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Abstract. We revisit the problem of parameter estimation in computer vision, reconsidering and implement-
ing what may be called the Kanatani’s estimation method, presented here as a simple optimisation problem, so
(a) without any direct reference to a probabilistic framework but (b) considering (i) non-linear implicit measurement
equations and parameter constraints, plus (ii) robust estimation in the presence of outliers and (iii) multi-model
comparisons.

Here, (A) a projection algorithm based on generalisations of square-root decompositions allows an efficient and
numerically stable local resolution of a set of non-linear equations. On the other hand, (B) a robust estimation
module of a hierarchy of non-linear models has been designed and validated.

A step ahead, (C) the software architecture of the estimation module is discussed with the goal of being integrated
in reactive software environments or within applications with time constraints, while an experimentation considering
the parameterisation of retinal displacements between two views is proposed as an illustration of the estimation
module.
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1. Introduction

Estimation of parameters in computer-vision is a recur-
rent and somehow “never-solved” problem (a didactic
introduction about this topic may be found in Zhang
(1997)), since many different aspects are to be taken
into account such as (i) nonlinear equations and con-
straints, (ii) approximate measures and outliers elim-
ination, (iii) singularities in the equations, with the
requirement to use different models as alternatives. Let
us review these three points and illustrate these aspects
by an example.

The two-Views “Motion” Problem as a Typical
Example

In this paper, we consider as a typical example the two-
views “motion” estimation problem: given two views of
a 3D scene we have to recover the physical parameters

(calibration, Euclidean displacement), say q, defining
the disparity between 2D data points in the images.

Let us briefly review the problem. Refer, for instance,
to Zhang et al. (1994) for more details. We consider two
images of a rigid object, with singular points (in fact
corners) detected on this object and matched in the two
views. A bilinear constraint, which characterises the
retinal displacement, exists between the homogeneous
coordinates of these pairs of points (pi , p′

i ).
This is written : p′T

i F(q) pi = 0 and it constitutes the
measurement equation provided by the match (pi , p′

i ).
It is used to evaluate the parameter q. Here the “funda-
mental matrix” F(q) is defined up to a scale factor and
subject to the algebraic cubic constraint det(F(q)) = 0.

Hence, the components of the fundamental matrix
are “homogeneous” in the sense that they are linear with
respect to the measurement equation and defined up to
a scale factor. Their estimation may thus be much sim-
pler than estimating the physical parameters. From a
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theoretical point of view, this corresponds to analysing
the projective structure of the scene (see Hartley, 1992;
Maybank and Faugeras, 1992).

This parameterisation is undefined in the case of a
“planar” displacement (i.e. all points are in the same
plane or it is a pure rotation) whereas another equa-
tion holds : p′

i ∧ H(q) pi = 0, given another matrix
H(q), also defined up to scale factor, but not subject to
constraint.

Here, indeed, points may belong to another rigid
objects or may be incorrectly matched and thus act
as outliers for this estimation. Robust estimate is thus
mandatory.

Furthermore, the rigid displacement or the cam-
era intrinsic parameters may be specific (Viéville and
Lingrand, 1999) thus yielding particular forms of
F(q) or H(q). Several models must thus be evaluated
concurrently.

Estimating “Homogeneous” Parameters

Kanatani1 may be the first computer-vision scientist
who has really attacked the double problem of non-
linear statistical estimation (Kanatani, 1992, 1996b,
1998) and multi-model statistical inference (Kanatani,
1996b, 1998) using a pioneer work (Akaike, 1997) de-
veloped in another domain.

More recently, Meer and his group (Leedan and
Meer, 2000; Leedan, 1997; Matei and Meer, 2000) have
developed a very powerful formalism for non-linear
statistical estimation, providing that the parameter to
estimate is homogeneous with respect to the mea-
surement equation. This corresponds to the estima-
tion of the F or H matrices components in our
example.

Similarly, Brooks and his group, estimating an ho-
mogeneous parameter with measurement equations
which are quadratic functions of the measurement vari-
ables (Chojnacki, 1999) develop an effective method to
obtain an unbiased estimate for the Kanatani estimation
scheme.

More generally, several authors (e.g. Triggs, 1998;
Hartley, 1997) have developed methods to deal with
this class of problem.

All these “re-normalisation” methods assume that
rejection of outliers has been done elsewhere in a earlier
module. This may be a caveat, since rejection of outliers
requires a reasonable estimation of the parameter itself.
As a consequence, both methods may have to be mixed,
as we attempt to do here.

In particular, the presence of inliers of a different
“object” (i.e. belonging to another set of measures co-
herent with a different parameter value) may break-
down the estimation, even for robust estimators (see
Stewart, 1997 for a quantitative study). As studied by
this author, the observed bias is intrinsically due to the
fact that the used criteria are only based on the residual
error. Although the present framework is not intended
to solve this problem, we will discuss this aspect for
the proposed method.

Using “Physical” Parameters

It appears that, in our context (Gaspard and Viéville,
1996; Viéville et al., 1996b, 1996a; Viéville and
Faugeras, 1996; Viéville and Lingrand, 1999) we are
not able to re-use this formalism for the following rea-
son : we must estimate not the homogeneous but the
physical parameters and such a parameterisation of
computer-vision parameters is NOT homogenous with
respect to measurement equations.

This corresponds to perceptual tasks in which the
Euclidean geometry of the camera and/or the scene
has to be recovered (localisation, visual measurements,
tracking involving robotic degrees of freedom) or is
a part of the problem (calibration tasks, camera with
constrained displacements, assumptions on specific
configurations or displacements, etc.).

Estimating the physical parameters allows to in-
troduce specific knowledge about the visual system
(Viéville and Lingrand, 1997) and leads to much ac-
curate estimations, as in Enciso and Viéville (1995).
It is well-known, for calibration problems for instance
(e.g. Wei and Ma, 1994; Chaumette and Rives, 1989),
that non-linear estimation is much more stable and pre-
cise, considering physical parameters.

At an applicative level, the precision of the data
input and output is easier to specify by the end-
user on physical parameters (Gaspard and Viéville,
2000). Furthermore, the estimation is directly opti-
mised with respect to the desired parameters, which
helps analysing the obtained results.

Using physical parameters instead of homogeneous
ones has also two “technical” advantages:

(a) In this context, physical parameters induce a pa-
rameterisation of the homogeneous parameters. In
the two-views motion example, the matrix F(q)

must verify det(F(q)) = 0 but this is always the
case if we write it in function of q. We thus may
avoid some complexity here.
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(b) Authors dealing with homogeneous parameters
have demonstrated that the metric of the related
criterion (for instance (Leedan and Meer, 2000)
using a Mahanalobis distance in which bias is cor-
rected) is deeply dependent upon the data and the
estimated parameters. This is because they have to
estimate the characteristics of a non-linear trans-
formation from the physical to the homogeneous
parameters. On the reverse (Kanatani, 1996b) if
we keep using physical parameters and the raw
measures as input to the estimation algorithm, the
related metric remains constant.

What is the Paper About

This paper thus describes a potential alternative as a
comprehensive computational system for solving non-
linear parametric fitting problems that are frequently
encountered in computer vision applications, here us-
ing “physical parameters”:

• in the next section we will define the estimation prob-
lem as an optimisation problem (Bard, 1974; Goelb,
1974) trying to find a “minimal” formulation.

• allowing to solve it as a projection problem. Prop-
erties of such a problem are well known (Powell,
1978). This allows us to propose a rather efficient
implementation,

• while it will be specialised to our estimation problem,
including robust estimation and multi-model estima-
tion in the subsequent sections.

This finally will allow us to describe an effective
software implementation and experiment it to validate
this approach.

2. Estimating a Parameter With Non-Linear
Constraints

2.1. Position of the Problem

We consider the “simple” problem of estimating a static
quantity q from a set of M measures.

