0 & x_{5} & 0 & 0 & 0 & 0 x_{1}\end{array}\right]$	p3g3f3b1B1c1T1t13R1u4Z3a2	1
28	3	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & 0 & x_{4} & x_{1} & 0 & 0 & 0 & x_{1}\end{array}\right]$	$\mathrm{p}[1 ; 3] \mathrm{g} 1 \mathrm{f} 2 \mathrm{~b} 1 \mathrm{~B} 1 \mathrm{c} 1 \mathrm{~T} 1$ t13R2u[9;13]z3a2	4
29	3	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & x_{1} & -x_{2} & x_{1} & x_{6} & 0 & 0 & x_{1}\end{array}\right]$	p1g1f1b1B1c1T2t3R2u[9;13]Z3a2	2
30	3	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & x_{1} & x_{4} & x_{1} & 0 & 0 & 0 & x_{1}\end{array}\right]$	p1g1f2b1B1c1T2t1R2u[9;13]z3a2	2
31	3	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & x_{3} & -x_{2} & x_{1} & 0 & -x_{3} & 0 & x_{1}\end{array}\right]$	p3g1f1b1B1c1T1t13R2u[3;7;10;14]Z3a2	4
32	3	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & x_{3} & -x_{2} & x_{1} & 0 & 0 & 0 & x_{3}\end{array}\right]$	p1g1f1b1B1c1T2t1R[3;4]u[9;13]Z3a2	4
33	3	$\left[\begin{array}{llllllllll}x_{1} & x_{2} & x_{3} & 0 & x_{1} & 0 & 0 & 0 & x_{1}\end{array}\right]$	p3g3f[1;2]b1B1c2T1t13R1u4Z3a2	2
34	4	$\left[\begin{array}{llllllllll}x_{1} & 0 & 0 & 0 & x_{5} & x_{6} & 0 & x_{8} & x_{1}\end{array}\right]$	p3g1f3b1B1c1T1t13R2u[17;21]Z3a2	2
35	4	$\left[\begin{array}{lllllllll}x_{1} & 0 & 0 & 0 & x_{5} & x_{6} & 0 & x_{8} & x_{5}\end{array}\right]$	$\begin{aligned} & \text { p3g1f2b1B1c1T1t13R3u[17;21]Z3a2 } \oplus \\ & \text { p3g1f2b1B1c1T1t13R4u[17;21]Z3a[1;2] } \end{aligned}$	6
36	4	$\left[\begin{array}{llllllllll}x_{1} & 0 & x_{3} & 0 & x_{1} & x_{6} & -x_{3} & x_{8} & x_{1}\end{array}\right]$	p3g1f2b1B1c1T1t13R2u[2;6;19;23] Z3a2	4
37	4	$\left[\begin{array}{lllllllll}x_{1} & 0 & x_{3} & 0 & x_{1} & x_{6} & 0 & x_{8} & x_{1}\end{array}\right]$	p3g2f2b1B1c1T1t13R2u[17;21] Z3a2	2
38	4	$\left[\begin{array}{lllllllll} x_{1} & 0 & x_{3} & 0 & x_{5} & 0 & -x_{3} & x_{8} & x_{1} \end{array}\right]$	p3g2f3b1B1c1T1t13R2u[1;5]z3a2	2
39	4	$\left[\begin{array}{llllllllll}x_{1} & 0 & x_{3} & 0 & x_{5} & x_{6} & 0 & 0 & x_{1}\end{array}\right]$	```p[1;3]g1f3b1B1c3T1t13R1u4Z3a2 } p1g1f3b1B1c3T2t[1;3;5;7]R1u4Z3a2 } p3g2f3b1B1c[2;3]T1t13R1u4Z3a2```	8
40	4	$\left[\begin{array}{llllllllll}x_{1} & x_{2} & -x_{2} & 0 & x_{5} & x_{6} & 0 & -x_{6} & x_{5}\end{array}\right]$	p3g2f1b1B1c1T1t13R4u21z3a1	1
41	4	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & 0 & x_{4} & x_{1} & 0 & 0 & 0 & x_{9}\end{array}\right]$	$\begin{aligned} & \mathrm{p}[1 ; 3] \mathrm{g} 1 \mathrm{f} 2 \mathrm{~b} 1 \mathrm{~B} 1 \mathrm{c} 1 \mathrm{~T} 1 \mathrm{t}[9 ; 13] \mathrm{R} 3 \mathrm{u} 13 \mathrm{Z} 3 \mathrm{a} 2 \oplus \\ & \mathrm{p}[1 ; 3] \mathrm{g} 1 \mathrm{f} 2 \mathrm{~b} 1 \mathrm{~B} 1 \mathrm{c} 1 \mathrm{~T} 1 \mathrm{t} 13 \mathrm{R} 4 \mathrm{u}[9 ; 13] \mathrm{Z3a}[1 ; 2] \end{aligned}$	12
42	4	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & 0 & x_{4} & x_{1} & x_{6} & 0 & 0 & x_{1}\end{array}\right]$	p1g1f2b1B1c1T2t[5;7]R2u[9;13]z3a2	4
43	4	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & 0 & x_{4} & x_{5} & 0 & 0 & 0 & x_{1}\end{array}\right]$	$\mathrm{p}[1 ; 3] \mathrm{g} 1 \mathrm{f} 3 \mathrm{~b} 1 \mathrm{~B} 1 \mathrm{c} 1 \mathrm{~T} 1 \mathrm{t} 13 \mathrm{R} 2 \mathrm{u}[9 ; 13] \mathrm{Z3a} 2 \oplus$ p2g1f[1-3]b[2;3]B[1;2]c1T1t13R2u	28

