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For decades, there has been an intensive research effort in the Computer Vision
community to deal with video sequences. In this paper, we present a new method for
recovering a maximum of information on displacement and projection parameters in
monocular video sequences without calibration. This work follows previous studies
on particular cases of displacement, scene geometry, and camera analysis and focuses
on the particular forms of homographic matrices. It is already known that the number
of particular cases involved in a complete study precludes an exhaustive test. To lower
the algorithmic complexity, some authors propose to decompose all possible cases in a
hierarchical tree data structure but these works are still in development (T. Viéville and
D. Lingrand, Internat. J. Comput. Vision 31, 1999, 5–29). In this paper, we propose
a new way to deal with the huge number of particular cases: (i) we use simple rules
in order to eliminate some redundant cases and some physically impossible cases,
and (ii) we divide the cases into subsets corresponding to particular forms deter-
mined by simple rules leading to a computationally efficient discrimination method.
Finally, some experiments were performed on image sequences acquired either us-
ing a robotic system or manually in order to demonstrate that when several models
are valid, the model with the fewer parameters gives the best estimation, regard-
ing the free parameters of the problem. The experiments presented in this paper
show that even if the selected case is an approximation of reality, the method is still
robust. c© 2002 Elsevier Science (USA)

Key Words: particular cases; homographies; perspective; paraperspective and
orthographic projections.

1. INTRODUCTION

For decades, there has been an intensive research effort in the computer vision community
to deal with video sequences. Researchers have been interested in recovering 3D object
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structures, and projection or displacement parameters from such sequences. In the general
case, the acquisition device must be considered uncalibrated (for example, in the case of an
auto-focus camera). In this paper, we consider uncalibrated monocular video sequences for
which we intend to recover as much information as possible on displacement and projection
parameters.

The motivations for such studies are threefold: (i) to eliminate singularities of general
equations, (ii) to estimate the parameters with more robustness, and (iii) to retrieve para-
meters that cannot be retrieved in the general case.

The theory states that there exists relations between 2D projected points [9] but the
system cannot be solved in the general case since there are more parameters than equations.
Furthermore, these equations are degenerate or present singularities in some particular
cases. However, we can solve the equations if we know or assume values or relations of
some parameters.

In a previous study [26], we have shown that we increase the numerical precision of
retrieved parameters by using the set of constraints that gives the smallest residual error
given by a criterion (described in the cited paper).

This paper extends previous works [13, 14, 26] on particular displacement cases, scene
geometry, and camera analysis. It focuses on the particular forms of fundamental and
homographic matrices.

Several authors have already been interested in particular cases of projection [2, 6, 11,
19, 23] or displacement [3, 5, 10, 24, 25]. Some of them consider several particular cases,
compare these different parameterizations, and identify which model is consistent with the
data.

We will build an exhaustive list of particular cases of projection and displacement, setting
some of the parameters to constant and/or known values and using known relations between
parameters. This reduces the number of unknowns in the equations and also avoids some
singular cases.

It is already known that the huge number of particular cases prevents exhaustive stud-
ies [13]. Some attempts in order to reduce the algorithmic complexity are based on tree
structures but they are still in development [26]. In this paper, we introduce a new method
in order to deal with all cases: (i) we use simple rules in order to eliminate some redun-
dant cases and some physically impossible cases, and (ii) we divide the cases into subsets
corresponding to particular forms determined by simple rules leading to a computation-
ally efficient discrimination method. We will provide details for each of these steps in the
sections hereafter.

2. STEREO FRAMEWORK

In this section, we describe the equations and the formalism of displacement and pro-
jection that allows us to achieve a minimal parameterization of the relations between 2D
points into two frames.

In a video sequence, we will consider frames pairwise: two consecutives frames or the
first one and the last one. This work could be easily extended to trifocal tensors. Adding
some other constraints, the framework could also be extended to sequences, assuming
for examples that the translation is constant between consecutives frames, or varies with
constant acceleration (see Section 6).
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FIG. 1. Stereo framework.

2.1. Rigid Displacements

We will consider a rigid scene or piecewise rigid scene. A 3D-point M1 = [X1 Y1 Z1 1]T

is moving onto the point M2 = [X2 Y2 Z2 1]T by a rotation R and a translation t = [t0 t1 t2]T:
M2 = RM1 + t as shown in Fig. 1.

A rotation matrix R depends only on three parameters r = [r0 r1 r2]T related to the
rotation angle θ and to the rotation axis direction (represented by the unary vector u) by
r = 2 tan( θ

2 )u ⇔ θ = 2 arctan( ‖r‖
2 ).

Using the notation of the cross-product

r̃ = r∧ =


 0 −r2 r1

r2 0 −r0

−r1 r0 0




so that

∀x, r ∧ x = r̃x

r̃ is the antisymmetric matrix representing the cross-product by the r operator.
The rotation matrix R = er̃ can be developed as a rational Rodrigues formula [20]:

R = I +
[

r̃ + 1
2 r̃2

1 + rT · r
4

]
. (1)

2.2. Camera Projection

The most commonly accepted hypothesis states that a 3D point M is projected with a
perspective projection onto an image plane on a 2D point m = [u v 1]T.
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2.2.1. The perspective model. Choosing a reference frame attached to the camera, the
projection equation is

Z


 u

v

1


 =


αu γ u0 0

0 αv v0 0

0 0 1 0







X
Y
Z
1


, (2)

where αu and αv represent the horizontal and vertical lengths, u0 and v0 correspond to the
image of the optical center, and γ is the skew factor.

This model can be refined, by taking optical distortions into account [4, 7, 22]. In this
paper, we will consider that the needed corrections have been done as a preprocessing step.

Two approximation models of the projection equation (2) have been proposed in the
literature: the paraperspective and the orthoperspective projection.

2.2.2. The paraperspective model. The perspective projection model is approximated
to its first order with respect to the 3D coordinates [2, 11, 18]. This is equivalent to approx-
imating the perspective projection in two steps (see Fig. 2): (i) a projection parallel to the
gaze direction onto an auxiliary plane Pa , which is parallel to the image plane and passes
through the scene center M0 = [X0 Y0 Z0]T followed by (ii) a perspective projection onto
the image plane. This so-called paraperspective model yields linear equations


 u

v

1


 =


αu γ βu u0

0 αv βv v0

0 0 0 1







X
Y
Z
1


, (3)

where {
βu = αu

X0
Y0

+ γ Y0
Z0

βv = αv
Y0
Z0

.

However, its parameters depend on the gaze direction of the scene (βu and βv are related to
the other intrinsic parameters and to the gaze direction). This equation corresponds to the

FIG. 2. The paraperspective projection.
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FIG. 3. The orthographic projection.

most general case of paraperspective projection, although more simple expressions have
been proposed [19].

2.2.3. The orthographic model. The zero-order development with respect to the 3D
depth consists of a rougher approximation. It is also equivalent to another two-step ap-
proximation: (i) an orthogonal projection onto the auxiliary plane Pa followed by (ii) a
perspective projection onto the image plane (see Fig. 3). This approximation, called the
orthographic model (4), is well adapted to foveal attention and is characterized by linear
equations without any new parameters. It is an approximation of the paraperspective model
when the observed objects are in the fovea, i.e., close to the optical axis:


 u

v

1


 =


αu γ 0 u0

0 αv 0 v0

0 0 0 1







X
Y
Z
1


. (4)

Those three projection models can be integrated in the expression

κm =


αu γ λβu + µu0 (1 − µ)u0

0 αv λβu + µv0 (1 − µ)u0

0 0 µ (1 − µ)




︸ ︷︷ ︸
A

M (5)

with

Projection case λ µ

Perspective projection 1 1
Orthographic projection 0 0
Paraperspective projection 1 0
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2.3. General Equations between Two Frames

Let I1 and I2 denote two images. In the general case, there exists a fundamental relation
between an image point m2 in I2 and its corresponding image point m1 in I1




κ1m1 = A1M1

κ2m2 = A2M2

M2 = RM1 + t
⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣

m1


 0

0
0


 A1


 0

0
0


 m2 A2[R ‖ t]

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

which is a bilinear form in m1 and m2 (see [12] for details). This equation can be rewritten
in a more common way

mT
2 Fm1 = 0,

where F is called the fundamental matrix [9].
However, this relation is not defined in some singular cases. For example, it is well known

that, in the perspective projection case, if the displacement is a pure rotation, or if the scene
is planar, the relation between points is homographic

m2 = Hm1,

where H is called the homographic matrix. In the case of a pure rotation, H = H∞ = A2RA−1
1 .

In the case of a plane with normal n and distance to the origin d, H = A2(R + tnT

d )A−1
1 which

goes to H∞ when d goes to ∞. H∞ is the homography of the plane at infinity.
Our first new contribution in this paper will be explained in the following two Sections 2.4

and 2.5. It consists of determining in which case of displacement or structure, the relation
between corresponding 2D points is homographic when the projection is paraperspective
(2.4) or orthographic (2.5).

2.4. Homographic Relation in the Paraperspective Case

In the paraperspective case, we write the projection and displacement equations by ex-
tracting the third column from matrix A


 u

v

1


 =


αu γ u0

0 αv v0

0 0 1




︸ ︷︷ ︸
(A)−3


 X

Y
1




︸ ︷︷ ︸
M
¯

+ Z


βu

βv

1




︸ ︷︷ ︸
(A)3

= (A)−3M
¯

+ Z (A)3,

where (A)−3 is an invertible square matrix since

det((A)−3) = αuαv = 0.
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Thus, 


m1 = (A1)−3M
¯ 1 + Z1(A1)3

⇒M
¯ 1 = ((A1)−3)−1m1 − Z1((A1)−3)−1(A1)3

m2 = A2M2

M2 = [R | t]M1.

(6)

Let us denote

K = (A2[R | t])3 − (A2[R | t])−3((A1)−3)−1(A1)3

and

H∞para = (A2[R | t])−3((A1)−3)−1.

Equation (6) leads to m2 = H∞para m1 + Z1K.
This relation is homographic if and only if K = 0 or if there exists a (3 × 3) matrix Hz

such that Z1K = Hz m1. The first condition induces a displacement constraint. It leads to
the simple equation r = θM0, meaning that the rotation axis is parallel to the gaze direction.
In that case, the homography is H∞para as defined above. The second condition induces a
geometric relation on the 3D point: Z1 is an affine function of X1 and Y1, meaning that
the 3D points must belong to a plane P, which cannot contain the optical axis and the gaze
direction (see [12] for a demonstration). In that case, the homographic matrix is

Hpara = H∞para + [(A2[R | t])3 − [(A2[R | t])−3((A1)−3)−1(A1)3] n [(A1)−3 + (A1)3n]−1. (7)

2.5. Homographic Relation in the Orthographic Case

The orthographic case is a particular case of paraperspective projection for which the
gaze direction is the optical axis. Following a demonstration similar to the paraperspective
case, we also obtain two constraints; the displacement constraint states that the rotation axis
must be parallel to the optical axis, giving a homographic matrix

H∞ortho = (A2[R | t])−3((A1)−3)−1,

and the geometric constraint states that the 3D-points must belong to the same plane which
does not contain the optical axis. The homographic matrix is

Hortho = H∞ortho (A2[R | t])3 nT ((A1)−3)−1.

All constraints on displacement and scene geometry for homographic relations are summa-
rized in the following table:

Projection Displacement constraint Geometric constraint

Perspective t = 0 Plane
Paraperspective r ‖ CM0 Plane Z = f (X, Y )
Orthographic r ‖ 0z Plane Z = f (X, Y )
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3. ALL PARTICULAR CASES DESCRIPTION

In order to do an exhaustive study of particular cases combinations, we first study every
elementary particular case. We begin with particular camera parameter values, and then
particular displacements of the camera.