More precisely,2 we want to estimate a n-dimen-
sional real vectorial quantity, say a parameter, q ∈ Rn

given:

• a set of p implicit non-linear constraints written
c0(q) = 0p, so that the parameter may belong to
some specific space C, defined by these equations,

• an approximate initial estimate q0, i.e. we consider
that q is close to q0 for a given distance ‖q − q0‖2

Q0
,

• a set of M approximate measures (m1, . . . , mi , . . . ,

mM) with mi ∈ Rni , i.e.

– we consider that the true measures m̄i are close
to the observed measures mi for a given distance
‖m̄i − mi‖2

Qi

– while, for each measure, a set of pi measurement
equations ci (mi , q) = 0pi defines the relation
between measure and parameter,

such approximate measures have to be corrected by
the algorithm, as schematised in Fig. 1.

The notion of “approximate” data is formalised here,
using quadratic semi-distances, , i.e.:

‖x − y‖2
Q = (x − y)T Q (x − y) (1)

for x ∈ Rn and y ∈ Rn where Q is a positive
semi-definite symmetric matrix. The matrix Q may
be called the quadratic information matrix. In a sta-
tistical framework (see Appendix A.2 for a discus-
sion) this corresponds to the inverse of a covariance
and the distance corresponds to a Mahanalobis dis-
tance. However, we will not follow this track here,
since we cannot guaranty that the assumptions re-
quired to develop such a formalism are verified in our
case.

If no initial estimate is available, one can simply
write q0 = Q0 = 0, this part of the specification is
thus not a constraint.

2.1.1. Defining Estimation as a Minimisation Prob-
lem. Therefore, we can formalise the problem as an
optimisation problem, i.e. estimate the parameter q̃ and
the measures (m̃1, . . . , m̃i , . . .)

T which :

Figure 1. Description of the estimation problem.
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(i) minimise the sum of the defined distances:

min
(q̃,m̃1,...,m̃i ,...)

L2

= 1

2
‖q̃ − q0‖2

Q0
+

M∑
i=1

1

2
‖m̃i − mi‖2

Qi
(2)

(ii) given the different equations:

c0(q̃) = 0 and ∀i ∈ {1..M} ci (q̃, m̃i ) = 0 (3)

Equivalently, this estimation problem can be for-
malised as a composite criterion with Lagrangian mul-
tiplicators λ = (λ0, . . . , λi , . . .)

T :

min
(q̃,m̃1,...,m̃i ,...)

max
λ

L2
λ

= 1

2
‖q̃ − q0‖2

Q0
+ λT

0 c0(q̃)

+
M∑

i=1

[
1

2
‖m̃i − mi‖2

Qi
+ λT

i ci (q̃, m̃i )

]
(4)

At the optimum, we can always write, for a given
matrix Q̃:

L2 = L2(q̃) + 1

2
‖q − q̃‖2

Q̃
+ o(‖q − q̃‖2) (5)

2.1.2. Quantifying the Precision of the Estimate. In
this last equation, we not only define the parameter es-
timate q̃ but also a quadratic distance to the parameter
estimate parameterised by Q̃. This allows to evaluate
the precision of the estimate, again as a quadratic dis-
tance.

It is straight-forward, although rather painful, to de-
rive:

Q̃ = Q0 +
M∑

i=1

∂ci (q, mi)

∂q

∣∣∣∣∣
T

(q̃,m̃i )


∂ci (q, mi)

∂mi

∣∣∣∣∣
(q̃,m̃i )

Q+
i

∂ci (q, mi)

∂mi

∣∣∣∣∣
T

(q̃,m̃i )


−

∂ci (q, mi)

∂q

∣∣∣∣∣
(q̃,m̃i )

(6)

where the notations M+ and M− denotes pseudo-
inverses and will be defined in the next section, this
formula being derived in Appendix A.1.

2.1.3. Normalising the Estimated Criterion. Consid-
ering the estimation of q, this problem has n unknowns
and p equations, irrespectively of the measures. This
means that among the n “variables”, p of them are

“fixed” by the equations. The remainder n − p vari-
ables are “free” and may vary to maintain the unknowns
close to the default value q0. We thus may call n − p
the number of degrees of freedom.

In addition to this, for each measure estimate m̃i , pi

equations constraint it to differ from its approximate
value mi , so that each measurement bias υi = m̃i −mi

is governed by a pi dimensional quantity, i.e. has pi

degrees of freedom.
As a consequence, a natural “normalised” value of

the criterion is:

L̃2

d
with d = n − p +

∑
i

pi (7)

In other words, the error criterion is divided by the
total number of degree of freedom.

2.2. Solving as a Local Projection Problem

2.2.1. This Estimation is a Projection Problem.
Since we have to minimise this criterion with respect
to both parameter and measure estimations, the previ-
ous problem can thus be rewritten, using the previous
notations, in a more compact form:

min
x

max
λ

L2
λ = 1

2
‖x − x0‖2

Q + λT c(x) (8)

with x0 = (q0, m1, . . . , mi , . . . , mM) and x = (q̃,

m̃1, . . . , m̃i , . . . , m̃M)

so that c(x) = (c0(q), . . . , ci (q, mi ), . . .) assuming,
for technical reasons, that these equations are twice
differentiable, while Q = (

Q0 0 · · ·
0 Q1 · · ·

· · · · · · · · ·
) is a block diagonal

matrix.
As such, the problem is a simple projection prob-

lem, i.e. the criterion given in (8) means finding the
quantity x

(i) closest to x0 for the quadratic distance parame-
terised by Q and

(ii) in the set C defined by c(x) = 0, as schematised in
Fig. 2.

It is well known (e.g. Lee, 1964; Gill et al., 1993)
that:
P1: This problem has an unique solution if (a) C is
a convex or linear set, else (b) it has a local solu-
tion if C is, in some sense, regular, for instance if the
function x → c(x) is twice differentiable with bounded
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Figure 2. Non-linear estimation as a projection problem.

second-order derivatives in a neighbourhood of x0 con-
taining its projection.

2.2.2. Resolution up to the First Order. In a more
constructive way, i.e. in order to obtain an effective
algorithm, we consider the linear approximation of the
non-linear equations around a point x•, which may be
written:

0 = C x − d + o(κ‖x − x•‖) with C = ∂c(x)

∂x

∣∣∣∣
x•

and d = C x• − c(x•) (9)

where κ is the magnitude of the second-order deriva-
tive of c(x), combined with the normal equation of the
criterion at x•:

0 = ∂L2
λ

∂x

T

= Q (x − x0) + CT λ (10)

which allows to compute x as the iterative solution of
the approximate linear system:(

Q CT

C 0

) (
x

λ

)
�

(
Q x0

d

)
(11)

as proposed in the literature (e.g. Powell, 1978 or more
recently Viéville and Sander, 1992). Here, we not only
revisit this method, but introduce a few improvements:

(a) managing quadratic semi-definite information ma-
trices, i.e. partially defined quantities,

(b) dealing with redundant or singular sets of equa-
tions,

(c) allowing, in any cases, the convergence of the
method, not necessarily to the optimal value, but
at least to a realistic sub-optimal estimate.

However, to attain this double goal, we must also
revisit a very standard numerical algorithm.

2.2.3. Square-root Decomposition of Positive Semi-
Definite Symmetric Matrices. The Cholesky or
“square-root” decomposition of a symmetric positive
definite matrix S (e.g. Schwarz, 1989) is a lower trian-
gular matrix L such that S = L LT .

In fact, among all algorithms available in linear equa-
tions system resolution, this very simple algorithm is
the fastest (fix number of operations, no pivoting mech-
anism required for instance) and the more stable, from
a numerical point of view (see for instance Press et al.,
1988). This is because it fully makes use of the fact the
matrix is symmetric and positive, at it is the case here.

It is much faster than a singular value decomposition
(e.g. Schwarz, 1989) which is of common use in such a
context, since the former has a fixed small polynomial
complexity, while the latter requires more operation
and must be iterated a few times until convergence.