TABLE A1—Continued

\#	p		Simplified form of homography				Generated by	n
44	4	$\left[x_{1}\right.$	x_{2}		$x_{4} x_{5}$		$\begin{aligned} & \mathrm{p} 2 \mathrm{~g} 1 \mathrm{f}[1 ; 3] \mathrm{b}[2 ; 3] \mathrm{B}[1 ; 2] \mathrm{c} 1 \mathrm{~T} 1 \mathrm{t} 13 \mathrm{R} 2 \mathrm{u} \\ & \quad[10 ; 14] \mathrm{Z} 3 \mathrm{a} 2 \end{aligned}$	16
45	4	[x_{1}			$\begin{array}{llllll}x_{4} & x_{5} & x_{1} & 0 & 0 & x_{1}\end{array}$		p2g1f1b[2;3]B[1;2]c1T2t5R2u[11;15]Z3a2	8
46	4	[x_{1}			$\left.\begin{array}{llllll}x_{4} & x_{5} & x_{5} & 0 & 0 & x_{5}\end{array}\right]$		$\mathrm{p} 2 \mathrm{~g} 1 \mathrm{f} 1 \mathrm{~b} 2 \mathrm{~B} 1 \mathrm{c} 1 \mathrm{~T} 2 \mathrm{t} 5 \mathrm{R} 2 \mathrm{u}[10$; 14]Z3a2	8
47	4	[x_{1}	x_{2}		$\begin{array}{llllll}x_{4} & x_{1} & x_{6} & 0 & 0 & x_{1}\end{array}$		p1g1f2b1B1c1T2t3R2u[9;13]Z3a2	2
48	4	[x_{1}			$\left.\begin{array}{llllll}x_{4} & x_{5} & 0 & 0 & 0 & x_{1}\end{array}\right]$		```p1g1f3b1B1c1T2t1R2u[9;13]Z3a2 } p2g1f[1-3]b[2;3]B[1;2]c1T2t1R2u [11;15]Z3a2```	26
49	4	[x_{1}			$\left.\begin{array}{llllll}0 & x_{5} & x_{6} & 0 & -x_{6} & x_{5}\end{array}\right]$		p3g2f1b1B1c1T1t13R4u17Z3a1	1
50	4	[x_{1}	x_{2}		$\begin{array}{lllll}-x_{2} & x_{1} & x_{6} & -x_{3} & -x_{6}\end{array}$	x_{1}]	p3g1f1b1B1c1T1t13R2u[4;8;12;16;20;24]Z3a2	6
51	4	[x_{1}			$-x_{2} \quad x_{1} \quad x_{6}$		```p[1;3]g1f1b1B1c[2;3]T1t13R2u[9-13]z3a2 } p1g1f1b1B1c[2;3]T2t[1;3;5;7]R2u [9;13]z3a2 } p2g1f1b[2;3]B[1;2]c[1-3]T2t9R2u [10-12;14-16]Z1a2 } p2g1f1b[2;3]B[1;2]c[1-3]T2t10R2u [11;15]Z1a2 } p2g1f1b[2;3]B[1;2]c[1-3]T2t11R2u [10;14]Z1a2```	144
52	4	[x_{1}	x_{2}		$\left.-x_{2} \quad x_{1} \quad x_{6} \quad 00000 x_{3}\right]$		p1g1fb1B1c1T2t3R[3;4]u[9;13] 23 a 2	4
53	4	$\left[x_{1}\right.$	x_{2}		$\left.\begin{array}{llllll}0 & x_{1} & 0 & -x_{3} & x_{8} & x_{1}\end{array}\right]$		p3g3f[1;2]b1B1c1T1t13R2u[1;5]z3a2	4
54	4	$\left[x_{1}\right.$	x_{2}		$\left.\begin{array}{llllll}0 & x_{1} & x_{6} & 0 & -x_{6} & x_{1}\end{array}\right]$		p3g3f1b1B1c1T1t13R2u[17;21]z3a2	2
55	4	[x_{1}	x_{2}		$\left.\begin{array}{llllll}0 & x_{1} & x_{6} & 0 & 0 & x_{1}\end{array}\right]$		p3g3f[1;2]b1B1c3T1t13R1u4Z3a2	2
56	4	[x_{1}	x_{2}		$\left.\begin{array}{llllll}0 & x_{5} & 0 & -x_{3} & -x_{2} & x_{1}\end{array}\right]$		$\mathrm{p} 3 \mathrm{~g} 2 \mathrm{f}[1-3] \mathrm{b} 1 \mathrm{B1c1T1}$ (13R4u5Z3a1	3
57	4	[x_{1}	x_{2}		$\left.\begin{array}{llllll}0 & x_{5} & 0 & -x_{3} & x_{2} & x_{1}\end{array}\right]$		p3g2f[1-3]b1B1c1T1t13R4u1Z3a1	3
58	4	[x_{1}	x_{2}		$\left.\begin{array}{llllll}x_{4} & x_{1} & 0 & -x_{3} & 0 & x_{1}\end{array}\right]$		p3g1f2b1B1c1T1t13R2u[3;7;10;14]Z3a2	4
59	4	[x_{1}	x_{2}		$\left.\begin{array}{llllll}x_{4} & x_{1} & 0 & 0 & 0 & x_{3}\end{array}\right]$		```p1g1f2b1B1c1T2t1R[3;4]u[9;13]z3a2 } p2g1f[1;2]b[2;3]B[1;2]c1T2t1R2u [10;14]Z3a2```	20

p3g1f3b1B1c1T1t13R3u[17;21]z3a2 $\oplus \quad 6$
p3g1f3b1B1c1T1t13R4u[17;21]z3a[1;2]
p3g2f[1;2]b1B1c1T1t13R2u
[2;6;19;23]z3a2
p3g1f3b1B1c1T1t13R2u[2;6;19;23]Z3a2 4
p3g2f3b1B1c1T1t13R2u[17;21]z3a2 2
p1g1f2b1B1c1T2t[5;7]R[3;4]u[9;13]Z3a2 8
p3g1f2b1B1c1T1t13R2u[11;15;18;22]Z3a2 4
p1g1f3b1B1c1T1t13R[3;4]u[9;13]Z3a2 $\oplus \quad 308$
p1g1f3b1B1c1T1t13R4u[9;13]z3a1 \oplus
p2g1f[1-3]b[2;3]B[1;2]c1T1t13R[2-4]u
[12;16]Z3a2 \oplus
p2g1f3b[2;3]B[1;2]c1T1t13R2u
[10;14]Z3a2 \oplus
p2g1f[1-3]b[2;3]B[1;2]c1T1t13R[3;4]u
$[10 ; 11 ; 14 ; 15] \mathrm{Z3a} 2 \oplus$
p2g1f[1-3]b[2;3]B[1;2]c1T1t13R4u
[10-12;14-16] Z3a1 \oplus
p3g1f3b1B1c1T1t13R3u[9;13]z3a2 \oplus
$\mathrm{p} 3 \mathrm{~g} 1 \mathrm{f} 3 \mathrm{~b} 1 \mathrm{~B} 1 \mathrm{c} 1 \mathrm{~T} 1 \mathrm{t} 13 \mathrm{R} 4 \mathrm{u}[9 ; 13] \mathrm{Z3a}[1 ; 2] \oplus$
p3g[2;3]f[1-3]b1B1c1T1t13R[2-4]u
$[9 ; 13]$ Z3a2 \oplus
p3g[2;3]f[1-3]b1B1c1T1t13R4u[9-13]Z3a1
p1g1f3b1B1c1T2t[5;7]R2u[9;13]z3a2 \oplus
p2g1f[2;3]b[2;3]B[1;2]c1T2t5R2u
[11;15]Z3a2
p2g1f2b[2;3]B[1;2]c1T2t5R2u[10;14]Z3a2 8
p2g1f1b[2;3]B[1;2]c1T2t5R[2-4]u
[12;16]Z3a2 \oplus
p2g1f1b[2;3]B[1;2]c1T2t5R[3;4]u
[10;11;14;15]Z3a2
$\mathrm{p} 1 \mathrm{~g} 1 \mathrm{f} 3 \mathrm{~b} 1 \mathrm{~B} 1 \mathrm{c} 1 \mathrm{~T} 2 \mathrm{t} 3 \mathrm{R} 2 \mathrm{u}[9 ; 13] \mathrm{Z} 3 \mathrm{a} 2 \oplus$
p2g1f[1-3]b[2;3]B[1;2]c1T2t3R2u
[11;15] Z3a2

TABLE A1—Continued

TABLE A1-Continued

TABLE A1-Continued

APPENDIX B

Table of Particular Forms of Fundamental Matrices

Please note that in Table B1, as it is for Table A1, the number of parameters \mathbf{p} does not take into account that the fundamental matrix is defined up to a scale factor and that its determinant is zero. This is done is the numerical implementation.