3.1. Particular Cases of Projection and Intrinsic Parameters

In the previous Section 2.2, we studied particular cases of projection and their simplifi-
cations. Let p1, p2, and p3 denote the different kinds of projection:

p1 λ = 0 and µ = 0 Orthographic
p2 λ = 1 and µ = 0 Paraperspective projection
p3 λ = 1 and µ = 1 Perspective projection

If no auto-focus and no zoom is used, for instance, it is possible to parameterize the
model with fewer parameters than in the general case. This is one reason to study particular
cases of intrinsic parameters.

Authors generally make several hypotheses regarding intrinsic parameters. For example,
usually, in case of auto-calibration, common hypothesis states that the intrinsic parameters
are constant. They may or may not be known. However, usually, some parameters are
constant and some others are not.

We now detail all prior knowledge on parameters leading to particular cases.

3.1.1. The principal point. The principal point of coordinates (u0, v0) is not fixed at
the image plane in the general case but can be fixed in some cases and its position can be
known (for example, at the image center). We then change the reference frame, regarding
the principal point position.

3.1.2. The γ parameter. This parameter is usually assumed to be zero or, at least,
considered a constant value. Furthermore, the numerical precision of the model obtained
by this parameter is not crucial for the paraperspective or the orthographic projection cases.

3.1.3. The αu and αv parameters. Enciso and Vı́eville [8] have experimentally proven
that, for a large number of cameras, the αu

αv
ratio can be considered as a constant value even

if other intrinsic parameters change. The constancy of this ratio can be expressed by the
equality f = αu = αv , and the transformation


αu γ λβu +µu0 (1−µ)u0

0 αv λβv +µv0 (1−µ)v0

0 0 µ (1−µ)


 =


 f γ λβu +µu0 (1−µ)u0

0 f λβv +µv0 (1−µ)v0

0 0 µ (1−µ)


 ·




αu
αv

0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


.

3.1.4. The βu and βv parameters. These parameters are zero except in the paraperspec-
tive projection case.

In the paraperspective case, βu and βv are related to the other intrinsic parameters by{
βu = αu

X0
Z0

+ γ Y0
Z0

βv = αv
Y0
Z0

.
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TABLE 1

Particular Cases of Intrinsic Parameters for 2 Frames

Label Case Description

g1 γ = 0 γ constant and zero
g2 γ = γ0 γ constant
g3 γ = γ (τ ) γ free

f1 αv = 1 αv constant and known
f2 αv = f0 αv constant
f3 αv = αv(τ ) αv free

s1 αu = αv(τ )
αu

αv

constant and known

s2 αu = αu(τ ) αu free

b1 βv = 0 βv constant and zero
b2 βv = β0 βv constant
b3 βv = βv(τ ) βv free

B1 βu = βv(τ ) βu and βv equal

B2 βu = βv(τ )
βu

βv

constant

B3 βu = βu(τ )
βu

βv

free

c1 u0 = v0 = 0 u0 and v0 constant and known
c2 u0 = u00 and v0 = v00 u0 and v0 constant
c3 u0 = u0(τ ) and v0 = v0(τ ) u0 and v0 free

Their ratio is

βu

βv

= αu X0 + γ Y0

αvY0
.

Thus, if we neglect γ with respect to αu
X0
Y0

, we obtain

βu

βv

= αu

αv

X0

Y0
,

which is also a constant ratio, known if the X0
Y0

value is known.
Table 1 summarizes, for each intrinsic parameter, the particular cases (constant values

are indexed by 0).
Subsequently, we refer to each case by the label given in the first column.

3.2. Particular Cases of Displacement

A rigid displacement is parameterized by the rotation R and the translation t parameters.

3.2.1. Discrete motion–continuous motion. In an image sequence, if the displacement
between two frames is small, we can approximate the rotation equations by their first-order
expansion, using the notations r = θu:

R = er̃ = I + r̃ + o(r̃) =


 1 −r2 r1

r2 1 −r0

−r r0 1


.
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Otherwise, if the motion is larger, we can also consider the second-order expansion

R = I + r̃ + r̃2

2
+ o(r̃2) =




1 − (
r2

1 + r2
2

)
r1r0 − r2 r2r0 + r1

r1r0 + r2 1 − (
r2

0 + r2
2

)
r2r1 − r0

r2r0 − r1 r2r1 + r0 1 − (
r2

0 + r2
1

)

.

3.2.2. About extrinsic parameters. The rotation parameters are related to the rotation
axis and the rotation angle by r = 2 tan θ

2 u, in the general case and r = θu, in the first or
second order of expansion. The vector u is an unary vector giving the direction of the
rotation axis.

Some components of u can be known or assumed zero. Some values of θ may yield
singularities; for example, θ = 0 corresponds to a null rotation. Another particular case is
the screw displacement for which θ = π

4 and the rotation axis is parallel to the translation
vector. The case θ = π is not considered in this paper but must be considered if the camera
has an angle of view greater than 180◦.

Some robotic systems give precise values of the robot displacements (angle, axis, trans-
lation). Some values may be known (we denote by −θ0 a constant and known value of a
parameter θ ). Other information on parallelism or orthogonality to a known direction may
be available.

For the translation vector, some components can also be known or assumed zero.

3.2.3. Relations between axis and direction. These relations in which we are interested
are orthogonality and parallelism:

• The rotation axis is orthogonal to the translation plane (e.g., planar motion): r ⊥ t ⇔
r · t = 0 ⇔ r0t0 + r1t1 + r2t2 = 0,

• Screw displacement:

r ‖ t ⇔ ∃κ/r = κt ⇔ ∃κ

/


r0 = κt0
r1 = κt1
r2 = κt2,

• The rotation axis or the translation direction is parallel or orthogonal to a known
direction denoted by g ( r or t).

3.2.4. All constraints on motion. All these constraints, also called “atomic particular
cases,” have simple expressions that can easily be combined. For this purpose, we use the
fact that u is an unary vector and that, for monocular systems, the norm of translation
cannot be recovered. To parameterize these vectors with only two parameters, we divide
each component by a nonzero component. Then, the dot product and scalar product induce
linear relations. For example, if t2 = 1, t ⊥ r is equivalent to t0u0 + t1u1 + u2 = 0 ⇒ u2 =
−t0u0 − t1u1.

All cases are collected in Table 2.

3.3. Generation of All Cases

In this section, we combine all previous constraints in order to generate all possible cases.
We then generate the simplified equations of our vision problem, i.e., the F or H matrix
coefficients, depending of the cases.
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TABLE 2

Particular Cases of Displacements

R1 R = I Null rotation
R2 R = I + r̃ First order
R3 R = I + r̃ + 1

2
r̃2 Second order

R4 R = I + r̃ + 1
2
r̃2

1 + rT r
4

General case

r1 r = 2 tan
(

θ

2

)
u

‖u‖ General case

a1 θ = π

2
Quarter turn

a2 θ Free angle

T1 t = 0 Null translation
T2 t = [t0 t1 t2]T Translation

t1 t1 = t2 = 0, t0 = 1 Trans. ‖ x axis
t2 t1 = 0, t0 = 1 Trans. ⊥ y axis
t3 t2 = 0, t0 = 1 Trans. ⊥ z axis
t4 t0 = 1 General trans.
t5 t0 = t2 = 0, t1 = 1 Trans. ‖ y axis
t6 t0 = 0, t1 = 1 Trans. ⊥ x axis
t7 t2 = 0, t1 = 1 Trans. ⊥ z axis
t8 t1 = 1 General trans.
t9 t0 = t1 = 0, t2 = 1 Trans. ‖ z axis
t10 t0 = 0, t2 = 1 Trans. ⊥ x axis
t11 t1 = 0, t2 = 1 Trans. ⊥ y axis
t12 t2 = 1 General trans.

D1 t · t = 0 Trans. ⊥ known axis
D2 t ∧ t = 0 Trans. ‖ known axis
D3 No relation

Z1 t · u = 0 Trans. ⊥ rotat. axis
Z2 t ∧ u = 0 Screw displacement
Z3 No relation

W1 r. r = 0 Axis ⊥ known axis
W2 r ∧ r = 0 Axis ‖ known axis
W3 General case
u1 u0 = u2 = 0, u1 = 1 Axis ‖ y axis
u2 u0 = 0, u1 = 1 Axis ⊥ x axis
u3 u2 = 0, u1 = 1 Axis ⊥ z axis
u4 u1 = 1 General case
u5 u0 = u2 = 0, u1 = −1 Axis ‖ y axis
u6 u0 = 0, u1 = −1 Axis ⊥ x axis
u7 u2 = 0, u1 = −1 Axis ⊥ z axis
u8 u1 = −1 General case
u9 u0 = u1 = 0, u2 = 1 Axis ‖ z axis
u10 u0 = 0, u2 = 1 Axis ⊥ x axis
u11 u1 = 0, u2 = 1 Axis ⊥ y axis
u12 u2 = 1 General case
u13 u0 = u1 = 0, u2 = −1 Axis ‖ z axis
u14 u0 = 0, u2 = −1 Axis ⊥ x axis
u15 u1 = 0, u2 = −1 Axis ⊥ y axis
u16 u2 = −1 General case
u17 u1 = u2 = 0, u0 = 1 Axis ‖ x axis
u18 u1 = 0, u0 = 1 Axis ⊥ y axis
u19 u2 = 0, u0 = 1 Axis ⊥ z axis
u20 u0 = 1 General case
u21 u1 = u2 = 0, u0 = −1 Axis ‖ x axis
u22 u1 = 0, u0 = −1 Axis ⊥ y axis
u23 u2 = 0, u0 = −1 Axis ⊥ z axis
u24 u0 = −1 General case

We call each case described above atomic. By combining atomic cases, we produce
molecular cases, i.e., all possible particular cases. For each molecular case, constraints are
solved by combining the atomic cases and solving the constraints by substitution2 with
some rules: one projection mode, one rotation mode, etc. This corresponds to choosing
one case in each family, a family being named by a label. For example, in the R fam-
ily, we must choose one of R1, R2, R3, and R4. We denote by R[1–3] the set {R1,
R2, R3} and by R[1; 3] the set {R1, R3}. Thus, a molecular case is identified by the
sequence

p[1-3]g[1-3]f[1-3]s[1-3]b[1-3]B[1-3]c[1-3]R[1-4]r1a[1-2]

u[1-24]W[1-3]T[1-2]t[1-12]D[1-3]Z[1-3].

3.3.1. How many cases do we have? If we look at the expression of a particular case
mentioned above, we obtain 3 × 108 particular cases. However, this is not the real number

2 This work is done using Maple for symbolic computation.
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of particular cases due to:

• Incompatibility of some atomic cases, for instance (the symbol ⊗ means “AND”),

(r ‖ t) ⊗ (r ⊥ t) ⊗ (r = 0) ⊗ (t = 0).

• Redundancy of some constraints; two different set of atomic constraints can generate
the same simplified model. For instance,

(r0 = 0) ⊗ (t ⊥ r) is the same case as (t1 = 0) ⊗ (t2 = 0) ⊗ (t ⊥ r).

It is easy to eliminate incompatible constraints. To deal with redundant constraints requires
comparing each set of combined constraint with the others in order to determine the sim-
ilarity. The complexity of this process is O(n2), which makes this elimination intractable
for large values of n.

Furthermore, redundant cases are not the main reason for the large amount of particular
cases. Thus suppressing redundancies is not sufficient for reducing the huge number of
cases to a computationally tractable amount.