Willing to use this fast method we have defined two
generalisations of the standard square-root decompo-
sition, if the matrix is not definite:

The “closest” square-root decomposition. This is
the square-root decomposition of a matrix S> = S +
υ ek eT

k for some small minimal υ (here ek is the k-th
basic vector).

This is simply implemented by enforcing diago-
nal terms of the square-root matrix to be equal to a
small positive quantity (we use 10 times the machine
precision) if not yet strictly positive.

When inverting such a matrix though its square-
root, the inverse of these small values are large but
not huge, thus still manageable quantities. We write
S+ the inverse of S>, it is a “pseudo-inverse” of S.

It is thus guaranty to compute the square-root de-
composition of a positive definite matrix S> “close”
to S, since ‖S> − S‖ = o(υ). If the matrix is posi-
tive but not definite this distance is infinitesimal, in
practice of the order of magnitude of the machine
precision.

In the extreme case where Q = 0 the closest posi-
tive matrix is υI, where υ has the order of magnitude
of the machine precision.

The “reduced” square-root decomposition. This is
the square-root decomposition of the sub-matrix of
S from which rows and columns whose diagonal
elements vanish are removed.

This is simply implemented by deleting these ele-
ments if a diagonal term of the square-root matrix is
lower than an ε (ε being, here, 10 times the machine
precision) and resume the calculation with the cor-
responding sub-matrix.
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It is also guaranteed to compute the square-root
decomposition of a positive definite matrix S< but
in a (eventually empty !) sub-space generated by a
sub-set of the basic vectors.

With this mechanism, if S = C CT is of rank
r , the 1st r rows of C which are independent are
selected.

More precisely, if r lines are independent, the 1st
min(n, r) equations are selected.3

We write S− the inverse of S<, it is a “pseudo-
inverse” of S.

These definitions are different from the classical
pseudo-inverse M† (e.g. Schwarz, 1989) of a matrix
M, obtained from the singular value decomposition,
for instance.

This mechanism is very useful in our case because
it allows to consider the cases where:

• the information matrices matrix are only semi-
definite, here the definite matrix “as close to Q as
possible” is automatically used,

• the equations are not independent (in the sense that
their linear parts are not independent at x•, i.e. C is
not of full rank), here redundant equations are elim-
inated,

• we have more equations than unknowns, since, in
that case C can only be of rank at most n, thus no
more than n equations are taken into account,

• furthermore, if an equation is “singular” in the sense
that its gradient vanishes, then the algorithm disre-
gards the equation at this point.

2.2.4. Computation of the Local Projector. Now, us-
ing pseudo-inverses defined previously, we can effi-
ciently solve (11), in order to obtain the 1st order
solution.

Since (10) yields x = x0 − Q+ CT λ, which, com-
bined with (9), leads to a linear equation in λ:
(C Q+ CT ) λ = C x0 − d + o(κ‖x − x•‖) we obtain
the explicit form:

x = Px0(x
•) + o(κ‖x − x•‖) with Px0(x

•)

= x0 − Q+ CT (C Q+ CT )− (C x0 − d) (12)

A step further, we can estimate the error up to the
first order, since a few algebra yields:

E2 = ‖x − x̄‖2
Q = ‖c(x)‖2

(C Q+ CT )− + o(κ‖x − x̄‖)
+ o(κ‖x − x•‖) (13)

x̄ being an unbiased estimation of x, i.e. with
c(x̄) = 0.

At the algorithmic level, we simply consider L, the
“closest” square-root decomposition of Q, which is a
lower triangular matrix:

Q = L LT with y0 = LT x0 and B = L−T CT (14)

and allows to have Eq. (12) simplified as:

LT x = y0 − BT (B BT )−1 (B y0 − d) (15)

thus easily computed using the “reduced” square-root
decomposition M of B2 = (B BT ) = M MT from:

M MT λ = B y0 − d with LT x = y0 − BT λ (16)

while, from (13), we have:

E2 = ‖e‖2 with e = M−1 c(x) (17)

In our case, we can even fasten this computation
because as defined in (8) the matrix Q is block diagonal.
The derivation is given in Appendix A.1. Several other
improvements are also present in the implementation,
for instance when a matrix Q is diagonal.

2.2.5. Non-Linear Iteration and Convergence. As
already mentioned, the algorithm defined by the series
xn+1 = Px0(xn) converges, on the conditions of P1,
with a quadratic rate of convergence, to a fixed point
x∞ = Px0(x∞) which is likely4 a solution of (8).

Fair enough, but in practice, we cannot be sure to
be “on the conditions of P1”, but we still NEED the
algorithm to always converge, hopefully to the optimal
value, but a least and last, to a sub-optimal estimation.

With the simple idea that the algorithm may:

(a) compute the series xn+1 = Px0(xn) while this con-
verges, whereas

(b) look for a point closer, to “smooth” the estimation,
if the previous estimation becomes unstable, we
propose the following algorithm:

Input : x0, Q, c()
Init : n = 0
Loop : δn = ‖c(xn)‖∞

If δn < δn−1 + ε•
Then xn+1 = Px0(xn); n++
Else xn = [xn + xn−1] /2

Until ‖xn − xn−1‖ < ε•
Return : xn, E2

(18)
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We have chosen the norm ‖x‖∞ = max(|x1|,
|x2|, . . .) to evaluate δn in order to be sure that all equa-
tions vanish.

With this mechanism, we easily see that we com-
pute xn = (1 − α) xn−1 + α Px0(xn−1) for some α =
1, 1/2, 1/4, . . .. Furthermore, the linearisation of c(x)

being performed at xn−1, since C Px0(xn−1) − d = 0
from (12) and c(xn−1) = C xn−1 − d from (9), writing
formally:

hn−1 = (Px0(xn−1) − xn−1)
T

[
∂2c(x)

∂x2

∣∣∣∣
xn−1

]
× (Px0(xn−1) − xn−1) (19)

it appears that:

c(xn) = c(xn−1) + α C
[
Px0(xn−1) − xn−1

]
+ α2 hn−1 + o(α2)

= c(xn−1) − α [C xn−1 − d] + α2 hn−1

+ o(α2)

= (1 − α) c(xn−1) + α2 hn−1 + o(α2)

⇒

‖c(xn)‖ < (1 − α) ‖c(xn−1)‖ + α2 ‖hn−1‖ + o(α2)

(20)

If we choose α with α ‖hn−1‖ < ‖c(xn−1)‖ and suf-
ficiently small for higher order terms to be negligible,
we obtain ‖c(xn)‖ < ‖c(xn−1)‖ as desired.

In practice, this condition cannot be reached if the
required α is smaller than numerical errors, for instance
if ‖c(xn−1)‖ becomes negligible, but we thus have con-
verged.

This condition cannot be reached also if the criterion
has strong irregularities (corresponding here to the fact
that higher order terms may be preponderant) but this
means that the present algorithm is not adapted to such
a situation and it also must stop.

As consequence either:

• α > 0 and ‖c(xn)‖ is strictly decreasing, so that the
algorithm converges

– for α = 1, i.e. when the computation of Px0(xn) is
stable, we cancel the c(xn−1) up to the first order,
as for a Newton algorithm and the convergence
is quadratic,

– for smaller α > 0, but with ‖c(xn)‖ < ‖c(xn−1)‖,
we obtain a linear convergence, the algorithm be-
having as a gradient descent method, or

• α → 0 and ‖xn − xn−1‖ = α ‖Px0(xn−1) − xn−1‖
converges towards zero, with an exponential rate and
the algorithm quickly stops.

2.2.6. A few properties of the minimisation method.
In order to better understand the behaviour of the
method, let us take a look at some interesting particular
cases:

Invariance with respect to linear combination of
equations. If we consider c′(x) = G c(x) for a gen-
eral invertible matrix G, from (12), a few algebra
allows to verify that Px0(x) is left unchanged. As a
consequence, linear combinations or permutations
of equations are meaningless.