TABLE B1
 Particular Forms of Fundamental Matrices

\#	p	Simplified form of fundamental matrices	For example generated by:	n
1	1	$\left[\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & x_{6} & 0 & -x_{6} & 0\end{array}\right]$	g1f1s1c1t1R1u24Z3a2	24
2	1	$\left[\begin{array}{llllllllll}0 & 0 & x_{3} & 0 & 0 & 0 & -x_{3} & 0 & 0\end{array}\right]$	g1f1s1c1t5R1u24Z3a2	4
3	1	$\left[\begin{array}{llllllllll}0 & x_{2} & 0 & -x_{2} & 0 & 0 & 0 & 0 & 0\end{array}\right]$	g1f1s1c1t9R1u24Z3a2	5
4	2	$\left[\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & x_{6} & 0 & -x_{6} & x_{9}\end{array}\right]$	g1f1s1c3t1R1u24Z3a2	12
5	2	$\left[\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & x_{6} & 0 & x_{8} & 0\end{array}\right]$	g1f3s1c1t1R1u24Z3a2	6
6	2	$\left[\begin{array}{ccccccccc}0 & 0 & 0 & 0 & 0 & x_{6} & x_{7} & -x_{6} & 0\end{array}\right]$	g1f1s1c1t1R2u13Z2a2	16
7	2	[0 00	g1f1s1c1t1R2u17Z1a2	396
8	2	$\left[\begin{array}{ccccccccc}0 & 0 & 0 & x_{4} & 0 & x_{6} & 0 & -x_{6} & 0\end{array}\right]$	g1f1s1c1t1R2u1z2a2	16
9	2	$\left[\begin{array}{cccccccccc}0 & 0 & x_{3} & 0 & 0 & 0 & -x_{3} & 0 & x_{9}\end{array}\right]$	g1f1s1c3t5R1u24Z3a2	2
10	2	$\left[\begin{array}{cccccccccl}0 & 0 & x_{3} & 0 & 0 & 0 & -x_{3} & x_{8} & 0\end{array}\right]$	g1f1s1c1t5R2u13Z2a2	8
11	2	$\left[\begin{array}{llllllllll}0 & 0 & x_{3} & 0 & 0 & 0 & x_{7} & 0 & 0\end{array}\right]$	g1f1s2c1t5R1u24Z3a2	4
12	2	$\left[\begin{array}{cccccccccl}0 & 0 & x_{3} & 0 & 0 & x_{6} & -x_{3} & -x_{6} & 0\end{array}\right]$	g1f1s1c1t3R1u24Z3a2	17
13	2	$\left[\begin{array}{llllllllll}0 & x_{2} & 0 & -x_{2} & 0 & x_{6} & 0 & -x_{6} & 0\end{array}\right]$	g1f1s1c1t1R1u24Z3a2	8
14	2	$\left[\begin{array}{llllllllll}0 & x_{2} & 0 & -x_{2} & 0 & x_{6} & 0 & 0 & 0\end{array}\right]$	g1f1s1c1t9R2u1z2a2	24
15	2	$\left[\begin{array}{llllllllll}0 & x_{2} & 0 & -x_{2} & x_{5} & 0 & 0 & 0 & 0\end{array}\right]$	g2f3s1c1t9R1u24Z3a2	4
16	2	$\left[\begin{array}{lllllllll}0 & x_{2} & 0 & x_{4} & 0 & 0 & 0 & 0 & 0\end{array}\right]$	g1f1s2c1t9R1u24Z3a2	3
17	2	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & -x_{2} & 0 & 0 & -x_{3} & 0 & 0\end{array}\right]$	g1f1s1c1t10R1u24Z3a2	4
18	2	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & -x_{2} & 0 & 0 & 0 & 0 & 0\end{array}\right]$	g1f1s1c1t9R2u17Z2a2	12
19	2	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & 0 & 0 & 0 & -x_{3} & 0 & 0\end{array}\right]$	g1f1s1c1t5R2u17Z2a2	8
20	2	$\left[\begin{array}{llllllllll}x_{1} & 0 & x_{3} & 0 & 0 & 0 & -x_{3} & 0 & x_{1}\end{array}\right]$	g1f1s1c1t5R2u1Z1a2	66
21	2	$\left[\begin{array}{llllllllll}x_{1} & x_{2} & 0 & -x_{2} & x_{1} & 0 & 0 & 0 & 0\end{array}\right]$	g1f1s1c1t10R2u11Z1a2	198
22	3		g1f3s1c2t1R1u24Z3a2	12
23	3	$\left[\begin{array}{ccccccccc}0 & 0 & 0 & 0 & 0 & x_{6} & x_{7} & -x_{6} & x_{9}\end{array}\right]$	g1f1s1c2t1R2u13Z2a2	32
24	3	$\left[\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & x_{6} & x_{7} & x_{8} & 0\end{array}\right]$	g1f1s1c1t1R3u13z2a2	200
25	3	[0 00	g1f2s1c1t1R2u17Z1a2	396
26	3	$\left[\begin{array}{lllllllll}0 & 0 & 0 & 0 & x_{5} & x_{6} & x_{7} & -x_{6} & x_{5}\end{array}\right]$	g1f1s1c1t1R2u11z2a2	16
27	3	$\left[\begin{array}{lllllllll}0 & 0 & 0 & x_{4} & 0 & x_{6} & 0 & x_{8} & 0\end{array}\right]$	g1f1s1c1t1R3u1z2a2	56
28	3	[00 000	g1f1s1c1t1R2u10Z2a2	32
29	3	$\left[\begin{array}{llllllllll}0 & 0 & 0 & x_{4} & x_{5} & x_{6} & 0 & -x_{6} & 0\end{array}\right]$	g2f1s1c1t1R2u1z2a2	32
30	3	$\left[\begin{array}{llllllllll}0 & 0 & 0 & x_{4} & x_{5} & x_{6} & 0 & -x_{6} & x_{5}\end{array}\right]$	g1f1s1c1t1R2u19Z2a2	16
31	3	$\left[\begin{array}{lllllllll}0 & 0 & x_{3} & 0 & 0 & 0 & -x_{3} & x_{8} & x_{9}\end{array}\right]$	g1f1s1c2t5R2u13z2a2	16
32	3	$\left[\begin{array}{lllllllll}0 & 0 & x_{3} & 0 & 0 & 0 & x_{7} & 0 & x_{9}\end{array}\right]$	g1f1s2c2t5R1u24Z3a2	8
33	3	[0 $000 x_{3}$	g1f1s1c1t5R3u13Z2a2	64
34	3	$\left[\begin{array}{llllllllll}0 & 0 & x_{3} & 0 & 0 & x_{6} & -x_{3} & -x_{6} & x_{9}\end{array}\right]$	g1f1s1c3t3R1u24Z3a2	13
35	3	$\left[\begin{array}{lllllllll}0 & 0 & x_{3} & 0 & 0 & x_{6} & -x_{3} & x_{8} & 0\end{array}\right]$	g2f1s1c1t5R2u13z2a2	22
36	3	$\left[\begin{array}{llllllllll}0 & 0 & x_{3} & 0 & 0 & x_{6} & x_{7} & -x_{6} & 0\end{array}\right]$	g1f1s2c1t3R1u24Z3a2	4
37	3	$\left[\begin{array}{llllllllll}0 & x_{2} & 0 & -x_{2} & 0 & x_{6} & 0 & x_{8} & 0\end{array}\right]$	g1f3s1c1t11R1u24Z3a2	2
38	3	$\left[\begin{array}{llllllllll}0 & x_{2} & 0 & -x_{2} & x_{5} & x_{6} & 0 & -x_{6} & 0\end{array}\right]$	g3f1s1c1t11R1u24Z3a2	4
39	3	$\left[\begin{array}{llllllllll}0 & x_{2} & 0 & -x_{2} & x_{5} & x_{6} & 0 & 0 & 0\end{array}\right]$	g2f3s1c1t9R2u1z2a2	12
40	3	$\left[\begin{array}{lllllllll}0 & x_{2} & 0 & x_{4} & 0 & x_{6} & 0 & -x_{6} & 0\end{array}\right]$	g1f1s2c1t11R1u24Z3a2	4
41	3	$\left[\begin{array}{llllllllll}0 & x_{2} & 0 & x_{4} & 0 & x_{6} & 0 & 0 & 0\end{array}\right]$	g1f1s1c1t9R3u1z2a2	60
42	3	$\left[\begin{array}{lllllllll}0 & x_{2} & 0 & x_{4} & x_{5} & 0 & 0 & 0 & 0\end{array}\right]$	g2f1s2c1t9R1u24Z3a2	6
43	3	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & -x_{2} & 0 & 0 & x_{7} & 0 & 0\end{array}\right]$	g1f3s1c1t10R1u24Z3a2	2
44	3	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & -x_{2} & 0 & x_{6} & -x_{3} & -x_{6} & 0\end{array}\right]$	g1f1s1c1t12R1u24Z3a2	40
45	3	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & -x_{2} & 0 & x_{6} & 0 & 0 & 0\end{array}\right]$	g1f1s1c1t9R2u19Z2a2	60
46	3	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & 0 & 0 & 0 & -x_{3} & x_{8} & 0\end{array}\right]$	g1f1s1c1t5R2u11Z2a2	16
47	3	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & 0 & 0 & 0 & x_{7} & 0 & 0\end{array}\right]$	g1f1s1c1t5R3u17Z2a2	64
48	3	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & x_{4} & 0 & 0 & 0 & 0 & 0\end{array}\right]$	g1f1s1c1t9R3u17Z2a2	60
49	3	$\left[\begin{array}{llllllllll}x_{1} & 0 & x_{3} & 0 & 0 & 0 & -x_{3} & 0 & x_{9}\end{array}\right]$	g1f2s1c1t5R2u1z1a2	66
50	3	$\left[\begin{array}{lllllllll}x_{1} & 0 & x_{3} & 0 & 0 & 0 & -x_{3} & x_{8} & x_{1}\end{array}\right]$	g1f1s1c1t5R2u10Z2a2	8

