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Fine-grained object recognition in underwater visual data
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Abstract In this paper we investigate the fine-grained object categorization problem of
determining fish species in low-quality visual data (images and videos) recorded in real-life
settings. We first describe a new annotated dataset of about 35,000 fish images (MA-35K
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3 Université de Toulon, CNRS, LSIS UMR 7296, 83957 La Garde, France

4 Institut Universitaire de France (IUF), 75005 Paris, France

5 I3S, UMR UNS-CNRS 7271, University of Nice Sophia Antipolis, Nice, France

/

Multimed Tools Appl (2016) 75:1701–1720

Published online: 201  24 May 5

mailto:cspampin@dieei.unict.it
mailto:simone.palazzo@dieei.unict.it
mailto:joalland@univ-tln.fr
mailto:sebastien.paris@lsis.org
mailto:glotin@univ-tln.fr
mailto:kblanc@i3s.unice.fr
mailto:lingrand@i3s.unice.fr
mailto:precioso@i3s.unice.fr


dataset), derived from the Fish4Knowledge project, covering 10 fish species from the East-
ern Indo-Pacific bio-geographic zone. We then resort to a label propagation method able to
transfer the labels from the MA-35K to a set of 20 million fish images in order to achieve
variability in fish appearance. The resulting annotated dataset, containing over one mil-
lion annotations (AA-1M), was then manually checked by removing false positives as well
as images with occlusions between fish or showing partially fish. Finally, we randomly
picked more than 30,000 fish images distributed among ten fish species and extracted from
about 400 10-minute videos, and used this data (both images and videos) for the fish task
of the LifeCLEF 2014 contest. Together with the fine-grained visual dataset release, we
also present two approaches for fish species classification in, respectively, still images and
videos. Both approaches showed high performance (for some fish species the precision and
recall were close to one) in object classification and outperformed state-of-the-art meth-
ods. In addition, despite the fact that dataset is unbalanced in the number of images per
species, both methods (especially the one operating on still images) appear to be rather
robust against the long-tail curse of data, showing the best performance on the less populated
object classes.

Keywords Object classification · Marine ecosystem analysis · Environmental monitoring

1 Introduction

In the last decades, the extensive research on object recognition has mainly focused on
distinguishing object classes which are visually dissimilar [8, 10]. Recently, computer vision
researchers have put a lot of effort into recognizing sub-ordinate object classes, a.k.a. fine-
grained object recognition, as this poses several challenges because of the lack of strongly-
discriminative features.

Automated visual systems performing such tasks might provide significant support to
many applications, especially those requiring specialized domain knowledge (e.g. ecology):
indeed, most people can easily distinguish between a person playing a clarinet from one
holding a clarinet [18], while it is much more difficult to distinguish between plant types
or animal species, where inter-class similarity might be very high. Moreover, especially
for the ecological context, the need for such automatic tools has become even greater due
to technological advances (remotely-operated vehicles, stationary non-invasive cameras, as
well as the overall reduction of device costs) which led to the collection of massive datasets,
whose analysis requires automated methods as it cannot be done by human operators [3].

However, to perform automatic or semi-automatic visual tasks, it is first necessary to
have large annotated datasets, whose collection requires human efforts, specialized domain
knowledge (especially for fine-grained object recognition) and often money, as shown by
several recent methods exploiting platforms such as Amazon Mechanical Turk.

The proposed work addresses both the problem of automatically annotating and perform-
ing fine-grained visual tasks in domain-specific datasets. In particular, we will focus on
underwater visual data using a large fish image dataset built by processing [28] over one mil-
lion 10-minute video clips taken for fish biodiversity monitoringwithin the Fish4Knowledge
project.1

1www.fish4knowledge.eu
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The difficulties of fish-species classification in our dataset lies in the fact that fish
species, especially within the same family, differ by few phenotypic features and even
images of different fish species may look very similar because of 1) fish high deformability,
2) light propagation in water, and 3) low resolution of the recorded videos (due to network
limitations in the monitoring stations). Fig. 1 shows three samples of Acanthurus nigro-
fuscus, Chromis margaritifer and Dascyllus reticulatus fish species, comparing how they
appear in high-resolution images and in our dataset.