A step further, if G is any rectangular matrix,
using the reduced square-root allows to deal with a
minimal set of equations. However, although faster
than a canonical decomposition, our method does
not guaranty that Px0(x) is left unchanged, since it
may depend on the equations ordering. This seems
not to be a limitation in practice. If it would, using the
singular value decomposition instead of the square-
root decomposition for this part of the calculation
cleans the point.

Dealing with linear constraints or measurement
equations. If some of the equations in c(x) are
linear, they are directly solved in one step by the
proposed method. More explicitly, if we write x =
(x1, x2)

T so that c(x) = (G x1 + f, h(x1, x2)) by the
virtue of (11), the equation G x1 + f = 0 is solved.

For instance, if c(x) is entirely linear, Px0(x
•)

provides directly an explicit solution (this is the
well-known “QL” problem i.e. quadratic criterion
with linear constraints, e.g. Goelb, 1974).

A step further, if measurement equations are lin-
ear and there is no constraint on q, the algorithm
behaves as a simple weighted least-square estimator
as easily verified from derivations given in Appendix
A.1, since (A5) corresponds to the normal equation
of a such a criterion (e.g. Viéville and Sander, 1992).

Relation with the Newton algorithm. In the particu-
lar case where (1) n = p, (ii) C is invertible, with
(iii) Q = I, Eq. (12) simplifies to x = x• −
C−1 c(x•) + o(κ‖x − x•‖) which corresponds to the
classical Newton’s method.

This shows that Newton’s like methods can also
be interpreted as “looking for the closest solution”
of a set of regular equations. i.e.: minx ‖x − x0‖2 +
λT c(x).
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Explicit measurement equation. If a measurement
equation is explicit, i.e. mi = f(q) so that we can
write ci (q, mi) = mi − f(q), the algorithm min-
imises ‖m̃i − f(q)‖2

Qi
up to the first order.

This is coherent with the fact that, in this case, we
indeed want to minimise the “measurement error”,
as for non-linear least-square problem. However, we
minimise the criterion proposed by Kanatani (1996a)
which has been shown to be unbiased by this author,
contrary to other formulations.

In this case, each measure add pi = ni degrees
of freedom to L2 as discussed when deriving the
definition given in (7).

In the sequel we are going to use the estimation pro-
cess develope in this section for two specific purposes:

Minimal resolution without initial conditions. In
the case where Q0 = 0 (i.e. initial conditions are
not to be taken into account), while we have a “min-
imal set of coherent equations” (i.e. we assume
that there exists a solution in q to the equations
c(m̃1,...,m̃i ,...)(q) = (c0(q), . . . , ci (q, m̃i )) = 0 in a
neighbourhood of the observed measure), the crite-
rion simply minimises:

min
(q̃,m̃1,···,m̃i ,···)

M∑
i=1

1

2
‖m̃i − mi‖2

which is indeed minimal for m̃i = mi irrespectively
of the constraints.

This means that the system is solved only with
respect to q and not with respect to mi .

It thus corresponds to the projection problem:

min
q

max
λ

‖q − q0‖2
I + λT c(q) with c(q)

= (c0(q), . . . , ci (q, m̃i ), . . .)
T (21)

In this case, each measure add no degree of free-
dom to L2, again in coherence with what has been
discussed for (7).

Estimating the precision with respect to a measure.
Let us consider another measure m• which has not
been used to obtain a given parameter estimate q̃.

We may want to estimate how such a measure
“matches” this parameter estimate. A coherent way
of solving this problem is to determine:

min
m̃•

max
λ

‖m̃• − m•‖2
Q• + λT c•(q̃, m̃•) (22)

i.e. to find the “corrected measure” m̃• given the
parameter estimate.

If we apply the relation (13) to this criterion we
have, up to the first order, an evaluation of the dis-
tance between the corrected measure and the true
(unknown) measure, i.e. the “bias” related to this
measure:

E2
• = ‖m̃• − m̄•‖2

Q• � ‖c•(q̃, m̃•)‖2
(C• Q+• CT• )−

(23)

with C• = ∂c•(q,m•)

∂q |(q̃,m̃•), while D2
• = ‖m̃• − m•‖2

Q•
evaluates the distance between the observed and cor-
rected measure, i.e. its “imprecision”.

Both errors E2
• and D2

• have to be taken into ac-
count.

Since from (7) it appears that we have p• degrees
of freedom, we define as “measurement error”:

L2
•

p•
=

‖m̃• − m•‖2
Q• + ‖c•(q̃, m̃•)‖2

(C• Q+• CT• )−

p•

= E2
• + D2

•
p•

(24)

3. Dealing With Outliers While Using
a Hierarchy of Models

3.1. Solving as a Robust Local Estimation Problem

Considering “realistic” estimation problems, we also
have to deal with the problem of outliers, i.e. the fact we
have measures not corresponding to the model under
estimation, but to other “objects”.

In order to be robust with respect to such artifacts we
have implemented a classical (see for instance Meer
et al., 1991; Huber, 1981; Rey, 1983; Rousseeuw and
Leroy, 1987) randomised estimation method, i.e. we
repeatedly solve the estimation problem, selecting ran-
domly a set of measures, with the hope that at least
one of them will not contain outliers. A “good” sample
should be detected by the fact that its estimation looks
more coherent than for other ones.

Implementing a Randomised Estimation Method.
This is implemented here as follows:

1. We randomly select a minimal number of measures
M , so that n = p+· · ·+ pi +· · · without any initial
information, i.e. Q0 = 0. According to the previous
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discussion, this induces mi = m̃i and we simply
have to solve the projection problem given in (21).

This provides an estimate q̃ of the parameter,
compatible with this random set of measures. If ν is
the percentage of relevant measures, the probability
of having selecting a correct set of measure (i.e. a
set of measures without outliers) after T sampling
is easy to estimate:

P =
[

1 −
[

1 −
(

1 − ν

100

)M
]T

]
(25)

It is thus obvious that, the smallest the sub-set of
measures, the more chance to detect a unique object.
This is why we choose a minimal set of measures.
However the numerical estimation is not expected
to be very precise, since we take a small number of
measures into account. It thus must be refined, as
discussed in the sequel.

2. Before that, we must compute, for each measure, an
indicator of its coherence with respect to the esti-
mated parameter. This is done using the criterion
proposed in (22) and the related error computed
in (24).

The expected histogram of such an error distri-
bution is schematised in Fig. 3.

It is expected that small errors correspond to true
approximate measures, whereas higher errors corre-
spond to outliers. This will be discussed in the next
section.

3. From such a distribution, in order to estimate the
validity of the estimate q̃, two main strategies (see
for instance Meer et al., 1991 for a review) are used,
either:

Figure 3. The form of error distribution in the presence of outliers.

SA finding a sufficient number of “good” mea-
sures counting the percentage of measures ν

which error is below a fixed threshold L2
• (e.g.

Bolles and Fischler, 1981 this being known as
“RANSAC-like” methods),
finding the random estimate which allows to
model the maximal number of measures; or

SB finding a sufficiently small error considering
the maximal errorL2

• of the ν% first measures, i.e.
those with a smaller error (e.g. the median error
if ν = 50% (Zhang, 1997), this being known as
“trimmed least median of squares” methods),
finding the random estimate which has a minimal
error at this percentage.

Here, we will combine these two ideas in the next
section, defining the “relevance” of the estimate.

In both cases, we may either:

(a) choose a fixed number Tmax of iterations, based
on a chosen probability of error, as given in (25)
and take the best measure or

(b) repeat until a relevant estimate is found.

We finally have to define the obtained estimation.

Defining the Relevance of an Estimate. As studied
in details in Stewart (1997), robust methods may easily
reject random outliers but may fail if several set of
inliers (i.e. several set of measures corresponding to a
given parameter estimate) are present, i.e. if we have a
multi-modal distribution.