TABLE B1—Continued

\#	p	Simplified form of fundamental matrices	For example generated by:	n
51	3	$\left[\begin{array}{llllllllll}x_{1} & x_{2} & 0 & -x_{2} & x_{1} & x_{6} & 0 & 0 & 0\end{array}\right]$	g1f1s1c1t9R2u10Z2a2	24
52	3	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & x_{3} & -x_{2} & x_{1} & 0 & 0 & 0 & 0\end{array}\right]$	g1f1s1c1t9R2u11z2a2	24
53	3	$\left[\begin{array}{llllllllll}x_{1} & x_{2} & x_{3} & 0 & 0 & 0 & -x_{3} & 0 & x_{1}\end{array}\right]$	g1f1s1c1t5R2u19Z2a2	8
54	4	$\left[\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & x_{6} & x_{7} & x_{8} & x_{9}\end{array}\right]$	g1f1s1c2t1R3u13z2a2	400
55	4	$\left[\begin{array}{cclllllll}0 & 0 & 0 & 0 & x_{5} & x_{6} & 0 & x_{8} & x_{9}\end{array}\right]$	g1f1s1c2t1R2u17Z1a2	2772
56	4	$\left[\begin{array}{ccccccccc}0 & 0 & 0 & 0 & x_{5} & x_{6} & x_{7} & -x_{6} & x_{9}\end{array}\right]$	g1f2s1c1t1R2u11Z2a2	16
57	4		g2f1s1c1t1R2u11Z2a2	32
58	4	$\left[\begin{array}{lllllllll}0 & 0 & 0 & x_{4} & 0 & x_{6} & x_{7} & x_{8} & 0\end{array}\right]$	g1f3s1c1t1R2u10z2a2	16
59	4	[00 $0000 x_{4}$	g1f2s1c1t1R2u19Z2a2	80
60	4	$\left[\begin{array}{cclllllll}0 & 0 & 0 & x_{4} & x_{5} & x_{6} & 0 & x_{8} & 0\end{array}\right]$	g2f1s1c1t1R3u1z2a2	112
61	4	[0 $00000 x_{4}$	g1f1s1c1t1R2u12Z2a2	24
62	4	$\left[\begin{array}{llllllllll}0 & 0 & x_{3} & 0 & 0 & 0 & x_{7} & x_{8} & x_{9}\end{array}\right]$	g1f1s1c2t5R3u13z2a2	128
63	4	[00 $00 x_{3}$	g2f1s1c2t5R2u13z2a2	44
64	4	$\left[\begin{array}{llllllllll}0 & 0 & x_{3} & 0 & 0 & x_{6} & x_{7} & -x_{6} & x_{9}\end{array}\right]$	g1f1s2c2t3R1u24Z3a2	8
65	4	$\left[\begin{array}{llllllllll}0 & 0 & x_{3} & 0 & 0 & x_{6} & x_{7} & x_{8} & 0\end{array}\right]$	g1f1s1c1t3R2u13z2a2	588
66	4	$\left[\begin{array}{llllllllll}0 & x_{2} & 0 & -x_{2} & x_{5} & x_{6} & 0 & x_{8} & 0\end{array}\right]$	g2f3s1c1t11R1u24Z3a2	4
67	4	$\left[\begin{array}{llllllllll}0 & x_{2} & 0 & x_{4} & 0 & x_{6} & 0 & x_{8} & 0\end{array}\right]$	g1f1s1c1t11R2u1z2a2	146
68	4	$\left[\begin{array}{llllllllll}0 & x_{2} & 0 & x_{4} & x_{5} & x_{6} & 0 & -x_{6} & 0\end{array}\right]$	g2f1s2c1t11R1u24Z3a2	8
69	4	$\left[\begin{array}{llllllllll}0 & x_{2} & 0 & x_{4} & x_{5} & x_{6} & 0 & 0 & 0\end{array}\right]$	g2f1s1c1t9R3u1Z2a2	120
70	4	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & -x_{2} & 0 & x_{6} & -x_{3} & -x_{6} & x_{9}\end{array}\right]$	g1f3s1c2t9R1u24z3a2	9
71	4	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & -x_{2} & x_{5} & x_{6} & 0 & -x_{6} & x_{5}\end{array}\right]$	g1f1s1c1t11R2u17Z2a2	8
72	4	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & -x_{2} & x_{5} & x_{6} & 0 & 0 & 0\end{array}\right]$	g2f3s1c1t9R2u17Z2a2	36
73	4	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & 0 & 0 & 0 & x_{7} & x_{8} & 0\end{array}\right]$	g1f1s2c1t5R2u11Z2a2	32
74	4	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & 0 & x_{5} & x_{6} & -x_{3} & -x_{6} & 0\end{array}\right]$	g2f1s1c1t5R2u17Z2a2	12
75	4	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & 0 & x_{5} & x_{6} & -x_{3} & -x_{6} & x_{5}\end{array}\right]$	g1f1s1c1t3R2u17Z2a2	8
76	4	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & x_{4} & 0 & 0 & x_{7} & 0 & 0\end{array}\right]$	g1f1s1c1t10R2u17Z2a2	150
77	4	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & x_{4} & 0 & x_{6} & 0 & 0 & 0\end{array}\right]$	g1f1s2c1t9R2u19z2a2	24
78	4	$\left[\begin{array}{llllllllll}x_{1} & 0 & x_{3} & 0 & 0 & 0 & -x_{3} & x_{8} & x_{9}\end{array}\right]$	g1f2s1c1t5R2u10z2a2	8
79	4	$\left[\begin{array}{llllllllll}x_{1} & 0 & x_{3} & 0 & 0 & 0 & x_{7} & 0 & x_{9}\end{array}\right]$	g1f1s1c2t5R2u1Z1a2	1056
80	4	$\left[\begin{array}{llllllllll}x_{1} & 0 & x_{3} & x_{4} & 0 & x_{6} & -x_{3} & -x_{6} & x_{1}\end{array}\right]$	g1f1s1c1t3R2u1z2a2	8
81	4	$\left[\begin{array}{llllllllll}x_{1} & x_{2} & 0 & -x_{2} & x_{1} & x_{6} & x_{7} & -x_{6} & 0\end{array}\right]$	g1f1s1c1t11R2u13z2a2	16
82	4	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & 0 & x_{4} & x_{5} & 0 & 0 & 0 & 0\end{array}\right]$	g1f1s2c1t10R2u11Z1a2	990
83	4	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & x_{3} & -x_{2} & 0 & x_{6} & -x_{3} & 0 & x_{1}\end{array}\right]$	g1f1s1c1t10R2u1Z2a2	8
84	4	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & x_{3} & -x_{2} & x_{1} & 0 & -x_{3} & x_{8} & 0\end{array}\right]$	g1f1s1c1t10R2u13z2a2	16
85	4	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & x_{3} & -x_{2} & x_{1} & x_{6} & 0 & 0 & 0\end{array}\right]$	g1f1s1c1t9R2u12z2a2	36
86	4	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & x_{3} & 0 & 0 & 0 & -x_{3} & 0 & x_{9}\end{array}\right]$	g1f2s1c1t5R2u19Z2a2	8
87	4	$\left[\begin{array}{llllllllll}x_{1} & x_{2} & x_{3} & 0 & 0 & 0 & -x_{3} & x_{8} & x_{1}\end{array}\right]$	g1f1s1c1t5R2u12Z2a2	12
88	5	[0 $0000000 x_{5} x_{6}$	g1f1s1c2t1R2u11Z2a2	368
89	5	[0 $00000 x_{4}$	g1f1s1c2t1R2u10Z2a2	240
90	5	[0 $00000 x_{4}$	g1f3s1c1t1R2u19Z2a2	48
91	5	$\left[\begin{array}{ccccccccc}0 & 0 & 0 & x_{4} & x_{5} & x_{6} & x_{7} & -x_{6} & x_{9}\end{array}\right]$	g1f2s1c1t1R2u12z2a2	24
92	5	$\left[\begin{array}{ccccccccc}0 & 0 & 0 & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & -x_{5}\end{array}\right]$	g1f1s1c1t1R3u10Z2a2	32
93	5	$\left[\begin{array}{lllllllll}0 & 0 & 0 & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & 0\end{array}\right]$	g2f1s1c1t1R2u10z2a2	96
94	5	$\left[\begin{array}{lllllllll}0 & 0 & 0 & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{5}\end{array}\right]$	g1f1s1c1t1R3u11z2a2	64
95	5	$\left[\begin{array}{ccccccccc}0 & 0 & x_{3} & 0 & 0 & x_{6} & x_{7} & x_{8} & x_{9}\end{array}\right]$	g1f1s1c2t3R2u13z2a2	1176
96	5	$\left[\begin{array}{llllllllll}0 & x_{2} & 0 & x_{4} & x_{5} & x_{6} & 0 & x_{8} & 0\end{array}\right]$	g2f1s1c1t11R2u1z2a2	292
97	5	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & -x_{2} & 0 & x_{6} & -x_{3} & x_{8} & x_{9}\end{array}\right]$	g1f1s1c2t9R2u1z2a2	26
98	5	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & -x_{2} & 0 & x_{6} & x_{7} & -x_{6} & x_{9}\end{array}\right]$	g1f1s1c2t9R2u17Z2a2	14
99	5	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & -x_{2} & 0 & x_{6} & x_{7} & x_{8} & 0\end{array}\right]$	g1f3s1c1t12R1u24Z3a2	3
100	5	[0 $0 x_{2}$	g3f1s1c1t10R1u24Z3a2	10
101	5	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & -x_{2} & x_{5} & x_{6} & 0 & -x_{6} & x_{9}\end{array}\right]$	g1f2s1c1t11R2u17Z2a2	8