We now propose an adapted strategy in order to deal with all cases. Previous works have
tried to build a hierarchy of cases but they encounter problems in order to manage it. The
idea of this paper is (i) to eliminate some of the redundant cases by some considerations on
the atomic cases and (ii) to limit the number of cases by the study of the particular forms of
the matrices. For this second step, we will separate cases into two subgroups: cases inducing
homographies and cases inducing fundamental relations.

3.4. Reducing the Number of Cases

Some redundancies are obvious:

• in the case of a null rotation, (R1), we do not consider every case of axis and angle,
one is sufficient;

• in the case of first and second-order rotation, (R2) and (R3), we do not consider the
case (a1) where θ is equal to π

2 ;
• the case (a1) where θ is equal to π

2 is only considered if the rotation axis and the
translation direction are parallel, (Z2);

• in the case of a null translation, we do not consider any relation of orthogonality or
parallelism to other directions;

• in the case of nonparaperspective projection, (p1) and (p3), βu and βv are equal to 0.

We also consider the following experimental simplifications:

• when approximating a perspective projection, (p1) and (p2), we neglect the parameter
γ with respect to other approximations;

• following previous studies [8, 27], we assume that the ratio αu
αv

is constant;

• these two previous items imply that the βu

βv
ratio is also constant.

Then there only remains, from the intrinsic parameters part, 117 cases and, from the extrinsic
parameters part, 21,709 cases, leading to a total of 2,539,953 particular cases. This is
approximately 100 times less than previously determined (see Appendix C for details).
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3.5. Fundamental and Homographic Matrices

For each case, we have computed the set of reduced equations. Now, for each case, we
compute the fundamental or homographic matrix expression.

As previously studied in Sections 2.3, 2.4, and 2.5, the displacements inducing homo-
graphic relations are;

• in the orthographic case (p1): u ‖ Oz. The relations between t and r are equivalent to
the nullity of some vector components. We will not consider (Z1) and (Z2). Previous studies
on orthographic displacement have shown that the displacement is retinal (t[1;3;5;7]).

• in the paraperspective case (p2): u ‖ [X0 Y0 Z0] (D2). Since the view axis has at least
a component on the optical axis, we set u2 = ±1. Moreover the view axis is not exactly the
optical axis; thus we cannot have u0 = 0 and u1 = 0.

• in the perspective case (p3): t = 0. Therefore we do not consider the parallelism and
orthogonality constraints on t.

We also note that, since we are dealing with only 2 views, relations between r or t with a
known vector g will not simplify the H matrix form, except in the paraperspective case,
if g = M0.

The homographic relation cases lead to 351 cases of orthographic homographic rela-
tions, 18,360 cases of paraperspective homographic relations, and 2,619 cases of perspec-
tive homographic relations, leading to a total 21,330 cases of homographic relations (see
explanations in Appendix C).

We will not study paraperspective and orthographic projection for fundamental matrices
since the domain of validity of such projection approximations is included in conditions of
existence of homographic relation. In the case of perspective projection, (p3): t = 0 thus
u0 = ±1 or u1 = ±1.

For perspective projection, there are 72,252 different cases as shown in Appendix C.

4. MATRIX FORMS

In the previous section, we have significantly reduced the number of cases in both funda-
mental matrices and homographic matrices sets. However, we still have to deal with a huge
amount of cases that is numerically intractable. In this section, we introduce a new idea of
splitting the two sets of matrices into a two-level tree.

Each set of matrices is first split into subsets of matrices, depending on their form. We
determine a matrix form by a very simple parameterization. We consider (3 × 3) matrices
to have 9 parameters (coefficients) and we use two simple rules:

• If a coefficient is equal to 0, then there is one less parameter.
• If a coefficient has the same expression or is opposite to another, then there is one less

parameter again.

These operations are very simple and can be computed in each case in a reasonable time
(approximately one day for the entire process to determine the matrix form).

This process, as illustrated in Fig. 4, reduces the 21,330 cases of homography matrices
to only 108 subgroups and the 72,252 cases of fundamental matrices to only 188 sub-
groups.

The table in Appendix A shows all the particular forms of homography matrices and the
table in Appendix B shows all the particular forms of fundamental matrices.
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FIG. 4. Set of cases that generates the same matrix form. The central column shows an example of the
homography matrix form (number 19 in the table form Appendix A).

Homography and fundamental matrices are defined up to a scale factor. This parameter
has not been eliminated here. We take it into account in the numerical implementation.
Fundamental matrices must also satisfy the constraint det F = 0, We must check whether
this constraint is satisfied in order to determine whether the number of degrees of freedom is
reduced. This is important in order to properly use the Akaike [1] criterion at the numerical
stage (see next section).

For each matrix form, we have collected all the cases that have generated them. Once the
matrix form corresponding to an experiment is determined, it is possible to backtrack the
source cases.

5. EXPERIMENTS

In a previous paper [26], we demonstrated, for several specific displacements, that the
case which minimizes a error criterion is that corresponding to the motion performed by a
robotic system. We present here two cases (one for homographies, another for fundamental
matrices), performed by a precise robotic system. We then present an extension to real
approximative displacements.

5.1. Forms of Homography

We have recorded several video sequences for which the camera displacement induces a
homographic relation between image points m1 and m2. We have first extracted points
of interest and determined matching points using the image-matching algorithm from
Zhang et al. [29]. From each matrix form enumerated in Table A1, we have estimated the
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homography parameters with the robust least median of squares method [21] in order to
minimize the distance between a 2D point m1 and its projected estimation Hm2,

∥∥∥∥m2 − Hm1

((h2)T m1)

∥∥∥∥2

,

where h2 represents the last line of the H matrix and m1 and m2 are normalized.
It is not possible to have a symmetric criterion without inverting the H matrix (and we

do not want to invert it).
To deal with cases with different degrees of freedom, we use an appropriate Akaike

criterion [1].
For each video sequence, we have verified that the model with the smallest residual error

indeed corresponds to the displacement performed by a robotic system. An example is
proposed in Fig. 5. For each pair of consecutive images, the case with the least residual
error is case 51 in the table in Appendix A, which corresponds to the matrix form

H51 =

 x1 x2 x3

−x2 x1 x6

0 0 x1


.

FIG. 5. Frames 1, 2, and 8 of the video sequence. The robotic system performs a rotation around the optical
axis.
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FIG. 6. Approximate rotation around the optical axis and translation.

We observe that this case corresponds to a first-order rotation (R2). If we consider only the
first and the last frame, the rotation is general (R4).

We also performed several experiments without the help of a precise robotic system. A
human manipulated a camera by hand and tried to realize different particular displacements.
Figure 6 shows two frames of a video sequence. The camera motion was approximately a
rotation around its optical axis followed by a translation. As the previous experiment with a
robotic system, for each pair of consecutive images, the case with smallest residual error is
case 51 in the table in Appendix A. This result demonstrates the robustness of the analysis
of displacement by particular cases. Even an approximative displacement is best recovered
by a close particular case than the general equation.

5.2. Forms of Fundamental Matrices

We have done the same experiment for a displacement that induces a fundamental rela-
tion. The criterion is using the distance between a 2D point m1 and its epipolar line Fm2

[17, 28]:

fm(F) =
∣∣mT

2 Fm1
∣∣√

(FTm2)2
1 + (FTm2)2

2

.

The camera has performed a translation parallel to the x axis, and a small pan rotation, and
corrected focal length with auto-focus (Fig. 7). The case with less residual error corresponds
to the fundamental matrix form (case 59 in the table in Appendix B)

F59 =

 0 0 0

x0 x1 x2

0 −x2 x3


.

This particular form was obtained from cases where the rotation was approximated to its
first and second order, the translation is parallel to the x axis, the rotation axis is orthogonal
to the optical axis, and the intrinsic parameters are free.
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FIG. 7. x-axis translation and small pan rotation, with auto-focus.

5.3. Discussion

An interesting study should be considering a large number of pairs of frames. The idea is
to extract from the 108 + 188 cases presented in this paper a subset of cases that are selected
at least once with respect to the corresponding criterion. We believe that this subset is really
smaller than the whole set of the 296 cases.

We did preliminary work on fMRI (functionnal magnetic resonance images) sequences
in order to register each image volume with respect to the first one. We used a strategy
similar to that explained in this paper but using a different parameterization (there were
only displacement parameters generating 120 different cases). We experimented on 323
pairs of image volumes in which only 63 cases were selected at least once. All details of
this study have already been published in [15].

The next idea is to avoid cases that do not occur often and that obtain a criterion error
similar to another case that is often selected.

6. HOW TO EXTEND THIS WORK TO VIDEO SEQUENCES?

In this paper, we have dealt with video sequences with pairs of frames. Two major
extensions could be done: (i) an extension of this work to trilinearities (relations between
2D points from three frames) and (ii) an extension to video sequences of n frames.

In order to consider sequences of n images, we need to introduce several displacement
cases. We have constraints on translation, axis and angle or rotation, and zoom factor. For
each of these quantities, the questions are is the displacement between two frames constant?
Is the acceleration constant? linear? following a known rule?

In our formalism, we need to introduce these constraints in the Maple code, which will
generate other equations with more constraints but we will also have more data (n images)
and more parameters. It is also easy to change the criterion used to measure the equation
of the model to the data (one C function to be rewritten).

We must think about the fact that some objects may disappear along a video sequence
and that their movements may be detected only in a few images of the video sequences.
This is a problem that will be examined in another paper.
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7. CONCLUSION

We have studied how to deal with video sequences and with particular cases of displace-
ment and projection that often occur in real situations (man walking on a flat road, objects
far from the retina etc). The general equations of the vision problem present singularities
in some particular cases that are usually avoided.

In the present paper, we have proposed an alternative approach to this problem, using
such singularities and other particular cases in order to obtain more information than in the
general case instead of avoiding them.

Our major contributions are:

• We have determined the conditions of existence of homographic relations between
projected 2D points for the orthographic, the paraperspective, and the perspective projec-
tions.

• We have used these conditions and other obvious redundancy properties to reduce the
amount of homographic particular cases to study. Thus, we have determined all particular
forms of matrices, and we have obtained, for each particular form, the list of cases that have
generated this form. This result is a first fundamental step for further studies.

This study might be extended in two ways: (i) to be able, given a form, to analyze
the molecular constraints, to determine which are redundant and which correspond to the
case we are dealing with, and (ii) to do the same analysis with geometrical property of
the 3D scene, meaning homography induced by planes. The structure of this analysis
is as general as possible to extend this work to other kinds of cameras (conic mirror,
etc.).

The applications are twofold:

• an incremental reconstruction of the scene using different cases: each case studied has
fewer parameters than the next one, giving the ability to recover some parameters from
others already determined. We have already studied the control of a robot on a particular
case [16].

• the segmentation of objects moving with different displacements or with different
geometric properties in video sequences: using a ν-trimmed square method instead of the
least median square method, we can build sets of points with same matrix forms (and same
numerical matrix forms).

APPENDIX A

Table of Particular Forms of Homographic Matrices

Table A1 shows the simplified forms obtained and, for each form, the cases that have
generated them. We denote by # the form number, by p the number of parameters (we have
not taken into account the fact that the homography matrix is defined up to a scale factor
but we do it in our numerical implementation), and by n the number of molecular cases that
have generated a form.