The main contributions of our work are:

– Two fine-grained object classification approaches operating, respectively, on still
images and on videos;

– The introduction and the release of a new fine-grained fish image dataset, which com-
plement the existing fine-recognition benchmarks [26, 37] and provides a useful basis
to support marine life and its biodiversity investigation.

The remainder of the paper is organized as follows: in Section 2 a reviews of the
most recent fine-grained object classification methods is carried out. Section 3 describes
the employed underwater visual dataset, while fine-grained object recognition methods
are reported in Section 4 with the performance described and discussed in Section 5.
Concluding remarks and future developments are given in Section 6.

2 Related work

Recently, the computer vision, machine learning and multimedia scientific communities
have addressed with increasing interest the problem of fine-grained recognition, i.e. catego-
rizing objects which look very similar and differ only for subtle details, such as recognizing
different species of animals (e.g dogs [26], birds [5]) and plants [19]. Of course, this
task represents is rather challenging, because the discriminative features among the object
classes are more difficult to identify; besides, one of the consequences of the novelty (and

Fig. 1 From left to right, examples of Acanthurus nigrofuscus, Chromis margaritifer and Dascyllus retic-
ulatus fish species: how they appear in an encyclopedia (first row) and how they appear in our dataset
(second row)
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the complexity) of this task is the lack of datasets to be used for training and testing machine
learning approaches. One example of fine-grained recognition is fish species identifica-
tion at the species level. This task, per se, is not more difficult than other animal-based
recognition ones, but their application in “real-life” context makes it very challenging
because of the high variability of fish appearance and the limitation of the employed
underwater imaging devices [12, 13].

Several techniques have been specifically devised to deal with fine-grained recognition
[5, 9, 17, 35, 36], mostly focusing on the discovery of visual features which are more dis-
criminative at the subordinate level. In [17], a combination of visual cues extracted from
training images is used to build discriminative compound words. In [7], image patches are
considered as discriminative attributes and a Conditional Random Field (CRF) framework
is used to learn the attributes on a training set with humans in the loop.

Dense-sampling techniques have also been explored which decompose an image into
patches and then extract low-level features from these regions to identify fine image statis-
tics. In [38] the authors introduce “Grouplet”, a set of generative local dense features,
which work reliably for human activity recognition. As follow-up, the same authors, in [18],
improved the performance of their former method by fusing global and local information
and using a random forest–based approach to extract dense spatial information. The limi-
tation of these methods is their efficiency, as dense sampling feature spaces are often huge
and increase many-fold when employing multiple image patches of arbitrary size. In addi-
tion, they are not able to operate with low-quality images, where the finer details necessary
to pick the subtle differences between fine-grained object classes are missing.

An added difficulty for the existing methods is the lack of extensive training data: for
example, the Caltech-UCSD Birds (CUB-200) [5] dataset contains only 6000 images of 200
different bird species, i.e. 30 images per bird species on average. It is proven [33] that large
training datasets allow for effective nonparametric object recognition methods. However,
the manual collection of large scale annotated datasets is a complex, tedious and expensive
task, and although disparate techniques have been proposed for automatic labeling in the
case of basic object recognition [14], the line of research that seems to be more effective
for fine-grained recognition still involves the presence of human operators in the annota-
tion loop: fine-grained labels are much more difficult to acquire and the automatic selection
of discriminative features often results in the selection of irrelevant features. A promising
direction is resorting to crowdsourcing solutions, as in [6], whose application has proved to
be effective in discriminative feature selection, avoiding overfitting issues. However, in the
case of fine-grained object recognition, the annotation process may require a deep under-
standing of the specific domain by the human operator (it is not feasible to ask non-experts
to distinguish fish or birds or plants of the same family), thus limiting the applicability of
crowdsourcing approaches.