TABLE B1—Continued

\#	p	Simplified form of fundamental matrices	For example generated by:	n
102	5	$\left[\begin{array}{lllllllll}0 & x_{2} & x_{3} & -x_{2} & x_{5} & x_{6} & 0 & x_{8} & x_{5}\end{array}\right]$	g2f1s1c1t11R2u17z2a2	12
103	5	$\left[\begin{array}{lllllllll}0 & x_{2} & x_{3} & 0 & 0 & 0 & x_{7} & x_{8} & x_{9}\end{array}\right]$	g1f1s1c2t5R2u11z2a2	240
104	5	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & 0 & x_{5} & x_{6} & -x_{3} & -x_{6} & x_{9}\end{array}\right]$	g1f2s1c1t3R2u17Z2a2	32
105	5	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & 0 & x_{5} & x_{6} & -x_{3} & x_{8} & 0\end{array}\right]$	g2f1s1c1t5R2u11Z2a2	36
106	5	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & 0 & x_{5} & x_{6} & x_{7} & -x_{6} & x_{5}\end{array}\right]$	g1f1s1c1t3R3u17Z2a2	40
107	5	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & x_{4} & 0 & x_{6} & x_{7} & -x_{6} & 0\end{array}\right]$	g1f1s2c1t12R1u24Z3a2	6
108	5	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & 0 & -x_{6} & x_{5}\end{array}\right]$	g1f1s1c1t11R3u17Z2a2	40
109	5	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & 0 & 0 & 0\end{array}\right]$	g2f1s1c1t9R3u17Z2a2	168
110	5	$\left[\begin{array}{llllllllll}x_{1} & 0 & x_{3} & 0 & 0 & 0 & x_{7} & x_{8} & x_{9}\end{array}\right]$	g1f1s1c2t5R2u10z2a2	128
111	5	$\left[\begin{array}{llllllllll}x_{1} & 0 & x_{3} & x_{4} & 0 & x_{6} & -x_{3} & -x_{6} & x_{9}\end{array}\right]$	g1f2s1c1t3R2u1Z2a2	8
112	5	$\left[\begin{array}{lllllllll}x_{1} & 0 & x_{3} & x_{4} & 0 & x_{6} & -x_{3} & x_{8} & x_{1}\end{array}\right]$	g1f1s1c1t3R3u1Z2a2	16
113	5	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & 0 & -x_{2} & x_{1} & x_{6} & x_{7} & x_{8} & 0\end{array}\right]$	g1f1s1c1t11R3u13z2a2	56
114	5	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & 0 & x_{4} & x_{5} & x_{6} & 0 & 0 & 0\end{array}\right]$	g1f1s2c1t9R2u10z2a2	120
115	5	$\left[\begin{array}{llllllllll}x_{1} & x_{2} & x_{3} & -x_{2} & 0 & x_{6} & -x_{3} & 0 & x_{9}\end{array}\right]$	g1f2s1c1t10R2u1z2a2	8
116	5	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & x_{3} & -x_{2} & x_{1} & 0 & x_{7} & x_{8} & 0\end{array}\right]$	g1f1s1c1t10R3u13Z2a2	56
117	5	$\left[\begin{array}{llllllllll}x_{1} & x_{2} & x_{3} & 0 & 0 & 0 & -x_{3} & x_{8} & x_{9}\end{array}\right]$	g1f2s1c1t5R2u12Z2a2	12
118	5	$\left[\begin{array}{llllllllll}x_{1} & x_{2} & x_{3} & 0 & 0 & 0 & x_{7} & 0 & x_{9}\end{array}\right]$	g1f1s2c1t5R2u19z2a2	32
119	5	$\left[\begin{array}{llllllllll}x_{1} & x_{2} & x_{3} & 0 & 0 & 0 & x_{7} & x_{8} & -x_{1}\end{array}\right]$	g1f1s1c1t5R3u11Z2a2	16
120	5	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & x_{3} & 0 & 0 & 0 & x_{7} & x_{8} & x_{1}\end{array}\right]$	g1f1s1c1t5R3u10Z2a2	32
121	5	$\left[\begin{array}{llllllllll}x_{1} & x_{2} & x_{3} & x_{2} & x_{5} & x_{6} & -x_{3} & -x_{6} & x_{1}\end{array}\right]$	g2f1s1c1t5R2u1Z1a2	70
122	5	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & x_{3} & x_{4} & -x_{1} & x_{6} & 0 & 0 & 0\end{array}\right]$	g1f1s1c1t9R3u19Z2a2	48
123	5	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & x_{3} & x_{4} & 0 & x_{6} & -x_{3} & 0 & x_{1}\end{array}\right]$	g1f1s1c1t10R3u1Z2a2	16
124	5	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{1} & x_{6} & 0 & 0 & 0\end{array}\right]$	g1f1s1c1t9R3u10Z2a2	96
125	5	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & 0 & 0 & 0 & 0\end{array}\right]$	g1f1s2c1t9R2u1172a2	24
126	6	$\left[\begin{array}{lllllllll}0 & 0 & 0 & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9}\end{array}\right]$	g1f1s1c1t1R3u12Z2a2	5160
127	6	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & -x_{2} & 0 & x_{6} & x_{7} & x_{8} & x_{9}\end{array}\right]$	g1f1s1c2t9R2u19z2a2	199