The interest of this table is for the reader who wants to implement the method presented
in this paper and to interpret the results the method gives. An electronic form of this table
and some Maple and C code can be sent upon simple request to the author.
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TABLE A1

Particular Forms of Homography and Cases that Have Generated Them

# p Simplified form of homography Generated by n

1 1 [x1 0 0 0 x1 0 0 0 x1] p1g1f[1;2]b1B1c[1;2]T1t13R1u4Z3a2 ⊕ 11
p3g1f[1;2]b1B1c[1;2]T1t13R1u4Z3a2 ⊕
p3g2f1b1B1c[1;2]T1t13R1u4Z3a2 ⊕
p3g2f2b1B1c1T1t13R1u4Z3a2

2 1 [x1 0 0 0 x1 x1 0 0 x1] p1g1f1b1B1c[1;2]T2t[5;7]R1u4Z3a2 4
3 1 [x1 0 x1 0 x1 0 0 0 x1] p1g1f[1;2]b1B1c[1;2]T2t1R1u4Z3a2 4

4 2 [x1 0 0 0 x1 x6 0 −x6 x1] p3g1f1b1B1c1T1t13R2u[17;21]23a2 2
5 2 [x1 0 0 0 x1 x6 0 0 x1] p1g1f2b1B1c[1;2]T2t[5;7]R1u4Z3a2 4
6 2 [x1 0 0 0 x5 0 0 0 x1] p1g1f3b1B1c1T1t13R1u4Z3a2 ⊕ 3

p3g[1;2]f3b1B1c1T1t13R1u4Z3a2
7 2 [x1 0 x1 0 x1 x6 0 0 x1] p1g1f[1;2]b1B1c[1;2]T2t3R1u4Z3a2 4
8 2 [x1 0 x1 0 x5 0 0 0 x1] p1g1f3b1B1c1T2t1R1u4Z3a2 1
9 2 [x1 0 x3 0 x1 0 −x3 0 x1] p3g1f[1;2]b1B1c1T1t13R2u[1;5]Z3a2 4

10 2 [x1 0 x3 0 x1 0 0 0 x1] p3g2f2b1B1c2T1t13R1u4Z3a2 1
11 2 [x1 x2 0 −x2 x1 0 0 0 x1] p[1;3]g1f1b1B1c1T1t13R2u[13;9]Z3a2 4
12 2 [x1 x2 0 −x2 x1 x1 0 0 x1] p1g1f1b1B1c1T2t[5;7]R2u[13;9]Z3a2 4
13 2 [x1 x2 0 0 x1 0 0 0 x1] p3g3f1b1B1c1T1t13R1u4Z3a2 2
14 2 [x1 x2 x1 −x2 x1 0 0 0 x1] p1g1f[1;2]b1B1c1T2t1R2u13Z3a2 2

15 3 [x1 0 0 0 x1 x6 0 x8 x1] p3g1f2b1B1c1T1t13R2u[17;21]Z3a2 2
16 3 [x1 0 0 0 x5 x6 0 −x6 x5] p3g1f1b1B1c1T1t13R3u[17;21]Z3a2 ⊕ 6

p3g1f1b1B1c1T1t13R4u[17;21]Z3a[1;2]
17 3 [x1 0 0 0 x5 x6 0 0 x1] p1g1f3b1B1c[1;2]T2t[5;7]R1u4Z3a2 ⊕ 6

p1g1f3b1B1c2T1t13R1u4Z3a2 ⊕
p3g1f3b1B1c2T1t13R1u4Z3a2

18 3 [x1 0 x1 0 x5 x6 0 0 x1] p1g1f3b1B1c[1;2]T2t3R1u4Z3a2 ⊕ 3
p1g1f3b1B1c2T2t1R1u4Z3a2

19 3 [x1 0 x3 0 x1 0 −x3 x8 x1] p3g2f[1;2]b1B1c1T1t13R2u[1;5]Z3a2 4
20 3 [x1 0 x3 0 x1 x6 −x3 −x6 x1] p3g1f1b1B1c1T1t13R2u[2;6;19;23]Z3a2 4
21 3 [x1 0 x3 0 x1 x6 0 −x6 x1] p3g2f1b1B1c1T1t13R2u[17;21]Z3a2 2
22 3 [x1 0 x3 0 x1 x6 0 0 x1] p1g1f[1;2]b1B1c3T1t13R1u4Z3a2 ⊕ 14

p1g1f[1;2]b1B1c3T2t[1;3;5;7]R1u4Z3a2 ⊕
p3g[1;2]f[1;2]b1B1c3T1t13R1u4Z3a2

23 3 [x1 0 x3 0 x5 0 −x3 0 x1] p3g1f[1-3]b1B1c1T1t13R3u[1;5]Z3a2 ⊕ 20
p3g1f3b1B1c1T1t13R2u[1;5]Z3a2 ⊕
p3g1f[1-3]b1B1c1T1t13R4u[1;5]Z3a[1;2]

24 3 [x1 x2 0 −x2 x1 0 0 0 x9] pp[1;3]g1f1b1B1c1T1t13R3u[9;13]Z3a2 ⊕ 12
p[1;3]g1f1b1B1c1T1t13R4u[9;13]Z3a[1;2]

25 3 [x1 x2 0 −x2 x1 x6 0 −x6 x1] p3g1f1b1B1c1T1t13R2u[11;15;18;22]Z3a2 4
26 3 [x1 x2 0 −x2 x1 x6 0 0 x6] p1g1f1b1B1c1T2t[5;7]R[3;4]u[9;13]Z3a2 8
27 3 [x1 x2 0 0 x5 0 0 0 0x1] p3g3f3b1B1c1T1t13R1u4Z3a2 1
28 3 [x1 x2 0 x4 x1 0 0 0 x1] p[1;3]g1f2b1B1c1T1t13R2u[9;13]Z3a2 4
29 3 [x1 x2 x1 −x2 x1 x6 0 0 x1] p1g1f1b1B1c1T2t3R2u[9;13]Z3a2 2
30 3 [x1 x2 x1 x4 x1 0 0 0 x1] p1g1f2b1B1c1T2t1R2u[9;13]Z3a2 2
31 3 [x1 x2 x3 −x2 x1 0 −x3 0 x1] p3g1f1b1B1c1T1t13R2u[3;7;10;14]Z3a2 4
32 3 [x1 x2 x3 −x2 x1 0 0 0 x3] p1g1f1b1B1c1T2t1R[3;4]u[9;13]Z3a2 4
33 3 [x1 x2 x3 0 x1 0 0 0 x1] p3g3f[1;2]b1B1c2T1t13R1u4Z3a2 2

34 4 [x1 0 0 0 x5 x6 0 x8 x1] p3g1f3b1B1c1T1t13R2u[17;21]Z3a2 2
35 4 [x1 0 0 0 x5 x6 0 x8 x5] p3g1f2b1B1c1T1t13R3u[17;21]Z3a2 ⊕ 6

p3g1f2b1B1c1T1t13R4u[17;21]Z3a[1;2]
36 4 [x1 0 x3 0 x1 x6 −x3 x8 x1] p3g1f2b1B1c1T1t13R2u[2;6;19;23]Z3a2 4
37 4 [x1 0 x3 0 x1 x6 0 x8 x1] p3g2f2b1B1c1T1t13R2u[17;21]Z3a2 2
38 4 [x1 0 x3 0 x5 0 −x3 x8 x1] p3g2f3b1B1c1T1t13R2u[1;5]Z3a2 2
39 4 [x1 0 x3 0 x5 x6 0 0 x1] p[1;3]g1f3b1B1c3T1t13R1u4Z3a2 ⊕ 8

p1g1f3b1B1c3T2t[1;3;5;7]R1u4Z3a2 ⊕
p3g2f3b1B1c[2;3]T1t13R1u4Z3a2

40 4 [x1 x2 −x2 0 x5 x6 0 −x6 x5] p3g2f1b1B1c1T1t13R4u21Z3a1 1
41 4 [x1 x2 0 x4 x1 0 0 0 x9] p[1;3]g1f2b1B1c1T1t[9;13]R3u13Z3a2 ⊕ 12

p[1;3]g1f2b1B1c1T1t13R4u[9;13]Z3a[1;2]
42 4 [x1 x2 0 x4 x1 x6 0 0 x1] p1g1f2b1B1c1T2t[5;7]R2u[9;13]Z3a2 4
43 4 [x1 x2 0 x4 x5 0 0 0 x1] p[1;3]g1f3b1B1c1T1t13R2u[9;13]Z3a2 ⊕ 28

p2g1f[1-3]b[2;3]B[1;2]c1T1t13R2u
[11-15]Z3a2
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TABLE A1—Continued

# p Simplified form of homography Generated by n

44 4 [x1 x2 0 x4 x5 0 0 0 x5] p2g1f[1;3]b[2;3]B[1;2]c1T1t13R2u 16
[10;14]Z3a2

45 4 [x1 x2 0 x4 x5 x1 0 0 x1] p2g1f1b[2;3]B[1;2]c1T2t5R2u[11;15]Z3a2 8
46 4 [x1 x2 0 x4 x5 x5 0 0 x5] p2g1f1b2B1c1T2t5R2u[10;14]Z3a2 8
47 4 [x1 x2 x1 x4 x1 x6 0 0 x1] p1g1f2b1B1c1T2t3R2u[9;13]Z3a2 2
48 4 [x1 x2 x1 x4 x5 0 0 0 x1] p1g1f3b1B1c1T2t1R2u[9;13]Z3a2 ⊕ 26

p2g1f[1-3]b[2;3]B[1;2]c1T2t1R2u
[11;15]Z3a2

49 4 [x1 x2 x2 0 x5 x6 0 −x6 x5] p3g2f1b1B1c1T1t13R4u17Z3a1 1
50 4 [x1 x2 x3 −x2 x1 x6 −x3 −x6 x1] p3g1f1b1B1c1T1t13R2u[4;8;12;16;20;24]Z3a2 6
51 4 [x1 x2 x3 −x2 x1 x6 0 0 x1] p[1;3]g1f1b1B1c[2;3]T1t13R2u[9-13]Z3a2 ⊕ 144

p1g1f1b1B1c[2;3]T2t[1;3;5;7]R2u
[9;13]Z3a2 ⊕

p2g1f1b[2;3]B[1;2]c[1-3]T2t9R2u
[10-12;14-16]Z1a2 ⊕

p2g1f1b[2;3]B[1;2]c[1-3]T2t10R2u
[11;15]Z1a2 ⊕

p2g1f1b[2;3]B[1;2]c[1-3]T2t11R2u
[10;14]Z1a2

52 4 [x1 x2 x3 −x2 x1 x6 0 0 x3] p1g1fb1B1c1T2t3R[3;4]u[9;13]Z3a2 4
53 4 [x1 x2 x3 0 x1 0 −x3 x8 x1] p3g3f[1;2]b1B1c1T1t13R2u[1;5]Z3a2 4
54 4 [x1 x2 x3 0 x1 x6 0 −x6 x1] p3g3f1b1B1c1T1t13R2u[17;21]Z3a2 2
55 4 [x1 x2 x3 0 x1 x6 0 0 x1] p3g3f[1;2]b1B1c3T1t13R1u4Z3a2 2
56 4 [x1 x2 x3 0 x5 0 −x3 −x2 x1] p3g2f[1-3]b1B1c1T1t13R4u5Z3a1 3
57 4 [x1 x2 x3 0 x5 0 −x3 x2 x1] p3g2f[1-3]b1B1c1T1t13R4u1Z3a1 3
58 4 [x1 x2 x3 x4 x1 0 −x3 0 x1] p3g1f2b1B1c1T1t13R2u[3;7;10;14]Z3a2 4
59 4 [x1 x2 x3 x4 x1 0 0 0 x3] p1g1f2b1B1c1T2t1R[3;4]u[9;13]Z3a2 ⊕ 20

p2g1f[1;2]b[2;3]B[1;2]c1T2t1R2u
[10;14]Z3a2

60 5 [x1 0 0 0 x5 x6 0 x3 x9] p3g1f3b1B1c1T1t13R3u[17;21]Z3a2 ⊕ 6
p3g1f3b1B1c1T1t13R4u[17;21]Z3a[1;2]