According to this author, the observed bias is due
to the fact that the used criteria are only based on the
residual error. Here we try to limit this problem as-
suming that if we have a multi-modal distribution, and
an estimation which combine more than one distribu-
tion or includes outliers, the error histogram will be
“flatter” around zero whereas if a given parameter esti-
mate fits with a unique set of inliers the error histogram
will be sharper around zero.

From this, we may define the model “relevance” by
analysing qualitatively the error distribution, as illus-
trated in Fig. 3.

From general experimental observations (e.g.
Kanatani, 1996b; Meer et al., 1991; Huber, 1981; Rey,
1983; Rousseeuw and Leroy, 1987), it seems that we
can consider:

(a) the distribution of the true approximate measures
is “flat” at the origin,
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(b) the distribution of the outliers, if randomly dis-
tributed, is almost constant, at the origin.

Such a distribution may thus be characterised by:

(1) α : the distribution amplitude, at zero ; the highest
α, the more “good” measures,

(2) γ : the distribution convexity, at zero : the highest
γ , the smaller the average error for these “good”
measures,
→ the histogram distribution for inliers being of
the form:

Ni (L2) = α

(
1 − γ

L2

2

)
+ o((L2)2) (26)

(3) β : the bias introduced by outliers, at zero,
→ the histogram distribution for outliers being of
the form:

No(L2) = β + o((L2)2) (27)

With these general parameters, we can define the
model relevance as an indicator maximising both quan-
tities α and γ , together. One classical trick, to (i)
maximise two quantities together, in such a way that
(ii) none of them is negligible, is to maximise their
product. We will follow this track here.

In our context, we intentionally do not want to refer
to any particular model, e.g. statistical distribution may
not be Gaussian. On the contrary, we only make use of
the rather generic properties of the error distribution,
introduced here.

We thus easily can relate the distribution to its mo-
mentum around zero, i.e.:

µn =
∫ L2

•

0
N (L2) d L2

= (α + β)

(
L2

•
)n+1

n + 1
− α γ

2

(
L2

•
)n+3

n + 3
+ o

((
L2

•
)n+4)
(28)

so that we obtain: α γ = 12
(L2•)3 [µ0 − 2 µ1

L2•
] + o(L2

•).
As a consequence, in coherence with the previous

discussion, M being the total number of measures, the
model relevance can be defined as:

R = 1

M

[
µ0 − 2

µ1

L2•

]
< 1 (29)

Here, the value L2
• is the value under which we ex-

pect the error distribution to be close to its second-order
expansion. In practice, L2

• is the value under which we
expect errors to correspond only to uncertainty on in-
liers, not outliers. It is user-defined. In fact, this value is
not highly significant, since it does not act as a thresh-
old but only as an order of magnitude.

This is very easily computed on the data, much faster
than the distribution median for instance.

In fact, this corresponds to a convolution of the error
distribution, i.e:

R =
∫ L2

•

0
r(L2) N (L2) d L2 with r(L2)

=
[

1 − 2
L2

L2•

]
i.e. of the form (30)

easily calculated without any explicit analysis of the
distribution.

In comparison, “RANSAC-like” methods corre-
spond to a convolution with r(L2) = 1. i.e. only con-
sider µ0, whereas the present methods does not only
“count” the samples but attempt also to evaluate the
error shape.

This quantity can also be related to the average slope
of the distribution. More precisely, if we write N (L2) =
N0 − N1 L2 + o((L2)2) we obtain N1 = 6

(L2•)2 R +
o(L2

•). This means that our “relevance” also describes
the “thickness” of the distribution.

A step ahead, we may better understand the role of
this quantity by looking at the relevance for some char-
acteristic examples of distribution:

• If we consider a uniform distribution of the error, as
illustrated in Fig. 4(A), the relevance is:

R = if L2
0 < L2

• then
M0

M

[
1 − L2

0

L2•

]
else 0

(31)
where M0 is the total number of good measures and
L2

0 the maximal quadratic error for these measures.
We thus verify that the relevance increases with both
(i) the number of good measures and (ii) the precision
on these measures.
It also shows that:

(a) the relevance is positive if and only if the
quadratic error for good measures is below the
threshold L2

•,
(b) constant components of the distribution have no

influence on the relevance,
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Figure 4. Histogram of the quadratic error, for uniform A or expo-
nential B distributions. The dashed part of the histogram corresponds
to the “good” measures, the rest being outliers.

(c) the relevance is maximal (i.e. equal to 1) for a
distribution without outliers (i.e. M = M0) and
with an infinite precision (i.e. L2

0 → 0).

• If we consider an exponential distribution of the er-
ror, as illustrated in Fig. 4(B), the relevance is still of
the form: R = M0

M [1 − L2
0

L2•
] + o((exp(

L2
0

L2•
))2) where

M0 is again the total number of good measures,
while L2

0 is also in relation with the precision of the
measures.

Here, we have chosen L2
0 so that N (L2

0) =
N (0)/e2, with N (L2) = M0

L2
0/2

e
− L2

L2
0/2 + b to be in

coherence with the previous formula.
This thus shows that the defined relevance is qual-

itatively not dependent upon the form of these two
distributions, as expected.

To complete the discussion, let us note that if
our assumption that the distribution is flat at the
origin is wrong, i.e. if we have N (L2) = N (0) +
N ′(0)L2 + N ′′(0) (L2)2

2 + o((L2)3), we still obtain:

R = (L2
•)

3

12 (N ′′(0)+2N ′(0)/L2
•) also related to both the

distribution slope and convexity at the origin, in coher-
ence with our requirement.

If, finally, we compare our approach with the two
classes of methods formalised in robust statistics, that
is (SA) is counting samples under a given (somehow
arbitrary) threshold (i.e. considering µ0 in our case) or
(SB) measuring the precision as the maximal error, for
a percentage of the best measures, it appears that we
indeed compute value also related to the “precision”
of the estimates, for measures with small errors, as in
(SB). As such we have indeed an indicator which is a
synthesis of both points of view.

Evaluating the Relevance Indicator. In order to ver-
ify the efficency of this indicator, we have considered
the paradigm proposed by Stewart (1997). Let us de-
note U(a, b) the uniform distribution in the [a, b] in-
terval and G(µ, σ ) the normal distribution of mean µ

and standard-deviation σ . Following Stewart (1997) we

choose a distribution with “good” and “bad” data of the
form

p = (1 − ε0)

[
ε1 G(µ1, σ1)︸ ︷︷ ︸

principal inliers

+ (1 − ε1) G(µ2, σ2)︸ ︷︷ ︸
secondary inliers

]

+ ε0 U(0, m0)︸ ︷︷ ︸
outliers

(32)

where ε0 is the proportion of outliers, ε1 > 0.5 the
proportion of inliers in the main distribution, while
m0, (µ1, σ1) and (µ2, σ2) describe the outlier, prin-
cipal and secondary inliers distributions, respectively.
See Viéville (2000) for an example of simulation and
method details.

In our case we have set m0 = 100, µ1 = 10, µ2 =
µ1 + δ, σ1 = σ2 = 5 and varied the proportions ε0

and ε1 of inliers and outliers and the proximity δ be-
tween both inlier distributions. For estimated values
ṽ ∈ {0..µ2} we detect the estimation corresponding
to the best estimation and analyse the bias β of such
an estimation, for the three methods discussed here. In
order to have the three methods working in their best
conditions we have consider SA with a threshold equal
to the standard deviation of the inliers distribution and
SB with a trimmed least median of squares ν = (1−ε0) ε1

2
(Meer et al., 1991).

This leads to the results given in Fig. 5. In the pres-
ence of outliers all three methods are very robust since
the estimation bias is 0 or 1 in any cases. When a second
set of inliers appears the SB method becomes unstable
and tends to provide an average result between both
modalities. This is the reason why all bias are positive
(i.e. in the direction of the second set of inliers) when
considering a bi-modal data set.