128	6	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & -x_{2} & x_{5} & x_{6} & -x_{3} & x_{8} & x_{9}\end{array}\right]$	g2f3s1c2t11R1u24Z3a2	34
129	6	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & -x_{2} & x_{5} & x_{6} & 0 & x_{8} & x_{9}\end{array}\right]$	g1f3s1c1t11R2u17Z2a2	44
130	6	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & -x_{2} & x_{5} & x_{6} & x_{7} & x_{8} & 0\end{array}\right]$	g2f3s1c1t10R1u24Z3a2	10
131	6	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & 0 & x_{5} & x_{6} & -x_{3} & x_{8} & x_{9}\end{array}\right]$	g3f1s1c1t3R2u17Z2a2	8
132	6	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & 0 & x_{5} & x_{6} & x_{7} & -x_{6} & x_{9}\end{array}\right]$	g1f2s1c1t3R3u17Z2a2	40
133	6	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & 0 & x_{5} & x_{6} & x_{7} & x_{8} & 0\end{array}\right]$	g2f1s1c1t5R3u17Z2a2	192
134	6	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & 0 & x_{5} & x_{6} & x_{7} & x_{8} & x_{5}\end{array}\right]$	g1f1s1c1t3R2u1172a2	32
135	6	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & x_{4} & 0 & x_{6} & x_{7} & x_{8} & 0\end{array}\right]$	g1f3s2c1t12R1u24Z3a2	3
136	6	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & 0 & -x_{6} & x_{9}\end{array}\right]$	g1f2s1c1t11R3u17Z2a2	40
137	6	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & 0 & x_{8} & x_{5}\end{array}\right]$	g1f1s1c1t11R2u19Z2a2	32
138	6	$\left[\begin{array}{llllllllll}0 & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & -x_{6} & x_{5}\end{array}\right]$	g1f1s1c1t12R2u17Z2a2	84
139	6	$\left[\begin{array}{lllllllll}x_{1} & 0 & x_{3} & x_{4} & 0 & x_{6} & -x_{3} & x_{8} & x_{9}\end{array}\right]$	g1f2s1c1t3R3u1Z2a2	16
140	6	$\left[\begin{array}{lllllllll}x_{1} & 0 & x_{3} & x_{4} & 0 & x_{6} & x_{7} & -x_{6} & x_{9}\end{array}\right]$	g1f1s2c1t3R2u1z2a2	16
141	6	$\left[\begin{array}{lllllllll}x_{1} & 0 & x_{3} & x_{4} & 0 & x_{6} & x_{7} & -x_{6} & x_{9}\end{array}\right]$	g1f2s2c1t5R2u5z3a2	16
142	6	$\left[\begin{array}{llllllllll}x_{1} & x_{2} & 0 & x_{4} & x_{1} & x_{6} & x_{7} & x_{8} & 0\end{array}\right]$	g1f1s1c1t11R2u10Z2a2	48
143	6	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & 0 & x_{4} & x_{5} & x_{6} & x_{7} & -x_{6} & 0\end{array}\right]$	g1f1s2c1t11R2u13z2a2	16
144	6	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & x_{3} & -x_{2} & 0 & x_{6} & x_{7} & 0 & x_{9}\end{array}\right]$	g1f3s1c1t10R2u1Z2a2	8
145	6	$\left[\begin{array}{llllllllll}x_{1} & x_{2} & x_{3} & -x_{2} & x_{1} & x_{6} & x_{7} & x_{8} & 0\end{array}\right]$	g1f1s1c1t12R2u13z2a2	126
146	6	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & x_{3} & -x_{2} & x_{5} & x_{6} & -x_{3} & x_{6} & x_{9}\end{array}\right]$	g1f1s1c1t10R2u10Z1a2	144
147	6	$\left[\begin{array}{llllllllll}x_{1} & x_{2} & x_{3} & -x_{2} & x_{5} & x_{6} & x_{3} & -x_{6} & x_{9}\end{array}\right]$	g1f1s1c1t11R2u11Z1a2	144
148	6	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & x_{3} & 0 & 0 & 0 & x_{7} & x_{8} & x_{9}\end{array}\right]$	g1f1s1c1t5R3u12Z2a2	1536
149	6	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & x_{3} & x_{2} & x_{5} & x_{6} & -x_{3} & -x_{6} & x_{9}\end{array}\right]$	g1f1s1c1t3R2u19Z1a2	358
150	6	$\left[\begin{array}{llllllllll}x_{1} & x_{2} & x_{3} & x_{2} & x_{5} & x_{6} & -x_{3} & x_{8} & x_{1}\end{array}\right]$	g2f1s1c1t5R2u10Z2a2	12
151	6	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & x_{3} & x_{4} & 0 & x_{6} & -x_{3} & 0 & x_{9}\end{array}\right]$	g1f2s1c1t10R3u1Z2a2	16
152	6	$\left[\begin{array}{lllllllll}x_{1} & x_{2} & x_{3} & x_{4} & 0 & x_{6} & -x_{3} & x_{8} & x_{1}\end{array}\right]$	g1f1s1c1t12R2u1Z2a2	42