3 Dataset

3.1 Underwater image and video dataset

For the experiments described in this paper, we employed the following datasets:

– The U-20M dataset contains about 20 million unannotated (hence the U in the name)
underwater images. This dataset represents the main body of images employed in our
experiments.
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– The MA-35K dataset is a subset of U-20M containing about 35,000 fish images
belonging to 10 chosen species. Each image was manually annotated (MA) with the
corresponding species.

– The AA-1M dataset contains about 1 million automatically-annotated (AA) images. This
dataset is a subset of the images in U-20M which belong to the classes annotated in
MA-35K.

– The FishCLEF-31K dataset consists of about 30,000 images extracted from
the AA-1M one and was used for the fish task [29] of the LifeCLEF
2014 benchmarking initiative [16]. Together with the fish images, the videos
(about 400 10-minute videoclips) these images were extracted from, were also
released.

3.2 Dataset collection

The U-20M dataset represents a randomly-selected fraction of the data collected in the con-
text of the Fish4Knowledge project, amounting to more than a billion fish images extracted
by processing over one million videos. In particular, these images contain generally one fish
per image and represent the bounding boxes of the fish as detected by background mod-
eling approaches [1]. The number of fish species in U-20M is unknown as the dataset is
unlabeled, however, during the Fisk4Knowledge project it was noted that the 99.9 % of the
observed fish belong to only 10 species (and for the remaining species it was very difficult
to gather a significant number of image samples).

To create the U-20M dataset we, first, selected from the one-billion dataset only
one image per trajectory (extracted via object tracking [30]) in order to avoid near
duplicate images. On average each trajectory consisted of about ten fish detections
and, by selecting only one image per trajectory we reduced the original dataset
from one billion to about 150M images. The U-20M dataset was generated by ran-
domly (uniform pdf) selecting 20M images from this last set. It is also important
to notice that the random selection keeps the fish species distribution approximately
constant.

The MA-35K dataset is a subset of the U-20M dataset, containing only (but not all)
fish images belonging to the 10 most common species. Image annotation was carried out
manually and validated by two expert marine biologists. In the original dataset, some species
were more common than others showing the long-tail issue of data; although we tried to
make the dataset as uniformly distributed across species as possible, for some of them (most
evidently, Lutjanus fulvus) it was quite difficult to find a large number of adequate images,
which resulted in a lower presence in the dataset. Figure 2 shows sample pictures of the
chosen 10 species.

The AA-1M dataset is also a subset ofU-20M, obtained by the semi-automatic annotation
approach described in [11]: briefly, images fromMA-35K are used as queries to a similarity-
based search in U-20M; after a check for false positives, achieved by means of mutual
similarity in the retrieved images, the resulting images are then assigned the same species
label as the query image.

The FishCLEF-31K dataset is obtained by selecting randomly about 31K images from
AA-1M. We did not use either the AA-1M dataset since training classifiers on such a big
dataset is impractical and computationally expensive and or the MA-35K one because it
contains many near duplicate images. Table 1 shows the distribution of the images for the
ten fish species and its partitioning as training and test set for the LIFECLEF 2014 contest.
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Fig. 2 The 10 fish species analyzed in this work (images taken directly from the MA-35K dataset). From
left to right and top to bottom: Acanthurus nigrofuscus, Amphiprion clarkii, Chaetodon lunulatus, Chromis
margaritifer, Dascyllus reticulatus, Hemigymnus fasciatus, Lutjanus fulvus, Myripristis kuntee, Neoniphon
sammara, Plectrogly-Phidodon dickii

For video-based fish species recognition, we employed the videos the 31K images derive
from, i.e. 401 10-minute videos.

All the datasets used in this paper are publicly available at www.perceive.dieei.unict.it/
datasets/fish recognition.

4 Fine-grained fish species recognition

In this section we present two approaches for fish species recognition in still images and
in videos. In the case of videos, before classification, fish identification was performed by
means of a background modeling approach.