Surprisingly perhaps, the distance between both
modalities have no significant influence on the bias. On
one hand, we might have assumed that if the higher the
distance between modalities, the less the influence on
the bias. But, on the other hand, the higher the distance

Figure 5. Bias estimation in our simulation, using relevance R,
“RANSAC-like” SA or “trimmed least median of squares” SB meth-
ods. See text for details.
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between modalities, the higher the average value of
both estimations, which tends to be what the estima-
tors choose.

As analysed by Stewart (1997), the “RANSAC-like”
SA allows to obtain better results, while our method
appears as a small but significant improvement of this
class of method. Other run of the simulations may tend
to show that our method performs better when there
are large distances between modalities, whereas this
advantage with respect to “RANSAC-like” methods
seems to disappear for closer distributions.

3.2. Using a Hierarchy of Models
to Estimate Parameters

Minimising the previous non-linear criterion may not
be sufficient to obtain a relevant estimation of a param-
eter for two reasons:

1. estimating a parameter does not only mean calcu-
lating a numerical value but choosing which model
best fits the data,

2. since we find only a local estimate of the parameter,
the initial condition is determinant, otherwise the
previous minimisation process may not converge.

In the latter case a relevant initial value may be found
by a simpler model.

Defining a Hierarchy of Models. To face these two
problems we propose that a lattice of models is to be
specified for the parameter estimation, as follows:

• each estimation problem must have a “null-model”
(most constrained model) as reference,

• each model is a “generalisation” of another models
(its parents) relaxing or changing some constraints.
Since there is also a “general model” with no equa-
tions (and no interest !) this forms a lattice as shown
in Fig. 6.

In order to integrate this general idea in our
estimation framework, we consider that:

• for all models,5 we have to estimate (i) a common pa-
rameter q with (ii) the same measurement equations
ci (q, mi ),

• two models differ by their constraints c0(q) on the
parameter i.e. by the number of equation p, so that:

Figure 6. Representing a lattice of models.

– the model “complexity”, for a given set of
measure, is the number of degrees of freedom
d = [n + ∑

i pi ]︸ ︷︷ ︸
dmax

−p defined in (7) while

– the model “cost”, used to compare two models,
is the normalised criterion defined in (7). If the
criterion L2 decreases regularly with the number
of constraints, as expected, we obtain a profile as
schematised in Fig. 7.

Within this framework the problem is formalised as
follows: finding the most specific model of optimal cost,
i.e.:

(i) for a given model, we choose a more general (less
specific) alternative only if the cost is slightly
lower,

(ii) we do not estimate a model unless its parents (i.e.
more specific models) have been estimated.

From one Model to Another. The relationship be-
tween the estimated parameter q̃ of a more specific
model M and the estimated parameter q̃′ of a more
general modelM′ may be summarised in the following

Figure 7. The expected form of the model cost.
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two equations:

L2 = ‖q̃ − q0‖2
Q0

+ ‖m̃ − m‖2
Qm

+ λT c(q̃, m̃)

L2′ = ‖q̃′ − q̃‖2
Q̃

+ ‖m̃′ − m′‖2
Q′

m
+ λT c′(q̃′, m̃′)

(33)
providing that we have rewritten (4), in both cases, in
a compact form as in (8), i.e.:

– q0 is an initial estimate for M, while q̃ is the ini-
tial/default estimate for M′,

– m = (m1 · · ·), with the corresponding matrix Qm

stacks the measures taken into account in estimating
M, and m′, with Q′

m , the same for M’, these two
sets differ as discussed here,

– c(q̃, m̃) represents all measurements equations used
for M plus the constraints on the parameter q̃, and
c′(q̃′, m̃′) the same for M′,

Here, the key point is the fact that we have computed
from (4) for measures taken into account for the esti-
mation of q̃ or (22) for other measures a “corrected”
estimation m̃i such that ci (q̃, m̃i ) = 0.

As a consequence, if we initiate the non-linear min-
imisation process with (q̃′

0, m̃′
0) ← (q̃, m̃) we thus

have c′(q̃′, m̃′) = 0.
Therefore, from (12) and using the same derivation

as for (20) we obtain:

‖c′(q̃′
n, m̃′

n)‖ = o(‖(q̃′
n, m̃′

n) − (q̃′
n−1, m̃′

n−1‖)) (34)

i.e. during the algorithm minimisation, starting at a
point for which the constraints are verified, we maintain
this property at each step (see Section 2.2 for a discus-
sion on convergence). This means that we indeed stay
in the conditions of convergence reviewed in P1 and
we also increase the speed of convergence.

Furthermore, we also obtain:

‖(q̃′
n, m̃′

n) − (q̃, m̃)‖2
Q = ‖(q̃′

n−1, m̃′
n−1)

− (q̃, m̃)‖2
CT (C Q+ CT ) C + o(‖(q̃′

n, m̃′
n)

− (q̃′
n−1, m̃′

n−1‖)) (35)

i.e. the new estimate is “as close as possible” to (q̃, m̃)

is a direction tangent to constraints, as expected.
In practice, these two properties allow the multi-

model algorithm to efficiently converge from one so-
lution to another.

Deciding Between two Models. In order to be able to
“tune” this process of comparison, we add the feature

that a more general model M′ of cost L2′
/d ′ is chosen

with respect to a more specific model M of cost L2/d,
if and only if it decreases the cost by a given factor
0 < �(d, d ′) ≤ 1 so that the comparison criterion is
finally:

L2′

d ′ < �(d, d ′)
L2

d
(36)

Tuning this parameter allows to deal with more or less
“conservative” estimation, the lower�(d, d ′), the more
specific model will be preferred by the system.

At this level of specification, the function �(d, d ′)
is user defined. However, this mechanism may be re-
lated to a rigorous statistical test, considering specific
hypotheses, as detailed in Appendix A.2.

More general formalisms to specify �(d, d ′) may
be designed, for instance learning �(d, d ′) from a set
of reference data. However, the proposed method is
robust enough to allow us to consider, for the experi-
mentations reported here .... �(d, d ′) = .1 ! For more
tricky situations, developments given in Appendix A.2
suggest that the functions:

�(d, d ′) = e−κ (d ′−d)/d ′
with κ ∈ {1..10} or

�(d, d ′) = d

d ′ (37)

should be rather efficient, because they are relevant ap-
proximations of well formalised statistical thresholds.

Integrating Robust Estimation in Multi-Modelling.
In order to implement such a method in cooperation
with robust estimation, we make use of the follow-
ing assumption: given a relevant (i.e. estimated with-
out outliers) model for a minimal set of measure, a
more general model, thus requiring more measures in
its minimal set, can always consider the measures of its
parent as not outliers, because they indeed also verify a
sub-set of the model equations they are coherent with.
Therefore when looking for a more general model we
only have to randomly select the additional measures.
This remark dramatically reduces the chance to ran-
domly select outliers, since in (25) the number M is
only the number of additional measures.

A step further, we must remark that given a rele-
vant model, all measures fitting this model are coherent
with its constraints and thus will not help estimating
new constraints. As a consequence, given a relevant
model and one generalisation of it, additional mea-
sures sampled to estimate the general model must be
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taken outside the set of measures fitting the more origi-
nal model. This again restrains the number of measures
to sample and thus increases the chance to randomly
select a relevant estimate.

But, much more important is the fact that this may
avoid selecting singular configurations of points for a
given model. The user just has to know which are the
singular configurations for a given model and put in the
lattice structure of the model hierarchy more restrictive
models which correspond to such a singular configura-
tion. As a consequence, because new measures selected
will not verify less restrictive models, as required pre-
viously, they will not be singular and this will make the
job.