TABLE B1—Continued

$\#$	p	Simplified form of fundamental matrices							For example generated by:

APPENDIX C

Details on the Computations of Sections 3.4 and 3.5

Here we denote by \oplus the "AND" symbol and by brackets [] an interval (unix-like notation). For example, $\mathrm{p} 1 \mathrm{~g}[1-2] \oplus \mathrm{p} 2 \mathrm{~g} 3$ represents the set of the three cases: p 1 g 1 , p1g2 and p2g3.

Considering the simplification rules given in Section 3.4, there only remains, from the intrinsic part,

$$
\begin{aligned}
& \mathrm{p} 1 \mathrm{~g} 1 \mathrm{f}[1-3] \mathrm{s} 2 \mathrm{~b} 1 \mathrm{~B} 1 \mathrm{c}[1-3] \oplus \mathrm{p} 2 \mathrm{~g} 1 \mathrm{f}[1-3] \mathrm{s} 2 \mathrm{~b}[1-3] \mathrm{B}[1-3] \mathrm{c}[1-3] \oplus \mathrm{p} 3 \mathrm{~g}[1-3] \\
& \quad \mathrm{f}[1-3] \mathrm{s} 2 \mathrm{~b} 1 \mathrm{~B} 1 \mathrm{c}[1-3]
\end{aligned}
$$

which is 117 cases, and from the extrinsic parameters part,

R1r1a2u1W3T1t1D3Z3 \oplus R1r1a2u1W3T2t[1-12]D[1-3]Z3 $\oplus R[2-3] r 1 a 2 u[1-24]$ $\mathrm{W}[1-3] \mathrm{T} 1 \mathrm{t} 1 \mathrm{D} 3 \mathrm{Z} 3 \oplus \mathrm{R}[2-3] \mathrm{r} 1 \mathrm{a} 2 \mathrm{u}[1-24] \mathrm{W}[1-3] \mathrm{T} 2 \mathrm{t}[1-12] \mathrm{D}[1-3] \mathrm{Z}[1-3]$ $\oplus \mathrm{R} 4 \mathrm{r} 1 \mathrm{a}[1-2] \mathrm{u}[1-24] \mathrm{W}[1-3] \mathrm{T} 1 \mathrm{t} 1 \mathrm{D} 3 Z 3 \oplus \mathrm{R} 4 \mathrm{r} 1 \mathrm{a} 1 \mathrm{u}[1-24] \mathrm{W}[1-3] \mathrm{T} 2 \mathrm{t}[4 ; 8 ; 12]$ $\mathrm{D} 2 \mathrm{Z}[1-3] \oplus \mathrm{R} 4 \mathrm{r} 1 \mathrm{a} 2 \mathrm{u}[1-24] \mathrm{W}[1-3] \mathrm{T} 2 \mathrm{t}[1-12] \mathrm{D}[1 ; 3] \mathrm{Z}[1-3]$
which is 21,709 cases, leading to a total of $2,539,953$ particular cases. This is approximately 100 times less than previously determined.

Continuing in Section 3.5, the homographic relation cases are

```
p1g1f[1-3]s1b1B1c[1-3].MVTortho
p2g1f[1-3]s1b[2-3]B[1-2]c[1-3].MVTpara
p3g[1-3]f[1-3]s1b1B1c[1-3].MVTpersp
```

where

```
MVTpersp = R1r1a2u1W3T1t1D3Z3
    R[2-3]r1a2u[1-24]W3T1t1D3Z3
    R4r1a[1-2]u[1-24]W3T1t1D3Z3
    MVTpara = R[2-3]r1a2u[10-12;14-16] W2T1t1D2Z3
    R[2-3]r1a2u[10-12;14-16]W2T2t[10-12]D2Z2
    R[2-3]r1a2u[10-12;14-16]W2T2t[1-12]D2Z[1;3]
    R4r1a[1-2]u[10-12;14-16]W2T1t1D2Z3
    R4r1a1u[10-12;14-16]W2T2t[10-12]D2Z2
    R4r1a2u[10-12;14-16]W2T2t[1-12]D2Z[1;3]
MVTortho = R1r1a2u1W3T1t1D3Z3
    R1r1a2u1W3T2t[1;3;5;7]D3Z3
    R[2-3]r1a2u[9;13]W3T1t1D3Z3
    R[2-3]r1a2u[9;13]W3T2t[1;3;5;7]D3Z3
    R4r1a[1-2]u[9;13]W3T1t1D3Z3
    R4r1a1u[9;13]W3T2t12D3Z3
    R4r1a2u[9;13]W3T2t[1;3;5;7]D3Z3
```

which is 351 cases of orthographic homographic relations, 18,360 cases of paraperspective homographic relations, and 2,619 cases of perspective homographic relations, leading to a total 21,330 cases of homographic relations.