Table 1 Distribution of fish
species in the dataset used for the
fish task of the LifeCLEF 2014
contest

Species Training Set Test Set

Acanthurus nigrofoscus 2,511 725

Amphiprion clarkii 2,985 878

Chaetodon lunulatus 2,494 917

Chromis margaritifer 3,282 371

Dascyllus reticulatus 3,196 681

Hemygimnus fasciatus 2,224 852

Lutjanus fulvus 720 146

Myripristis berndti 2,554 840

Neoniphon sammara 2,019 969

Plectrogly-Phidodon dickii 2,456 577

Total 24,441 6,956

These fish images were extracted
from 401 10-minute videos,
which were also provided as part
of the video-based fish
identification task
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4.1 Image-based fish species identification

Conversely to other fish-recognition approaches [12, 13], our fine-grained fish recognition
performs a multi-scale analysis: from a fast one layer encoding-pooling scheme based on
MB-LTP robust to illumination/color variation transformations to a fine-grained analysis via
Fisher vectors and sparse coding trained on SIFT local features. The multi-scale aggregation
via late fusion permits to reach a high level of classification rate (see Section 5). More in
detail, our method is based on the classic unsupervised pipeline (see [20, 24, 25]), which
consists of the following three steps:

– local feature extraction
– patch encoding
– pooling operation (with a potentially spatial pyramid to improve local analysis)

These three steps constitutes a layer. Layers can be stacked together to obtain a more global
representation. On the one hand, the more layers are stacked, the more the recognition
system is invariant to complex image transformations, but on the other hand, if the num-
ber of layer is high, discriminability between classes can be lost. In practice, the number
of layer is tuned to capture main image transformations common to all classes. On top of
this architecture, a large-scale supervised classification is used, typically via linear-SVM or
logistic regression algorithms.2 In most computer vision approaches, only the encoding part
is trained unsupervised from a random subsample set of local features and pooling parame-
ter is fixed ad-hoc. In our work, we fixed the spatial pyramid of the last layer to 1×1+2×2
representing a total of 1+4 ROI to pool codes. In most of cases, the first layer is not trained
but fixed according to some neuro-vision considerations. For example, SIFT patches [21]
can be seen as a fixed sparse coding scheme of local gradient orientations where the spar-
sity level is fixed to 2 (see [4]) followed by a weighted pooling over local 4 × 4 windows.
Local Binary Patterns [23] can be also considered to the sparse coding of local binary pat-
terns where sparsity level is fixed to 1 and pooling is performed by histogram processing.
For the image-based fish recognition, we devised three approaches: the first one using the
1-layer approach, and the other two exploiting 2−layer hybrid architecture.

4.1.1 Direct 1-layer approach

The first approach (corresponding to the first run in the results presented in the next section)
is associated with a 1-layer architecture based on the approximated Local Ternary Patterns
(LTP) propsed by Tan and al (see [32]). In many computer-vision applications, especially in
face detection/recognition, Local Binary Patterns (LBP) and derivatives are known to offer
very good results for a modest price. In [32], LTP codes are approximated by the aggregation
of two LBP codes. We extended the direct LTP formulation to a multi-scale version where
binary codes are computed over block of s pixels square instead of one unique pixel. We
performed analysis with 3 block’size s ∈ {1, 2, 3}. We also compute LTP codes for each
RGB color channels. The total feature size is 2× 256× 3× 3× 5 = 23, 040. As mentioned
earlier, this architecture is fixed and no training phase is required. The processing takes less
than 0.05s per image on a modern laptop.

2If main image’s transformations are captured during the stacked/deep feature extraction pipeline, a non-
linear classification is not improving results in practice.
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4.1.2 Stacked 2-layer approach

The second and third approaches are based on a 2−layer hybrid architecture where the first
one employs either SIFT or LTP patches densely grid sampled and the second layer uses
Fisher Vector (FV) [27] or Sparse Coding (SC) [39] framework as encoder.