Implementing Robust Multi-Modelling. In order to
implement these ideas,

1. a model “state” is thus represented by:

(i) the estimated parameter q̃ and its related
quadratic precision Q̃,

(ii) the indexes of the points sampled to estimate
the state,

(iii) the indexes of the points not coherent, i.e. the
outliers for this model, while

2. the “model” is specified through:

(i) its name,
(ii) its constraints and intrinsic cost,

(iii) a list of “alternatives” i.e. models less specific,
with less constraints,

(iv) with their related cost factor �,
(v) a list of models which are “parents” of these.

Using this data structure, the previous ideas are imple-
mented by the following algorithm:

Initialisation. Put the null-model, with a user pro-
vided initial parameter value q0, in a candidate list.
Iteration

• For each model of the candidate list:

– randomly select a set of “additional” measures
in the set of points not coherent with the parent
model (if any),

– estimate:

1. the model parameter, using the parent param-
eter as initial value q0, solving the projection
problem in (21) using the algorithm in (18);

2. the coherence of each measure, solving the
projection problem in (22) using the algorithm
in (18);

3. the model relevance, as formalised in (29)

– If the model is more relevant than previously es-
timated parameter for this model:

∗ delete previously estimations of this model,
∗ then:

1. threshold the outliers set, as illustrated in
Fig. 3 and discussed in section 3.1;

2. refine the model parameter estimation, ap-
plying the algorithm in (18);

3. repeat step 1 and 2, to stabilise the estima-
tion as discussed in section 3.1;

4. evaluate its cost, from (7).

∗ If the cost is lower than his parent its alterna-
tives are put in the candidate list.

∗ the model is removed from the candidate list.

– Else repeat the iteration selecting randomly a
model in the candidate list.

Termination and Output. The model, with minimal
cost below a given threshold, is chosen as “best” model.

Algorithm states. Analysing this algorithm, we easily
see that it can be in three states: (I) initialisation, (A)
model-available (when the candidate list is no more
empty), (T) termination.

Current output. As a consequence, the present algo-
rithm can always output the model of minimal cost as
the “best current model”. In state (I), the “best” model
may be the null-model, as default value.

Adding/Deleting measures. Another nice property is
the fact we easily can add or delete measures to the set
of measures input to the algorithm, without having to
reinitialise the whole estimation process.

Of course, if in state (I) we just have to add or remove
the measure. Since nothing has been estimated, this will
have no influence on the output.

If in state (A) or (T), we have to estimate the poten-
tial influence of the measure on the already estimated
admissible models, with three cases:

– if the added/deleted measure belongs to the outliers
(this being tested by comparing its error in the sense
of (24) to the model threshold estimated, as illus-
trated in Fig. 3) then nothing is to be done,
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– else an added measure may leads to a more complex
model and the admissible model as thus to be refined
with this new measure and then put again in the
candidate list,

– while a deleted measure may leads to a more specific
model so that parents of the admissible model are
to be reconsidered and have thus to be put again
in the candidate list, the admissible model being
removed. In the worst case, if the measure has pi

degrees of freedom, the chosen parents must are
those who have just at least p + pi constraints, i.e.
pi less degrees of freedom, in the hierarchy.

As a consequence, adding or deleting a measure
makes the algorithm switch back to state (A) but with-
out having to restart from state (I) which is an obvious
gain of performance.

However, contrary to “incremental” algorithms such
as the Extended Kalman Filter (see for instance Viéville
and Sander (1992) for discussion), the criterion itself
is always entirely refined and reconsidered for each
new measure, in order to avoid to accumulate bias in
the estimation. Otherwise, the estimation result would
have depend upon the order of arrival of the measures.

4. Software Integration and Experimentation

4.1. The Estimation Module Architecture

At the integration level, in order to be usable in an
effective software system, the estimation algorithm has
to be embedded in an input/output module, as described
in Fig. 8.

Based on the previous specifications, the module in-
terface should contain at the data flow level:

Figure 8. Architecture of the estimation module.

data input, i.e. the measures with their quadratic pre-
cision,

– which may be set on several “input channels”, de-
fined by different measurement equations,

state input, i.e. additional “constants” in the model and
measurement equations,

– which allows upper-layers of the system (e.g. a user
interface) to tune the module,6

data output, i.e. the estimated parameter and its
quadratic precision, plus the indexes of the measures
not considered as outliers,
status output, i.e. the chosen model and the related
normalised criterion value.

Considering these data ports, the module interface
must be able to:

• get the data and status output,

– which involve the property of being able to pro-
vide the information “at any time.”

This specification is easily achieved because,
as discussed before, a sub-optimal or default
model estimation is always available.

• set/unset a data input mi , Qi on a given input chan-
nel,

– which involve a mechanism of measure addi-
tion/deletion as discussed in the previous section.

• set/modify the state input,

– which involve the action of “restarting” the es-
timation, since the estimation criterion has been
changed.

This specification is also easily achieved with
the present algorithm, by cleaning the candidate
list of models and reintroducing the null-model in
it.

Similarly, at the control level, this module interface
must be able to:

send. start/stop or suspend/resume signals to the esti-
mation process,

– which involve the property of being able to halt
properly all computations. This is yet another easily
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implementable feature in our context, because the
algorithm is based on two simple loops:

(i) the iteration mechanism of the algorithm itself
and

(ii) the calculation loop of the algorithm given
in (18).

In order to react to such an event without any partic-
ular threading mechanism, it is very easy to check,
at the end of each iteration if a “suspend/stop flag”
has been raised (and then react properly to it), ap-
plying the schema:

init();
while(iter())
check();

finalize();

which is to be implemented for each loop in the
code.

Therefore the calculation is guaranteed to be sus-
pended and eventually restarted very easily, without
any need of throwing exception.

In other words, we have decomposed the code in
terms of loops and “straight-line programs” (Grim
et al., 1996) so that, given the data size, we pre-
cisely know the amount of operation of each step,
especially the iter() step. This allows to be sure it
will stop and to calculate approximately when. As a
consequence, as discussed in works like Arias 1999,
the execution of such a program is fully controllable
in a real-time constrained environment.

receive a signal when:

(a) a new admissible model has been found and,
at last,

(b) the estimation is terminated,

– while, here, the key point is that only “good-
news” signals have to be received from the module,
whereas other exceptions are not expected. This is
due to the fact, that the general algorithm avoid any
kind of exception.

From these basic signals other more specific sig-
nals may be derived, e.g. an alert when a “reason-
able” model but not necessarily “optimal” has been
found, for instance, say, a model which cost is below
a required threshold.

Towards Symbolic Computations Over
the Estimation Module

A step ahead, the software architecture of the estima-
tion module has been discussed with the goal of being
integrated in reactive software environments or within
applications with real-time constraints. Beside what
has been given on code properties and architecture, let
us discuss what concerns optimisation of the code. In
fact, most of the computation time is spent in comput-
ing the projectors given in (12) and Appendix A.1 build
out of simple fixed-size loops of polynomial computa-
tions. However, as soon as the dimensions of the pa-
rameter and/or measure are known, those loops can be
expanded, while in many cases (e.g. explicit measure-
ment equations) the expression to be computed may
be simplified. Aside the actual “demonstration” code
which is optimised only at the compiler level (e.g. using
in-line methods) the function itself is easy to optimise,
performing partial evaluation such as constant propa-
gations in this part of the code (Danvy et al., 1996).

Furthermore, it has been shown (Lingrand, 1999)
that such multi-model estimation module does not
only require numeric but also symbolic derivations,
because: (i) some parameter components may be elim-
inated using the constraints which are linear, so that
evaluation is only to be performed on a reduced set
of equations and variables, (ii) for some huge model
hierarchy it is necessary to generate “at execution time”
a model, given its parent in the hierarchy. However, re-
dundant models may be generated and it is necessary to
(iii) obtain a canonical form for the model constraints,
which is not a trivial problem. This is why we have
limited the present mechanism to a pre-defined static
hierarchy of models.

4.2. Experimenting the Estimation Module

Considering Retinal Displacements Between two
Views. We still consider the well known problem of
the “fundamental” matrix estimation.