We will not study paraperspective and orthographic projection for fundamental matrices since the domain of validity of such projection approximations is included in conditions of existence of homographic relation. In the case of perspective projection, $(\mathrm{p} 3): \mathbf{t} \neq \mathbf{0}$ thus $u_{0}= \pm 1$ or $u_{1}= \pm 1$.

As previously determined,

$$
\begin{aligned}
\text { MVTpersp }= & \text { R1r1a2u1W3T2t [1-12]D3Z3 } \\
& \text { R[2-3]r1a2u[1-24]W3T2t [1-12]D3Z[1-3] } \\
& \text { R4r1a1u[1-24]W3T2t [4;8;12]D3Z2 } \\
& \text { R4r1a2u[1-24]W3T2t [1-12]D3Z[1-3] }
\end{aligned}
$$

inducing 72,252 cases of fundamental relations.

REFERENCES

1. H. Akaike, Use of an information theoretic quantity for statistical model identification, in 5th Hawaï Int. Conf. System Sciences, 1972, pp. 249-250.
2. J. Y. Aloimonos, Perspective approximations, Image Vision Comput. 8, 1990, 179-192.
3. M. Armstrong, A. Zisserman, and P. Beardsley, Euclidean structure from uncalibrated images, in Proceedings of the 5th British Machine Vision Conference (E. Hancock, Ed.), York, UK, Sept. 1994, pp. 508-518, BMVA Press.
4. P. Brand, R. Mohr, and P. Bobet, Distorsions optiques: Correction dans un modèle projectif, Technical Report 1933, LIFIA-INRIA Rhône-Alpes, 1993.
5. L. de Agapito, E. Hayman, and I. L. Reid, Self-calibration of a rotating camera with varying intrinsic parameters, in British Machine Vision Conference, Southampton, UK, Sept. 1998, BMVA Press.
6. D. Dementhon and L. S. Davis, Exact and approximate solutions to the three-point perspective problem, Technical Report CAR-TR-471, Computer Vision Laboratory, University of Maryland, 1989.
7. F. Devernay and O. Faugeras, Automatic calibration and removal of distortion from scenes of structured environments, in Investigative and Trial Image Processing (L. I. Rudin and S. K. Bramble, Eds.), Vol. 2567, Proc. SPIE, San Diego, CA, July 1995, SPIE, Bellingham, WA.
8. R. Enciso and T. Vieville, Experimental self-calibration from four views, in 8th International Conference Image Analysis and Processing (ICIAP'95), San Remo, Italy, Sept. 1995 (C. Braccini et al., Ed.), Vol. 974, Lecture Notes in Computer Science, pp. 307-312, Springer-Verlag, New York.
9. O. Faugeras, Three-Dimensional Computer Vision: A Geometric Viewpoint, MIT Press, Cambridge, MA, 1993.
10. R. Hartley, Self-calibration from multiple views with a rotating camera, in Proceedings of the 3rd European Conference on Computer Vision, Stockholm, Sweden, May 1994 (J.-O. Eklundh, Ed.), Vol. 800-801, Lecture Notes in Computer Science, pp. 471-478, Springer-Verlag, New York.
11. R. Horaud, F. Dornaika, B. Lamiroy, and S. Christy, Object pose: The link between weak perspective, paraperspective, and full perspective, Internat. J. Comput. Vision 22, 1997.
12. D. Lingrand, Analyse Adaptative du Mouvement dans des Séquences Monoculaires non Calibrées, Ph.D. thesis, Université de Nice-Sophia Antipolis, INRIA, Sophia Antipolis, France, July 1999.
13. D. Lingrand, Particular forms of homography matrices, in BMVC 2000, Sept. 2000, Vol. 2, pp. 596-605.
14. D. Lingrand, Using particular forms of fundamental matrices, In SIRS 2000, July 2000, Vol. 1, pp. 209-215.
15. D. Lingrand, J. Montagnat, L. Collins, and J. Gotman, Compensating small head displacements for an accurate fmri registration, in Proceedings of the 10th Scandinavian Conference on Image Analysis, Bergen, Norway, June 2001 (I. Austvoll, Ed.), pp. 10-16.
16. D. Lingrand and T. Viéville, Dynamic foveal 3D sensing using affine models, in Proceedings of the International Conference on Pattern Recognition, Vienna, Austria, Aug. 1996, Vol. 1, pp. 810-814, IEEE Comput. Soc. Press, Los Alamitos, CA.
17. Q.-T. Luong, R. Deriche, O. Faugeras, and T. Papadopoulo, On determining the fundamental matrix: Analysis of different methods and experimental results, in Israelian Conf. On Artificial Intelligence and Computer Vision, Tel-Aviv, Israel, 1993. A longer version is INRIA Tech Report RR-1894.
18. C. J. Poelman and T. Kanade, A paraperspective factorization method for shape and motion recovery, Technical Report CMU-CS-93-219, School of Computer Science, Carnegie Mellon University, 1993.
19. L. Quan, Self-calibration of an affine camera from multiple views, Internat. J. Comput. Vision 19, 1996, 93-105.
20. O. Rodrigues, Des lois géométriques qui régissent les déplacements d'un système solide dans l'espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produire, J. Math. Pures Appl. 5, 1840, 380-440.
21. P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detection, Wiley, New York, 1987.
22. C. C. Slama (Ed.), Manual of Photogrammetry, 4th ed., Amer. Soc. Photogrammetry, 1980.
23. S. Soatto and P. Perona. Dynamic rigid motion estimation from weak perspective, in Proceedings of the 5th International Conference on Computer Vision, Boston, MA, June 1995, pp. 321-328, IEEE Computer Soc. Press, Los Alamitos, CA.
24. P. H. S. Torr, Geometric motion segmentation and model selection, Phil. Trans. R. Soc. Lond. A 356, 1998, 1321-1340.
25. T. Viéville, Autocalibration of visual sensor parameters on a robotic head, Image Vision Comput. 12, 1994.
26. T. Viéville and D. Lingrand, Using specific displacements to analyze motion without calibration, Internat. J. Comput. Vision 31, 1999, 5-29.
27. R. G. Willson, Modeling and Calibration of Automated Zoom Lenses, Ph.D. thesis, Department of Electrical and Computer Engineering, Carnegie Mellon University, 1994. CMU-RI-TR-94-03.
28. Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong, A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry, Artif. Intell. J. 78, 1995, 87-119.
29. Z. Zhang, R. Deriche, O. Faugeras, and Q. T. Luong, A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry, Artif. Intell. J. 78, 1994, 87-119. Also INRIA Research Report 2273, May 1994.

[^0]: ${ }^{1}$ New affiliation: I3S-UNSA-CNRS, Creative team, 2000, route des Lucioles, Les Algorithmes, bât. Euclide B, B.P. 121, F 06903 Sophia Antipolis Cédex, France. E-mail: lingrand@i3s.unice.fr.

[^1]: ${ }^{2}$ This work is done using Maple for symbolic computation.