61 5 [x1 0 x3 0 x1 x6 x7 x8 x1] p3g2f[1;2]b1B1c1T1t13R2u 8
[2;6;19;23]Z3a2

62 5 [x1 0 x3 0 x5 x6 −x3 x8 x1] p3g1f3b1B1c1T1t13R2u[2;6;19;23]Z3a2 4
63 5 [x1 0 x3 0 x5 x6 0 x8 x1] p3g2f3b1B1c1T1t13R2u[17;21]Z3a2 2
64 5 [x1 x2 0 x4 x1 x6 0 0 x9] p1g1f2b1B1c1T2t[5;7]R[3;4]u[9;13]Z3a2 8
65 5 [x1 x2 0 x4 x1 x6 0 x8 x1] p3g1f2b1B1c1T1t13R2u[11;15;18;22]Z3a2 4
66 5 [x1 x2 0 x4 x5 0 0 0 x9] p1g1f3b1B1c1T1t13R[3;4]u[9;13]Z3a2 ⊕ 308

p1g1f3b1B1c1T1t13R4u[9;13]Z3a1 ⊕
p2g1f[1-3]b[2;3]B[1;2]c1T1t13R[2-4]u
[12;16]Z3a2 ⊕

p2g1f3b[2;3]B[1;2]c1T1t13R2u
[10;14]Z3a2 ⊕
p2g1f[1-3]b[2;3]B[1;2]c1T1t13R[3;4]u
[10;11;14;15]Z3a2 ⊕

p2g1f[1-3]b[2;3]B[1;2]c1T1t13R4u
[10-12;14-16]Z3a1 ⊕

p3g1f3b1B1c1T1t13R3u[9;13]Z3a2 ⊕
p3g1f3b1B1c1T1t13R4u[9;13]Z3a[1;2] ⊕
p3g[2;3]f[1-3]b1B1c1T1t13R[2-4]u
[9;13]Z3a2 ⊕

p3g[2;3]f[1-3]b1B1c1T1t13R4u[9-13]Z3a1
67 5 [x1 x2 0 x4 x5 x6 0 0 x1] p1g1f3b1B1c1T2t[5;7]R2u[9;13]Z3a2 ⊕ 20

p2g1f[2;3]b[2;3]B[1;2]c1T2t5R2u
[11;15]Z3a2

68 5 [x1 x2 0 x4 x5 x6 0 0 x5] p2g1f2b[2;3]B[1;2]c1T2t5R2u[10;14]Z3a2 8
69 5 [x1 x2 0 x4 x5 x6 0 0 x6] p2g1f1b[2;3]B[1;2]c1T2t5R[2-4]u 56

[12;16]Z3a2 ⊕
p2g1f1b[2;3]B[1;2]c1T2t5R[3;4]u
[10;11;14;15]Z3a2

70 5 [x1 x2 x1 x4 x5 x6 0 0 x1] p1g1f3b1B1c1T2t3R2u[9;13]Z3a2 ⊕ 26
p2g1f[1-3]b[2;3]B[1;2]c1T2t3R2u
[11;15]Z3a2
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71 5 [x1 x2 x3 −x2 x1 x6 0 0 x9] p1g1f1b1B1c[1-3]T2t12R4u[9;13]Z3a1 ⊕ 62

p1g1f1b1B1c[2;3]T1t13R[3;4]u

[9;13]Z3a2 ⊕
p1g1f1b1B1c[2;3]T2t13R4u[9;13]Z3a1 ⊕
p1g1f1b1B1c[2;3]T2t[1;3;5;7]R[3;4]u

[9-13]Z3a2 ⊕
p3g1f1b1B1c[2;3]T1t13R3u[9;13]Z3a2 ⊕
p3g1f1b1B1c[2;3]T1t13R4u[9;13]Z3a[1;2]

72 5 [x1 x2 x3 0 x1 x6 0 x8 x1] p3g3f2b1B1c1T1t13R2u[17;21]Z3a2 2

73 5 [x1 x2 x3 0 x5 0 −x3 x8 x1] p3g[2;3]f[1-3]b1B1c1T1t13R[3;4]u 32

[;5]Z3a2 ⊕
p3g3f[1-3]b1B1c1T1t13R4u[1;5]Z3a1 ⊕
p3g3f3b1B1c1T1t13R2u[1;5]Z3a2

74 5 [x1 x2 x3 0 x5 x6 0 −x6 x5] p3g[2;3]f1b1B1c1T1t13R[3;4] 10

u[17;21]Z3a2 ⊕
p3g3f1b1B1c1T1t13R4u[17;21]Z3a1

75 5 [x1 x2 x3 0 x5 x6 0 0 x1] p3g3f3b1B1c[2;3]T1t13R1u4Z3a2 2

76 5 [x1 x2 x3 x4 x1 x6 0 0 x1] p1g1f2b1B1c[2;3]T2t[1;3;5;7]R2u 144

[9;13]Z3a2 ⊕
p[1;3]g1f2b1B1c[2;3]T1t13R2

u[9;13]Z3a2 ⊕
p2g1f2b[2;3]B[1;2]c[1-3]T2t10R2

u[11;16]Z1a2 ⊕
p2g1f2b[2;3]B[1;2]c[1-3]T2t11R2

u[10;14]Z1a2 ⊕
p2g1f2b[2;3]B[1;2]c[1-3]T2t9R2u

[10-12;14-16]Z1a2

77 5 [x1 x2 x3 x4 x1 x6 0 0 x3] p1g1f2b1B1c1T2t3R[3;4]u[9;13]Z3a2 ⊕ 20

p2g1f[1;2]b[2;3]B[1;2]c1T2t3R2u

[10;14]Z3a2

78 5 [x1 x2 x3 x4 x5 0 −x3 0 x1] p3g1f3b1B1c1T1t13R2u[3;7;10;14]Z3a2 4

79 5 [x1 x2 x3 x4 x5 0 0 0 x3] p1g1f3b1B1c1T2t1R[3;4]u[9;13]Z3a2 ⊕ 180

p2g1f[1-3]b[2;3]B[1;2]c1T2t1R[2-4]

u[12;16]Z3a2 ⊕
p2g1f[1-3]b[2;3]B[1;2]c1T2t1R[3;4]

u[10;11;14;15]Z3a2

80 5 [x1 x2 x3 x4 x5 x1 0 0 x1] p2g1f1b[2;3]B[1;2]c1T2t6R2u[11;15]Z3a2 8

81 5 [x1 x2 x3 x4 x5 x5 0 0 x5] p2g1f1b[2;3]B[1;2]c1T2t6R2u[10;14]Z3a2 8

82 6 [x1 0 x3 0 x5 x6 x7 x8 x1] p3g2f3b1B1c1T1t13R2u[2;6;19;23]Z3a2 4

83 6 [x1 x2 0 x4 x5 x6 0 0 x9] p1g1f3s1b1B1c1T2t[5-7]r1U1R[3-4]u[9;13] 128

Z3W3D3a2 ⊕
p2g1f[2;3]s1b[2-3]B[1;2]c1T2t5r1U1R

[3-4]u[10-12;14-16]Z3W3D3a2 ⊕
p2g1f2s1b[2-3]B[1;2]c1T2t5r1U1R2u

[12;16]Z3W3D3a2 ⊕
p2g1f3s1b[2-3]B[1;2]c1T2t5r1U1R2u

[10;12;14;16]Z3W3D3a2

84 6 [x1 x2 0 x4 x5 x6 0 x8 x1] p3g1f3b1B1c1T1t13R2u[11;15;18;22]Z3a2 4

85 6 [x1 x2 x3 −x2 x5 x6 −x3 x6 x9] p3g1f1b1B1c1T1t13R3u[3;7;10;14]Z3a2 ⊕ 12

p3g1f1b1B1c1T1t13R4u[3;7;10;14]Z3a[1;2]

86 6 [x1 x2 x3 −x2 x5 x6 x3 −x6 x9] p3g1f1b1B1c1T1t13R3u[11;15;18;22]Z3a2 ⊕ 12

p3g1f1b1B1c1T1t13R4u[11;15;18;22]Z3a

[1;2]

87 6 [x1 x2 x3 0 x1 x6 x7 x8 x1] p3g3f[1;2]b1B1c1T1t13R2u[2;6;19;23]Z3a2 8

88 6 [x1 x2 x3 0 x5 x6 0 x8 x1] p3g3f3b1B1c1T1t13R2u[17;21]Z3a2 2
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89 6 [x1 x2 x3 0 x5 x6 0 x8 x5] p3g[2;3]f2b1B1c1T1t13R3u[17;21]Z3a2 ⊕ 12
p3g[2;3]f2b1B1c1T1t13R4u[17;21]Z3a[1;2]

90 6 [x1 x2 x3 x2 x5 x6 −x3 −x6 x9] p3g1f1b1B1c1T1t13R3u[2;6;19;23]Z3a2 ⊕ 12
p3g1f1b1B1c1T1t13R4u
[2;6;19;23]Z3a[1;2]

91 6 [x1 x2 x3 x4 x1 x6 −x3 x8 x1] p3g1f2b1B1c1T1t13R2u[4;8;12;16;20;24] 6
Z3a2

92 6 [x1 x2 x3 x4 x1 x6 0 0 x9] p1g1f2b1B1c[1-3]T2t12R4u[9;13]Z3a1 ⊕ 302
p1g1f2b1B1c2T1t13R[3;4]u[9;13]Z3a2 ⊕
p1g1f2b1B1c[2;3]T1t13R4u[9;13]Z3a1 ⊕
p1g1f2b1B1c[2;3]T2t[1;3;5;7]R[3;4]
u[9;13]Z3a2 ⊕

p3g1f2b1B1c[2;3]T1t13R[3;4]u
[9;13]Z3a2 ⊕

p3g1f2b1B1c[2;3]T1t13R4u[9;13]Z3a1 ⊕
p2g1f2b[2;3]B[1;2]c[1-3]T2t10R[3-4]
u[11;15]Z1a2 ⊕

p2g1f2b[2;3]B[1;2]c[1-3]T2t11R[3;4]
u[10;14]Z1a2 ⊕

p2g1f2b[2;3]B[1;2]c[1-3]T2t9R[3;4]
u[10-12;14-16]Z1a2

93 6 [x1 x2 x3 x4 x5 x6 0 0 x1] p1g1f3b1B1c[2;3]T1t13R2u[9;13]Z3a2 ⊕ 1624
p1g1f3b1B1c[2;3]T2t[1;3;5;7]R2u
[9;13]Z3a2 ⊕

p2g1f[1-3]b[2;3]B[1;2]c[1-3]T2t
[2;4;7;8;9;10-12]R2u[11;15]Z3a2 ⊕

p2g1f[2;3]b[2;3]B[1;2]c1T2t6R2u
[11;15]Z3a2 ⊕

p2g1f[1-3]b[2;3]B[1;2]c[2;3]T2t
[1;3;5;6]R2u[11;15]Z3a2 ⊕

p2g1f[1-3]b[2;3]B[1;2]c[2;3]T1t13R2
u[11;15]Z3a2 ⊕

p3g1f3b1B1c[2;3]T1t13R2u[9;13]Z3a2 ⊕
p2g1f[1;2]b[2;3]B[1;2]c[1-3]T2t
[10-12]R2u[11;15]Z2a2 ⊕