In particular, the secondmethod consists of a fusion between the approach describe above
and Fisher Vector representations. Specifically, we sampledN = �x×�y = 25×25 = 625
SIFT patches per scale and per color channel, each of them computed over a M = 24
pixels square block. 3 scales is used σ ∈ {0.5, 0.75,1} and the 3 RGB color channel. In
order satisfy the diagonal assumption of the inverse of the Fisher Information Matrix (FIM),
a PCA is performed on extracted SIFT patches for each scale and for each color channel
reducing dimension from 128 to 80. Following [27], we aggregated to each obtained patch,
their normalized coordinates of the middle of the patch. The encoding part associated FV
consists in computing local gradient wrt. means and variances of the log-likelihood with
Gaussian Mixture modelling. We fixed G = 32 gaussians and used 300,000 local patches
to train the GMM. The global FV representation is obtained by average pooling on each
earlier local representation over each windows of the spatial pyramid and for each scale
and color channel. The total feature size is (80 + 2) × 2 × 32 × 3 × 3 × 5 = 236,160.
Late fusion is performed by averaging posterior probabilities obtained during linear SVM
training.

The last method instead fuses LTP, FV and SC representations. For SC, LTP patches
instead of SIFT are chosen given their better representation capacity (see [25]). LTP
patches are extracted densely in the same way as for the SIFT ones over ROI of 24
pixel square for 3 different scales and for the 3 RGB channels. Dictionaries for SC are
trained for each scale and color channel. We used the classic dictionary learning proce-
dure alternating dictionary codebook optimization with sparse codes updates. We employed
block-coordinates descent (see [22]) approach for the codebook optimization adding an
extra positivity constraints for each dictionary’s elements. Sparse codes are updated by
LARS algorithm given the current estimated dictionary adding an extra positivity con-
straints on sparse codes. The number of dictionary elements was fixed to K = 1, 024
and used 300,000 local features to train each dictionary. The total feature size is 1, 024 ×
3 × 3 × 5 = 46,080. For the pooling stage, we used �p-norm pooling fixing p = 3. It
showed that p = 3 is offering best results over average pooling (p = 1) and max-pooling
(p = ∞).

Figure 3 describes the pipelines employed for the image-based fish species recognition
task.

4.2 Video-based fish species identification

Our video-based fish identification consists of two steps: 1) key-points are extracted from
the fish images provided in the training set in an off-line fashion, and 2) the precomputed
key-points are matched against dense key-points extracted from candidate fish (extracted by
a background modeling approach) for fish species classification. The flowchart of this step
is shown in Fig. 4.

Off-line extraction of key-points from fish images For each video frame in the training
set, we compute three groups of key-points, using the Opponent SIFT color descriptor [40]
at different scales, on the central horizontal axis and located at the 1/3, 1/2 and 2/3 of the
horizontal length. Scales are computed starting from fish bounding box size (provided in
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Fig. 3 Summary of the approaches devised for fish species recognition: 1) Approach 1 provides one pipeline
results (light blue block), b) Approach 2 aggregates two pipeline results by late fusion (light blue + purple
blocks) and 3) Approaches 3 aggregates three pipeline results (light blue + purple and green blocks) by late
fusion

the ground truth) suitably increased or decreased in order to exactly contain the whole fish
and its main parts: i.e. head, body and tail. We adopt this strategy of hand-crafted large key-
point descriptors owing to the low resolution of the videos and because classical detectors
give generaly smaller key-points. The detection of key-points is described in Fig. 5.

On-line video-based fish species identification The first step of our online module
detects moving objects from background-foreground segmentation maps obtained by the
adaptive backgroundmixture model described in [40]. These masks are then post-processed
with morphological operators: an circular erosion of radius 3 then a circular dilation of same
radius.

Fig. 4 The video-based fish identification flowchart: on-line module
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Fig. 5 Key-point detection in fish images

In the training phase, starting from the background/foreground masks we build bound-
ing boxes for the detected fish and then we train one SVM classifier for each fish species
with the descriptors of detected fish as positive samples and Opponent SIFT descrip-
tors of the background as negative samples. Specifically, key-points are densely extracted
from the background with fixed scales from 30 to 110 pixels of diameter with respect to
the size of the video. In order to avoid that background key-points (due to large bound-
ing boxes) are used for the SVMs training, we filter out positive key-points: for each
key-point inside the bounding boxes, we look for its 10 nearest neighbors and keep the
best key-points (with more positive neighbors) to reach 50 percent of positive extracted
descriptors.