p2g1f[1;2]b[2;3]B[1;2]c[1-3]T2t
[2;4;11;12]R2u[11;15]Z1a2 ⊕

p2g1f[1;2]b[2;3]B[1;2]c[1-3]T2t[2;11]
R2u[12;16]Z1a2 ⊕

p2g1f3b2B1c1T2t[2;4;9;10-12]
R2u[11;15]Z1a2 ⊕

p2g1f3b2B1c1T2t[9;11]R2u[10;14]Z1a2 ⊕
p2g1f3b2B1c1T2t[2;9;11]R2u
[12;16]Z1a2 ⊕

p2g1f3b2B1c1T2t[10-12]R2u[11;15]Z2a2
94 6 [x1 x2 x3 x4 x5 x6 0 0 x3] p1g1f3b1B1c1T2t3R[3;4]u[9;13]Z3a2 ⊕ 180

p2g[1-3]f1b[2;3]B[1;2]c1T2t3R[2-4]
u[12;16]Z3a2 ⊕

p2g1f[1-3]b[2;3]B[1;2]c1T2t3R[3;4]
u[10;11;14;15]Z3a2

95 6 [x1 x2 x3 x4 x5 x6 0 0 x5] p2g1f[1;2]b[2;3]B[1;2]c[1-3]T2t 984
[2;4;7-12]R2u[10;14]Z3a2 ⊕

p2g1f[1;2]b[2;3]B[1;2]c[2;3]T1t13R2u
[10;14]Z3a2 ⊕

p2g1f2b[2;3]B[1;2]c1T2t6R2u
[10;14]Z3a2 ⊕

p2g1f[1;2]b[2;3]B[1;2]c[2;3]T2t
[1;3;5;6]R2u[10;14]Z3a2 ⊕

p2g1f[1;2]b[2;3]B[1;2]c[1-3]T2t
[10-12]R2u[10;14]Z2a2 ⊕

p2g1f[1;2]b[2;3]B[1;2]c[1-3]T2t

[7;8;10;12]R2u[10;14]Z1a2 ⊕
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p2g1f[1;2]b[2;3]B[1;2]c[1-3]T2t

[7;10]R2u[12;16]Z1a2

96 6 [x1 x2 x3 x4 x5 x6 0 0 x6] p2g1f1b[2;3]B[1;2]c1T2t6R[2-4] 56

u[12;16]Z3a2 ⊕
p2g1f1b[2;3]B[1;2]c1T2t6R[3;4]

u[10;11;14;15]Z3a2

97 7 [x1 0 x3 x4 x5 x6 x7 0 x9] p3g1f[1-3]b1B1c[2;3]T1t13R[2;3] 48

u[1;5]Z3a2 ⊕
p3g1f[1-3]b1B1c[2;3]T1t13R4u

[1;5]Z3a[1;2]

98 7 [x1 x2 x3 0 x5 x6 0 x8 x9] p3g[1-3]f[1-3]b1B1c[2;3]T1t13R[2-4] 156

u[17;21]Z3a2 ⊕
p3g[1-3]f[1-3]b1B1c[2;3]T1t13R4u

[17;21]Z3a1 ⊕
p3g[2;3]f3b1B1c1T1t13R[3;4]

u[17;21]Z3a2 ⊕
p3g[2;3]f3b1B1c1T1t13R4u[17;21]Z3a1

99 7 [x1 x2 x3 0 x5 x6 x7 x8 x1] p3g3f3b1B1c1T1t13R2u[2;6;19;23]Z3a2 4

100 7 [x1 x2 x3 x4 x5 0 −x3 x8 x9] p3g[2;3]f[1-3]b1B1c1T1t13R2u 24

[3;7;10;14]Z3a2

101 7 [x1 x2 x3 x4 x5 x6 −x3 x8 x1] p3g1f3b1B1c1T1t13R2u 6

[4;8;12;16;20;24]Z3a2

102 7 [x1 x2 x3 x4 x5 x6 0 −x6 x9] p3g[2;3]f1b1B1c1T1t13R2u 8

[11;15;18;22]Z3a2

103 7 [x1 x2 x3 x4 x5 x6 0 0 x9] p3g1f3b1B1c[2;3]T1t13R[3;4] 10318

u[9;13Z3a2 ⊕
p3g1f3b1B1c[2;3]T1t13R4u[9;13]Z3a1 ⊕
p3g[2;3]f[1-3]b1B1c[2;3]T1t13R[2-4]

u[9;13]Z3a2 ⊕
p3g[2;3]f[1-3]b1B1c[2;3]T1t13R4u

[9;13]Z3a1

and all other para and ortho

104 8 [x1 x2 x3 x4 x5 x6 −x3 x8 x9] p3g1f2b1B1c1T1t13R3u10Z3a2 48

105 8 [x1 x2 x3 x4 x5 x6 0 x8 x9] p3g[1-3]f[1-3]s1b1B1c[2;3]T1t13r1U1R2u 88

[11;15;18;22]Z3W3D3a2 ⊕
p3g[2;3]f[2;3]s1b1B1c1T1t13r1U1R2u

[11;15;18;22]Z3W3D3a2

106 8 [x1 x2 x3 x4 x5 x6 x3 x8 x9] p3g1f[2;3]b1B1c1T1t13R3u 24

[11;15;18;22]Z3a2 ⊕
p3g1f[2;3]b1B1c1T1t13R4u

[11;15;18;22]Z3a[1;2]

107 8 [x1 x2 x3 x4 x5 x6 x7 0 x9] p3g1f[1-3]b1B1c[2;3]T1t13R2u 24

[3;7;10;14]Z3a2
108 9 [x1 x2 x3 x4 x5 x6 x7 x8 x9] all the other perspective cases 3630

APPENDIX B

Table of Particular Forms of Fundamental Matrices

Please note that in Table B1, as it is for Table A1, the number of parameters p does not
take into account that the fundamental matrix is defined up to a scale factor and that its
determinant is zero. This is done is the numerical implementation.
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TABLE B1

Particular Forms of Fundamental Matrices

# p Simplified form of fundamental matrices For example generated by: n

1 1 [0 0 0 0 0 x6 0 −x6 0] g1f1s1c1t1R1u24Z3a2 24
2 1 [0 0 x3 0 0 0 −x3 0 0] g1f1s1c1t5R1u24Z3a2 4
3 1 [0 x2 0 −x2 0 0 0 0 0] g1f1s1c1t9R1u24Z3a2 5

4 2 [0 0 0 0 0 x6 0 −x6 x9] g1f1s1c3t1R1u24Z3a2 12
5 2 [0 0 0 0 0 x6 0 x8 0] g1f3s1c1t1R1u24Z3a2 6
6 2 [0 0 0 0 0 x6 x7 −x6 0] g1f1s1c1t1R2u13Z2a2 16
7 2 [0 0 0 0 x5 x6 0 −x6 x5] g1f1s1c1t1R2u17Z1a2 396
8 2 [0 0 0 x4 0 x6 0 −x6 0] g1f1s1c1t1R2u1Z2a2 16
9 2 [0 0 x3 0 0 0 −x3 0 x9] g1f1s1c3t5R1u24Z3a2 2

10 2 [0 0 x3 0 0 0 −x3 x8 0] g1f1s1c1t5R2u13Z2a2 8
11 2 [0 0 x3 0 0 0 x7 0 0] g1f1s2c1t5R1u24Z3a2 4
12 2 [0 0 x3 0 0 x6 −x3 −x6 0] g1f1s1c1t3R1u24Z3a2 17
13 2 [0 x2 0 −x2 0 x6 0 −x6 0] g1f1s1c1t1R1u24Z3a2 8
14 2 [0 x2 0 −x2 0 x6 0 0 0] g1f1s1c1t9R2u1Z2a2 24
15 2 [0 x2 0 −x2 x5 0 0 0 0] g2f3s1c1t9R1u24Z3a2 4
16 2 [0 x2 0 x4 0 0 0 0 0] g1f1s2c1t9R1u24Z3a2 3
17 2 [0 x2 x3 −x2 0 0 −x3 0 0] g1f1s1c1t10R1u24Z3a2 4
18 2 [0 x2 x3 −x2 0 0 0 0 0] g1f1s1c1t9R2u17Z2a2 12
19 2 [0 x2 x3 0 0 0 −x3 0 0] g1f1s1c1t5R2u17Z2a2 8
20 2 [x1 0 x3 0 0 0 −x3 0 x1] g1f1s1c1t5R2u1Z1a2 66
21 2 [x1 x2 0 −x2 x1 0 0 0 0] g1f1s1c1t10R2u11Z1a2 198

22 3 [0 0 0 0 0 x6 0 x8 x9] g1f3s1c2t1R1u24Z3a2 12
23 3 [0 0 0 0 0 x6 x7 −x6 x9] g1f1s1c2t1R2u13Z2a2 32
24 3 [0 0 0 0 0 x6 x7 x8 0] g1f1s1c1t1R3u13Z2a2 200
25 3 [0 0 0 0 x5 x6 0 −x6 x9] g1f2s1c1t1R2u17Z1a2 396
26 3 [0 0 0 0 x5 x6 x7 −x6 x5] g1f1s1c1t1R2u11Z2a2 16
27 3 [0 0 0 x4 0 x6 0 x8 0] g1f1s1c1t1R3u1Z2a2 56
28 3 [0 0 0 x4 0 x6 x7 −x6 0] g1f1s1c1t1R2u10Z2a2 32
29 3 [0 0 0 x4 x5 x6 0 −x6 0] g2f1s1c1t1R2u1Z2a2 32
30 3 [0 0 0 x4 x5 x6 0 −x6 x5] g1f1s1c1t1R2u19Z2a2 16
31 3 [0 0 x3 0 0 0 −x3 x8 x9] g1f1s1c2t5R2u13Z2a2 16
32 3 [0 0 x3 0 0 0 x7 0 x9] g1f1s2c2t5R1u24Z3a2 8
33 3 [0 0 x3 0 0 0 x7 x8 0] g1f1s1c1t5R3u13Z2a2 64
34 3 [0 0 x3 0 0 x6 −x3 −x6 x9] g1f1s1c3t3R1u24Z3a2 13
35 3 [0 0 x3 0 0 x6 −x3 x8 0] g2f1s1c1t5R2u13Z2a2 22
36 3 [0 0 x3 0 0 x6 x7 −x6 0] g1f1s2c1t3R1u24Z3a2 4
37 3 [0 x2 0 −x2 0 x6 0 x8 0] g1f3s1c1t11R1u24Z3a2 2
38 3 [0 x2 0 −x2 x5 x6 0 −x6 0] g3f1s1c1t11R1u24Z3a2 4
39 3 [0 x2 0 −x2 x5 x6 0 0 0] g2f3s1c1t9R2u1Z2a2 12
40 3 [0 x2 0 x4 0 x6 0 −x6 0] g1f1s2c1t11R1u24Z3a2 4
41 3 [0 x2 0 x4 0 x6 0 0 0] g1f1s1c1t9R3u1Z2a2 60
42 3 [0 x2 0 x4 x5 0 0 0 0] g2f1s2c1t9R1u24Z3a2 6
43 3 [0 x2 x3 −x2 0 0 x7 0 0] g1f3s1c1t10R1u24Z3a2 2
44 3 [0 x2 x3 −x2 0 x6 −x3 −x6 0] g1f1s1c1t12R1u24Z3a2 40
45 3 [0 x2 x3 −x2 0 x6 0 0 0] g1f1s1c1t9R2u19Z2a2 60
46 3 [0 x2 x3 0 0 0 −x3 x8 0] g1f1s1c1t5R2u11Z2a2 16
47 3 [0 x2 x3 0 0 0 x7 0 0] g1f1s1c1t5R3u17Z2a2 64
48 3 [0 x2 x3 x4 0 0 0 0 0] g1f1s1c1t9R3u17Z2a2 60
49 3 [x1 0 x3 0 0 0 −x3 0 x9] g1f2s1c1t5R2u1Z1a2 66
50 3 [x1 0 x3 0 0 0 −x3 x8 x1] g1f1s1c1t5R2u10Z2a2 8
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51 3 [x1 x2 0 −x2 x1 x6 0 0 0] g1f1s1c1t9R2u10Z2a2 24
52 3 [x1 x2 x3 −x2 x1 0 0 0 0] g1f1s1c1t9R2u11Z2a2 24
53 3 [x1 x2 x3 0 0 0 −x3 0 x1] g1f1s1c1t5R2u19Z2a2 8

54 4 [0 0 0 0 0 x6 x7 x8 x9] g1f1s1c2t1R3u13Z2a2 400
55 4 [0 0 0 0 x5 x6 0 x8 x9] g1f1s1c2t1R2u17Z1a2 2772
56 4 [0 0 0 0 x5 x6 x7 −x6 x9] g1f2s1c1t1R2u11Z2a2 16
57 4 [0 0 0 0 x5 x6 x7 x8 x5] g2f1s1c1t1R2u11Z2a2 32
58 4 [0 0 0 x4 0 x6 x7 x8 0] g1f3s1c1t1R2u10Z2a2 16
59 4 [0 0 0 x4 x5 x6 0 −x6 x9] g1f2s1c1t1R2u19Z2a2 80
60 4 [0 0 0 x4 x5 x6 0 x8 0] g2f1s1c1t1R3u1Z2a2 112
61 4 [0 0 0 x4 x5 x6 x7 −x6 x5] g1f1s1c1t1R2u12Z2a2 24
62 4 [0 0 x3 0 0 0 x7 x8 x9] g1f1s1c2t5R3u13Z2a2 128
63 4 [0 0 x3 0 0 x6 −x3 x8 x9] g2f1s1c2t5R2u13Z2a2 44
64 4 [0 0 x3 0 0 x6 x7 −x6 x9] g1f1s2c2t3R1u24Z3a2 8
65 4 [0 0 x3 0 0 x6 x7 x8 0] g1f1s1c1t3R2u13Z2a2 588
66 4 [0 x2 0 −x2 x5 x6 0 x8 0] g2f3s1c1t11R1u24Z3a2 4
67 4 [0 x2 0 x4 0 x6 0 x8 0] g1f1s1c1t11R2u1Z2a2 146
68 4 [0 x2 0 x4 x5 x6 0 −x6 0] g2f1s2c1t11R1u24Z3a2 8
69 4 [0 x2 0 x4 x5 x6 0 0 0] g2f1s1c1t9R3u1Z2a2 120
70 4 [0 x2 x3 −x2 0 x6 −x3 −x6 x9] g1f3s1c2t9R1u24Z3a2 9
71 4 [0 x2 x3 −x2 x5 x6 0 −x6 x5] g1f1s1c1t11R2u17Z2a2 8
72 4 [0 x2 x3 −x2 x5 x6 0 0 0] g2f3s1c1t9R2u17Z2a2 36
73 4 [0 x2 x3 0 0 0 x7 x8 0] g1f1s2c1t5R2u11Z2a2 32
74 4 [0 x2 x3 0 x5 x6 −x3 −x6 0] g2f1s1c1t5R2u17Z2a2 12
75 4 [0 x2 x3 0 x5 x6 −x3 −x6 x5] g1f1s1c1t3R2u17Z2a2 8
76 4 [0 x2 x3 x4 0 0 x7 0 0] g1f1s1c1t10R2u17Z2a2 150
77 4 [0 x2 x3 x4 0 x6 0 0 0] g1f1s2c1t9R2u19Z2a2 24
78 4 [x1 0 x3 0 0 0 −x3 x8 x9] g1f2s1c1t5R2u10Z2a2 8
79 4 [x1 0 x3 0 0 0 x7 0 x9] g1f1s1c2t5R2u1Z1a2 1056
80 4 [x1 0 x3 x4 0 x6 −x3 −x6 x1] g1f1s1c1t3R2u1Z2a2 8
81 4 [x1 x2 0 −x2 x1 x6 x7 −x6 0] g1f1s1c1t11R2u13Z2a2 16
82 4 [x1 x2 0 x4 x5 0 0 0 0] g1f1s2c1t10R2u11Z1a2 990
83 4 [x1 x2 x3 −x2 0 x6 −x3 0 x1] g1f1s1c1t10R2u1Z2a2 8
84 4 [x1 x2 x3 −x2 x1 0 −x3 x8 0] g1f1s1c1t10R2u13Z2a2 16
85 4 [x1 x2 x3 −x2 x1 x6 0 0 0] g1f1s1c1t9R2u12Z2a2 36
86 4 [x1 x2 x3 0 0 0 −x3 0 x9] g1f2s1c1t5R2u19Z2a2 8
87 4 [x1 x2 x3 0 0 0 −x3 x8 x1] g1f1s1c1t5R2u12Z2a2 12

88 5 [0 0 0 0 x5 x6 x7 x8 x9] g1f1s1c2t1R2u11Z2a2 368
89 5 [0 0 0 x4 0 x6 x7 x8 x9] g1f1s1c2t1R2u10Z2a2 240
90 5 [0 0 0 x4 x5 x6 0 x8 x9] g1f3s1c1t1R2u19Z2a2 48
91 5 [0 0 0 x4 x5 x6 x7 −x6 x9] g1f2s1c1t1R2u12Z2a2 24
92 5 [0 0 0 x4 x5 x6 x7 x8 −x5] g1f1s1c1t1R3u10Z2a2 32
93 5 [0 0 0 x4 x5 x6 x7 x8 0] g2f1s1c1t1R2u10Z2a2 96
94 5 [0 0 0 x4 x5 x6 x7 x8 x5] g1f1s1c1t1R3u11Z2a2 64
95 5 [0 0 x3 0 0 x6 x7 x8 x9] g1f1s1c2t3R2u13Z2a2 1176
96 5 [0 x2 0 x4 x5 x6 0 x8 0] g2f1s1c1t11R2u1Z2a2 292
97 5 [0 x2 x3 −x2 0 x6 −x3 x8 x9] g1f1s1c2t9R2u1Z2a2 26
98 5 [0 x2 x3 −x2 0 x6 x7 −x6 x9] g1f1s1c2t9R2u17Z2a2 14
99 5 [0 x2 x3 −x2 0 x6 x7 x8 0] g1f3s1c1t12R1u24Z3a2 3

100 5 [0 x2 x3 −x2 x5 x6 −x3 x8 0] g3f1s1c1t10R1u24Z3a2 10
101 5 [0 x2 x3 −x2 x5 x6 0 −x6 x9] g1f2s1c1t11R2u17Z2a2 8
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TABLE B1—Continued

# p Simplified form of fundamental matrices For example generated by: n

102 5 [0 x2 x3 −x2 x5 x6 0 x8 x5] g2f1s1c1t11R2u17Z2a2 12
103 5 [0 x2 x3 0 0 0 x7 x8 x9] g1f1s1c2t5R2u11Z2a2 240
104 5 [0 x2 x3 0 x5 x6 −x3 −x6 x9] g1f2s1c1t3R2u17Z2a2 32
105 5 [0 x2 x3 0 x5 x6 −x3 x8 0] g2f1s1c1t5R2u11Z2a2 36
106 5 [0 x2 x3 0 x5 x6 x7 −x6 x5] g1f1s1c1t3R3u17Z2a2 40
107 5 [0 x2 x3 x4 0 x6 x7 −x6 0] g1f1s2c1t12R1u24Z3a2 6
108 5 [0 x2 x3 x4 x5 x6 0 −x6 x5] g1f1s1c1t11R3u17Z2a2 40
109 5 [0 x2 x3 x4 x5 x6 0 0 0] g2f1s1c1t9R3u17Z2a2 168
110 5 [x1 0 x3 0 0 0 x7 x8 x9] g1f1s1c2t5R2u10Z2a2 128
111 5 [x1 0 x3 x4 0 x6 −x3 −x6 x9] g1f2s1c1t3R2u1Z2a2 8
112 5 [x1 0 x3 x4 0 x6 −x3 x8 x1] g1f1s1c1t3R3u1Z2a2 16
113 5 [x1 x2 0 −x2 x1 x6 x7 x8 0] g1f1s1c1t11R3u13Z2a2 56
114 5 [x1 x2 0 x4 x5 x6 0 0 0] g1f1s2c1t9R2u10Z2a2 120
115 5 [x1 x2 x3 −x2 0 x6 −x3 0 x9] g1f2s1c1t10R2u1Z2a2 8
116 5 [x1 x2 x3 −x2 x1 0 x7 x8 0] g1f1s1c1t10R3u13Z2a2 56
117 5 [x1 x2 x3 0 0 0 −x3 x8 x9] g1f2s1c1t5R2u12Z2a2 12
118 5 [x1 x2 x3 0 0 0 x7 0 x9] g1f1s2c1t5R2u19Z2a2 32
119 5 [x1 x2 x3 0 0 0 x7 x8 −x1] g1f1s1c1t5R3u11Z2a2 16
120 5 [x1 x2 x3 0 0 0 x7 x8 x1] g1f1s1c1t5R3u10Z2a2 32
121 5 [x1 x2 x3 x2 x5 x6 −x3 −x6 x1] g2f1s1c1t5R2u1Z1a2 70
122 5 [x1 x2 x3 x4 −x1 x6 0 0 0] g1f1s1c1t9R3u19Z2a2 48
123 5 [x1 x2 x3 x4 0 x6 −x3 0 x1] g1f1s1c1t10R3u1Z2a2 16
124 5 [x1 x2 x3 x4 x1 x6 0 0 0] g1f1s1c1t9R3u10Z2a2 96
125 5 [x1 x2 x3 x4 x5 0 0 0 0] g1f1s2c1t9R2u11Z2a2 24