In the test phase, for each detected blob from a video, key-points are densely extracted
at several scales (fixed scales from 30 to 110), and likelihood scores are computed as the
distances between the descriptors and the SVM decision boundary of each fish class. Only
positively classified points with a distance larger than a threshold 1 are considered and the
scores associated with each fish species are summed up in order to obtain a global likelihood
score per species per blob: the fish species with the highest score is then assigned to the
blob.

5 Performance evaluation

The approaches described in Section 4 were tested on the FishCLEF-31K dataset within
the fish task of the LifeCLEF 2014 benchmarking initiative. In particular, the LifeCLEF
2014 Fish task (a.k.a. FishCLEF 2014) aimed at benchmarking automatic fish detection and
recognition methods by processing underwater visual data. It, basically, consisted of two
tasks:

A video-based task – detecting fish instances in key video frames and recognizing their
species;
An image-based task – to identify fish species using only still images containing only
one fish instance.

Baseline In order to provide a baseline for our fish species classification methods we tested
1) the VLfeat BoW [34] classification method (generally used as baseline for fine-grained
recognition tasks [26]) over our FishCLEF-31K dataset for the task of recognizing fish in
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still images and 2) the ViBe background modeling approach [1] for fish detection in videos
(it proved to operate effectively with underwater videos [3]) followed by the VLFeat+BoW
for fish species recognition. In both cases, performance evaluation was carried out by com-
puting average precision and recall, and precision and recall for each fish species and the
results are shown in Table 2. In particular, for the image-based task only the recall was
assessed (since precision was one for all the considered species), while for the video-based
task we also computed the precision as the probability of identifying background areas as
fish. When computing precision and recall for both tasks we taken into account only the
most probable class for each image.

Image-based fish species recognition [15] This section reports the performance
achieved by the three methods described in Section 4.1 on the image-based task. Each
method employed different features, namely: 1) only LTP 2) LTP + Improved Fisher Vec-
tors (IFV) and 3) LTP + IFV + SC. For all the three methods, the last global representation
is pooled on 1 × 1 + 2 × 2 spatial pyramid. The results, in terms of recall, of the three
approaches are reported and compared to our baseline in Fig. 6. As for the precision,
the approach yielded a precision of 1 for almost all species expect for Chromis margar-
itifer (0.96), Dascyllus reticulatus (0.97) and Plectrogly-Phidodon dickii (0.98) species.
Form recall performance, it is possible to notice that the fast LTP approach (1-layer archi-
tecture) outperforms the baseline by a large margin (except for the first specie), i.e. The
other two approaches (2 and 3) slightly improved results because only few examples were
misclassified by the first one.

Video-based Fish Species Recognition [2] The results, in terms of precision and recall,
achieved by the video-based fish species recognition approach, described in Section 4.2, are
shown in Figs. 7 and 8. For this task, the approach first discriminates fish from background
and then assigns to each detected fish a species. A detection was considered as a true posi-
tive if the PASCAL score between it and the corresponding object in the ground truth was
over 0.3. The employed parameters were T = 0.5 and M = 10 (see Section 4.2). Also for
this task, we used three different settings based on how blobs detected by the fish detection

Table 2 Fine grained
classification baselines on the
FishCLEF 31K dataset

Fish Species Precision—Recall Precision—Recall

Image Video

Acanthurus nigrofoscus 0.96 – 0.99 0.61 – 0.67

Amphiprion clarkii 0.98 – 0.90 0.83 – 0.62

Chaetodon lunulatus 0.94 – 0.92 0.79 – 0.55

Chromis margaritifer 0.96 – 0.90 0.52 – 0.61

Dascyllus reticulatus 0.91 – 0.88 0.46 – 0.53

Hemygimnus fasciatus 0.99 – 0.92 0.34 – 0.49

Lutjanus fulvus 0.99 – 0.93 0.43 – 0.47

Myripristis berndti 0.99 – 0.89 0.58 – 0.44

Neoniphon sammara 0.98 – 0.92 0.17 – 0.34

Plectrogly-Phidodon dickii 0.97 – 0.89 0.68 – 0.61

Average 0.97 – 0.91 0.54 – 0.54

Performance, in terms of average
and per species precision and
recall, of our baseline
approaches, respectively, on the
image-based (second column)
and video-based (third column)
task
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Fig. 6 Image-based fish species recognition results [15] in terms of recall on the FishCLEF 31K dataset