126 6 [0 0 0 x4 x5 x6 x7 x8 x9] g1f1s1c1t1R3u12Z2a2 5160
127 6 [0 x2 x3 −x2 0 x6 x7 x8 x9] g1f1s1c2t9R2u19Z2a2 199
128 6 [0 x2 x3 −x2 x5 x6 −x3 x8 x9] g2f3s1c2t11R1u24Z3a2 34
129 6 [0 x2 x3 −x2 x5 x6 0 x8 x9] g1f3s1c1t11R2u17Z2a2 44
130 6 [0 x2 x3 −x2 x5 x6 x7 x8 0] g2f3s1c1t10R1u24Z3a2 10
131 6 [0 x2 x3 0 x5 x6 −x3 x8 x9] g3f1s1c1t3R2u17Z2a2 8
132 6 [0 x2 x3 0 x5 x6 x7 −x6 x9] g1f2s1c1t3R3u17Z2a2 40
133 6 [0 x2 x3 0 x5 x6 x7 x8 0] g2f1s1c1t5R3u17Z2a2 192
134 6 [0 x2 x3 0 x5 x6 x7 x8 x5] g1f1s1c1t3R2u11Z2a2 32
135 6 [0 x2 x3 x4 0 x6 x7 x8 0] g1f3s2c1t12R1u24Z3a2 3
136 6 [0 x2 x3 x4 x5 x6 0 −x6 x9] g1f2s1c1t11R3u17Z2a2 40
137 6 [0 x2 x3 x4 x5 x6 0 x8 x5] g1f1s1c1t11R2u19Z2a2 32
138 6 [0 x2 x3 x4 x5 x6 x7 −x6 x5] g1f1s1c1t12R2u17Z2a2 84
139 6 [x1 0 x3 x4 0 x6 −x3 x8 x9] g1f2s1c1t3R3u1Z2a2 16
140 6 [x1 0 x3 x4 0 x6 x7 −x6 x9] g1f1s2c1t3R2u1Z2a2 16
141 6 [x1 0 x3 x4 0 x6 x7 −x6 x9] g1f2s2c1t5R2u5Z3a2 16
142 6 [x1 x2 0 x4 x1 x6 x7 x8 0] g1f1s1c1t11R2u10Z2a2 48
143 6 [x1 x2 0 x4 x5 x6 x7 −x6 0] g1f1s2c1t11R2u13Z2a2 16
144 6 [x1 x2 x3 −x2 0 x6 x7 0 x9] g1f3s1c1t10R2u1Z2a2 8
145 6 [x1 x2 x3 −x2 x1 x6 x7 x8 0] g1f1s1c1t12R2u13Z2a2 126
146 6 [x1 x2 x3 −x2 x5 x6 −x3 x6 x9] g1f1s1c1t10R2u10Z1a2 144
147 6 [x1 x2 x3 −x2 x5 x6 x3 −x6 x9] g1f1s1c1t11R2u11Z1a2 144
148 6 [x1 x2 x3 0 0 0 x7 x8 x9] g1f1s1c1t5R3u12Z2a2 1536
149 6 [x1 x2 x3 x2 x5 x6 −x3 −x6 x9] g1f1s1c1t3R2u19Z1a2 358
150 6 [x1 x2 x3 x2 x5 x6 −x3 x8 x1] g2f1s1c1t5R2u10Z2a2 12
151 6 [x1 x2 x3 x4 0 x6 −x3 0 x9] g1f2s1c1t10R3u1Z2a2 16
152 6 [x1 x2 x3 x4 0 x6 −x3 x8 x1] g1f1s1c1t12R2u1Z2a2 42
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TABLE B1—Continued

# p Simplified form of fundamental matrices For example generated by: n

153 6 [x1 x2 x3 x4 0 x6 x7 0 x1] g1f1s1c1t10R2u19Z2a2 16
154 6 [x1 x2 x3 x4 x1 0 x7 x8 0] g1f1s1c1t10R2u11Z2a2 48
155 6 [x1 x2 x3 x4 x5 x6 −x3 −x6 x1] g2f1s1c1t3R2u1Z2a2 24
156 6 [x1 x2 x3 x4 x5 x6 0 0 0] g1f1s1c1t9R3u12Z2a2 1428
157 7 [0 x2 x3 −x2 x5 x6 x7 x8 x9] g1f1s1c2t11R2u17Z2a2 270
158 7 [0 x2 x3 0 x5 x6 x7 x8 x9] g1f1s1c2t3R2u11Z2a2 2480
159 7 [0 x2 x3 x4 0 x6 x7 x8 x9] g1f1s1c2t10R2u17Z2a2 912
160 7 [0 x2 x3 x4 x5 x6 0 x8 x9] g1f2s1c1t11R2u19Z2a2 536
161 7 [0 x2 x3 x4 x5 x6 x7 −x6 x9] g1f2s1c1t12R2u17Z2a2 84
162 7 [0 x2 x3 x4 x5 x6 x7 x8 0] g2f1s1c1t10R2u17Z2a2 318
163 7 [x1 0 x3 x4 0 x6 x7 x8 x9] g1f1s1c2t3R2u10Z2a2 640
164 7 [x1 x2 0 x4 x5 x6 x7 x8 0] g1f1s2c1t11R2u10Z2a2 584
165 7 [x1 x2 x3 −x2 0 x6 x7 x8 x9] g1f1s1c2t10R2u1Z2a2 48
166 7 [x1 x2 x3 −x2 x1 x6 x7 x8 x9] g1f1s1c2t10R2u11Z1a2 1104
167 7 [x1 x2 x3 −x2 x5 x6 −x3 x8 x9] g1f1s1c1t10R2u10Z2a2 32
168 7 [x1 x2 x3 −x2 x5 x6 x7 −x6 x9] g1f1s1c1t11R2u11Z2a2 32
169 7 [x1 x2 x3 x2 x5 x6 −x3 x8 x9] g2f2s1c1t5R2u10Z2a2 12
170 7 [x1 x2 x3 x4 0 x6 −x3 x8 x9] g1f2s1c1t12R2u1Z2a2 42
171 7 [x1 x2 x3 x4 0 x6 x7 0 x9] g1f1s2c1t10R2u19Z2a2 168
172 7 [x1 x2 x3 x4 x5 0 x7 x8 0] g1f1s2c1t10R2u11Z2a2 120
173 7 [x1 x2 x3 x4 x5 x6 −x3 −x6 x9] g1f1s1c1t3R2u19Z2a2 104
174 7 [x1 x2 x3 x4 x5 x6 −x3 x8 0] g2f1s1c1t10R2u13Z2a2 32
175 7 [x1 x2 x3 x4 x5 x6 −x3 x8 x1] g2f1s1c1t10R2u1Z2a2 262

176 8 [0 x2 x3 x4 x5 x6 x7 x8 x9] g1f1s1c2t11R2u19Z2a2 5220
177 8 [x1 x2 x3 −x2 x5 x6 x7 x8 x9] g1f1s1c2t10R2u10Z1a2 1232
178 8 [x1 x2 x3 x2 x5 x6 x7 x8 x9] g1f1s1c2t3R2u19Z1a2 1564
179 8 [x1 x2 x3 x4 −x1 x6 x7 x8 x9] g1f1s1c2t9R3u19Z2a2 96
180 8 [x1 x2 x3 x4 0 x6 x7 x8 x9] g1f1s1c2t10R2u19Z2a2 1104
181 8 [x1 x2 x3 x4 x1 x6 x7 x8 x9] g1f1s1c2t10R2u11Z2a2 384
182 8 [x1 x2 x3 x4 x5 x6 −x3 x8 x9] g2f1s1c1t10R2u10Z1a2 774
183 8 [x1 x2 x3 x4 x5 x6 x3 x8 x9] g2f1s1c1t11R2u11Z1a2 288
184 8 [x1 x2 x3 x4 x5 x6 x7 −x6 x9] g1f1s2c1t11R2u11Z1a2 352
185 8 [x1 x2 x3 x4 x5 x6 x7 x6 x9] g1f1s2c1t10R2u10Z1a2 144
186 8 [x1 x2 x3 x4 x5 x6 x7 x8 −x1] g2f1s1c1t5R3u11Z2a2 32
187 8 [x1 x2 x3 x4 x5 x6 x7 x8 0] g1f1s2c1t12R2u13Z2a2 1078
188 8 [x1 x2 x3 x4 x5 x6 x7 x8 x1] g2f1s1c1t10R2u19Z2a2 128

APPENDIX C

Details on the Computations of Sections 3.4 and 3.5

Here we denote by ⊕ the “AND” symbol and by brackets [ ] an interval (unix-like
notation). For example, p1g[1–2] ⊕ p2g3 represents the set of the three cases: p1g1,
p1g2 and p2g3.

Considering the simplification rules given in Section 3.4, there only remains, from the
intrinsic part,

p1g1f[1-3]s2b1B1c[1-3] ⊕ p2g1f[1-3]s2b[1-3]B[1-3]c[1-3]⊕ p3g[1-3]

f[1-3]s2b1B1c[1-3]

which is 117 cases, and from the extrinsic parameters part,
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R1r1a2u1W3T1t1D3Z3 ⊕ R1r1a2u1W3T2t[1-12]D[1-3]Z3 ⊕ R[2-3]r1a2u[1-24]

W[1-3]T1t1D3Z3⊕ R[2-3]r1a2u[1-24]W[1-3]T2t[1-12]D[1-3]Z[1-3]

⊕ R4r1a[1-2]u[1-24]W[1-3]T1t1D3Z3⊕ R4r1a1u[1-24]W[1-3]T2t[4;8;12]

D2Z[1-3]⊕ R4r1a2u[1-24]W[1-3]T2t[1-12]D[1;3]Z[1-3]

which is 21,709 cases, leading to a total of 2,539,953 particular cases. This is approximately
100 times less than previously determined.

Continuing in Section 3.5, the homographic relation cases are

p1g1f[1-3]s1b1B1c[1-3].MVTortho

p2g1f[1-3]s1b[2-3]B[1-2]c[1-3].MVTpara

p3g[1-3]f[1-3]s1b1B1c[1-3].MVTpersp

where

MVTpersp = R1r1a2u1W3T1t1D3Z3

R[2-3]r1a2u[1-24]W3T1t1D3Z3

R4r1a[1-2]u[1-24]W3T1t1D3Z3

MVTpara = R[2-3]r1a2u[10-12;14-16]W2T1t1D2Z3

R[2-3]r1a2u[10-12;14-16]W2T2t[10-12]D2Z2

R[2-3]r1a2u[10-12;14-16]W2T2t[1-12]D2Z[1;3]

R4r1a[1-2]u[10-12;14-16]W2T1t1D2Z3

R4r1a1u[10-12;14-16]W2T2t[10-12]D2Z2

R4r1a2u[10-12;14-16]W2T2t[1-12]D2Z[1;3]

MVTortho = R1r1a2u1W3T1t1D3Z3

R1r1a2u1W3T2t[1;3;5;7]D3Z3

R[2-3]r1a2u[9;13]W3T1t1D3Z3

R[2-3]r1a2u[9;13]W3T2t[1;3;5;7]D3Z3

R4r1a[1-2]u[9;13]W3T1t1D3Z3

R4r1a1u[9;13]W3T2t12D3Z3

R4r1a2u[9;13]W3T2t[1;3;5;7]D3Z3

which is 351 cases of orthographic homographic relations, 18,360 cases of paraperspective
homographic relations, and 2,619 cases of perspective homographic relations, leading to a
total 21,330 cases of homographic relations.

We will not study paraperspective and orthographic projection for fundamental matrices
since the domain of validity of such projection approximations is included in conditions of
existence of homographic relation. In the case of perspective projection, (p3): t = 0 thus
u0 = ±1 or u1 = ±1.
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As previously determined,

MVTpersp = R1r1a2u1W3T2t[1-12]D3Z3

R[2-3]r1a2u[1-24]W3T2t[1-12]D3Z[1-3]

R4r1a1u[1-24]W3T2t[4;8;12]D3Z2

R4r1a2u[1-24]W3T2t[1-12]D3Z[1-3]

inducing 72,252 cases of fundamental relations.
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peuvent les produire, J. Math. Pures Appl. 5, 1840, 380–440.

21. P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detection, Wiley, New York, 1987.

22. C. C. Slama (Ed.), Manual of Photogrammetry, 4th ed., Amer. Soc. Photogrammetry, 1980.

23. S. Soatto and P. Perona. Dynamic rigid motion estimation from weak perspective, in Proceedings of the 5th
International Conference on Computer Vision, Boston, MA, June 1995, pp. 321–328, IEEE Computer Soc.
Press, Los Alamitos, CA.

24. P. H. S. Torr, Geometric motion segmentation and model selection, Phil. Trans. R. Soc. Lond. A 356, 1998,
1321–1340.
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