modules were treated: 1) blobs as coming out from the background/foreground segmenta-
tion mask; 2) fish occlusion (more fish in one bounding box) separated by resorting to color
features and 3) small blobs with a spatial and color coherence merged.

While the average recall obtained by our method was lower than the baseline’s recall,
the precision was much improved, thus implying that our classification approach based on
key-points was more reliable than the fish detection baseline [1]. The reason behind the low
recall may be found in the size of the computed bounding boxes when processing a video
(see Fig. 9): bigger bounding boxes may contain also background objects and/or other fish
instances, thus affecting the performance of the species classification method.

To demonstrate the effectiveness of this method in discriminating fish species, we
adapted it to work with still images and compared (see Fig. 8) its performance to the

Fig. 7 Precision of our video-based fish species recognition results [2] on the FishCLEF 31K dataset
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Fig. 8 Recall of our video-based fish species recognition results [2] on the FishCLEF 31K dataset

ones achieved by, respectively, the method devised for the image-based task and the base-
line. The results are shown in Table 3: the approach employed for the image-based task
is still the most performing one, followed by the one developed for the video-based task,
which was able to outperform a powerful approach such as VLFeat+BoW. However, the
approach based on the extraction of keypoints is more efficient, though less accurate, than
the approaches based on LPB, and this makes it particularly suitable for applications where
efficiency is a key requirement.

Fig. 9 Matching between the bounding boxes computed by our video-based fish identification method [2]
(in red) and the ones (in green) provided in the FishCLEF 31K dataset
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Table 3 Overall fine grained classification accuracy

Fish Species Image-based Video-based Baseline

approach [15] approach [2]

Acanthurus nigrofoscus 0.96 0.85 0.99

Amphiprion clarkii 1 0.88 0.90

Chaetodon lunulatus 1 0.91 0.92

Chromis margaritifer 1 0.99 0.90

Dascyllus reticulatus 0.98 0.94 0.88

Hemygimnus fasciatus 0.99 0.92 0.92

Lutjanus fulvus 1 0.91 0.93

Myripristis berndti 0.97 0.98 0.89

Neoniphon sammara 1 0.98 0.92

Plectrogly-Phidodon dickii 0.99 0.98 0.89

Average 0.99 0.93 0.91

Comparison (in terms of recall) between the approach devised for dealing with still images [15] (second
column), the video-based fish identification approach (third column) [2] adapted to operate with still images
and the baseline (VLFeat+BoW) (forth column)

6 Concluding remarks

In this paper we have introduced a large dataset for the fine-grained recognition prob-
lem of identifying fish species from images and videos. We have developed an effective
nonparametric approach for automatic label propagation. The automatically-labeled dataset
(suitably filtered) was used for benchmarking fish species recognition approaches within
the fish task of the LifeCLEF 2014 initiative. Two methods for fish species recognition
were also described: the first one dealing with still images and the second one with videos.
Both methods achieved very high performance, although dealing with videos is much more
complex as it needs reliable methods for detecting moving objects [31]. Our dataset at
the moment contains only 10 fish species representing the most observed species in our
underwater visual dataset. This, of course, simplifies our fine-grained recognition problem
compared to other fine-grained classification benchmarks that contain much more classes,
e.g. plant species [19] or bird recognition [5]. However, the extremely low image quality
(the aforementioned benchmarks for fine-grained recognition contain only high resolution
images) makes the classification task not trivial, especially in the case of videos. We are
currently working on increasing the number of species up to 100 in order to see how the pro-
posed methods behave in case of long-tail data distribution and to have fish families sharing
common phenotypes, thus making the fine-grained classification task much more complex .
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