Following Viéville and Lingrand (1999) we have
designed a model hierarchy for a realistic subset of
specific Euclidean displacements. A much larger ex-
perimentation over such models has been conducted
in Lingrand (1999), applying a restrained form of the
present formalism.

We show in Figs. 9 and 10 two experimental results,
from a set of experimentations on several indoors and
outdoors scenes, in order to test our model inference.
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Figure 9. A partial view of the model hierarchy for a specific displacement estimation. See text for details. The displacement was a pure
translation in the X -direction.

Figure 10. A partial view of the model hierarchy for a specific displacement estimation. See text for details. The displacement was a zoom of
the camera.

The model cost has been given here in pixel, i.e. it
is the square root of the least-square average distance
between the measured point locations and those pre-
dicted by the estimated model. This is a very common
way to estimate the estimation precision (Luong et al.,
1999; Torr and Murray, 1997; Zhang et al., 1994).

In both cases, the chosen model corresponds to
the expected displacement. In Lingrand (1999) other
results have been obtained with manual camera
displacements, qualitatively realized as a specific dis-
placement and estimated, using model comparison,
with a model coherent with the displacement realized.

In a complementary set of experiment (Gaspard and
Viéville, 1996) using a small hierarchy of models, as

illustrated in Fig. 11, the estimation method has been
able to detect displacements corresponding to planar
structures. This allows to “segment” them in the scene.
The method formalised in this paper had also already
been used in a restrained form to evaluate different
models of planar rigid displacements in Viéville et al.
(1996b).

In the left part of Fig. 11 we see that it has been
possible to identify planar structures of the scene, in-
cluding the “horizon”, i.e. points at infinity which rigid
displacement only correspond to the rotational part of
the displacement. In the right part of Fig. 11 we see
that, due to relatively small amount of data points,
the estimation process has estimated the two moving
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Figure 11. Detecting planar structures: estimation of a model in a clustered environment is possible with the method.

Figure 12. Illustrating the method numerical robustness, comparing the residual error obtained for the specific displacement with respect to a
general one. Here “retinal” displacement means a displacement which does not move the retinal plane.

objects of the scene as “shallows,” i.e. planar objects,
because it was numerically more stable than estimating
the parameters of full rigid objects.

In order to quantify these results we have analysed
the residual error for different displacements as shown
in Fig. 12. This again illustrates the efficency of the
method.

Although we provide here numerical results for
future comparisons, while more data is available in
Lingrand (1999), it is rather difficult to compare with
available results of the literature such as Luong et al.
(1993), Viéville and Faugeras (1996), and Torr and
Murray (1997) because we do not estimate the same
quantities, as discussed in the introduction.

5. Conclusion

We have revisited the problem of parametric esti-
mation considering non-linear implicit measurement

equations and parameter constraints, plus robust es-
timation in the presence of outliers and multi-model
comparisons.

More specifically, a projection algorithm based on
generalisations of square-root decompositions has been
proposed to allow an efficient and numerically stable
local resolution of a set of non-linear equations, while
a robust estimation module of a hierarchy of non-linear
models has been designed and validated.

The non trivial discussion on the software implemen-
tation shows that there is a non negligible gap between
an “algorithm” and a software “module”, the former
being unusable without the latter.

This method has been designed with the perspec-
tive of being used as a basic module in parameter
adjustment routines (Arias, 1999). Such a general para-
metric learning capability is mandatory when consid-
ering adaptive property of a system (Holland, 1975). In
Viéville et al. (2000) its application to general system
modelling is discussed in details.
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Appendix

A.1. Computing the Local Projector

Considering the criterion in the form of (4) it is clear
that the method developed for the “compact” form (8)
is not optimal because it does not make use of the fact
Q and C are block diagonal matrices. It is however
trivial, although rather painful, to explicit it and obtain
a faster calculation.

The linearisation of the non-linear equations at a
point (q•, . . . , m•

i , . . .) may be written:

c0(q) = C0 q − d0 + o(‖q − q•‖)

with C0 = ∂c0(q)

∂q

∣∣∣∣∣
q•

and d0 = C0 q• − c0(q•)

ci (q, mi ) = Ci q + Di mi − di + o(‖q − q•‖)
+ o(‖mi − m•

i ‖)

with Ci = ∂ci (q, mi)

∂q

∣∣∣∣∣
(q•,m•

i )

, Di = ∂ci (q, mi)

∂mi

∣∣∣∣∣
(q•,m•

i )

and di = Ci q• + Di m•
i − ci (q•, mi

•) (A1)

while the corresponding normal equations are:

0 = ∂L2
λ

∂q

T

= Q0 (q̃ − q0) + CT
0 λ0 +

∑
i

CT
i λi

0 = ∂L2
λ

∂mi

T

= Qi (m̃i − mi ) + DT
i λi (A2)

so that the same algebra used to derived (12) leads to
(up to the first order):

Ci q̃ + Di m̃i − di = Si λi with Si = Di Q−1
i DT

i

(A3)

used to obtain an estimation q̃ of the parameter from:

Q0 (q̃ − q0) + CT
0 λ0 + A q̃ − b = 0 with

A =
∑

i

CT
i S−1

i Ci and

b = −
∑

i

CT
i S−1

i (Di mi − di ) (A4)

which may also be written:[
Q0 +

∑
i

CT
i S−1

i Ci

]
q̃ = Q0 q0

+
∑

i

CT
i S−1

i (Di mi − di ) − CT
0 λ0 (A5)

so that we have to solve the linear system:(
Q0 + A CT

0

C0 0

) (
q̃

λ0

)
=

(
Q0 q0 + b

d0

)
(A6)

which allows to estimate (q̃, . . . , m̃i , . . .) =
P(q0,...,mi ,...)(q

•, . . . , m•
i , . . .), because the corrected

measures, from the previous equations, are given by:

m̃i = [
mi − Q−1

i DT
i S−1

i (Di mi − di )
]

− [
Q−1

i DT
i S−1

i Ci
]

q̃ (A7)

From the previous derivations, the criterion may be
finally written:

L2 = ‖q − q̃‖2
Q̃

+ L̃2 (A8)

with L̃2 = q̃T (Q0 + A) q̃ − 2 q̃T (Q0 q0 + b) +
(qT

0 Q0 q0 + c)
while c = ∑

i (Di mi − di )
T S−1

i (Di mi − di )

so that its optimal value equals L̃2.
We also verify that Q̃ = Q0 + A which demon-

strates (6) as expected.
Following the same method as for the simple pro-

jection problem of section 2.2, a fast calculation of
(q̃, . . . , m̃i , . . .) = P(q0,...,mi ,...)(q

•, . . . , m•
i , . . .) can

be derived (Viéville et al., 2000).
With this calculation the major algorithm complexity

is of o(n3 + ∑
i n3

i + p3 + ∑
i p3

i ) instead of o((n +∑
i ni )

3 + (p + ∑
i pi )

3), thus much faster.

A.2. Statistical Interpretation of the Estimation

We had defined our estimation problem as minimising
a quadratic distance of the form:

L2 = 1

2
(x − x̃)T Q (x − x̃)

under the constraints: c(x) = 0.
If, now, we consider that x is a random variable with

a Gaussian density of mean x̃ and covariance Q−1 its
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density is given by:

p(x) = 1√
(2π)n/ det(Q)

e− 1
2 �2

with

�2 = 2L2 = (x − x̃)T Q (x − x̃) (A9)

so that minimising this so-called Mahanalobis distance
�2 is equivalent of maximising the probability, i.e. the
“likehood” of the estimate. As being a random variable,
what is minimised in truth is indeed the expectation
L̄2 = E[L2] of the quantity.

This model is valid for linear systems (i.e. if c(x) =, 0
are p linear equations) and Gaussian distributions.

A step ahead, the Mahanalobis distance follows a
chi-square distribution of r = n− p degrees of freedom
which probability density function is:

µr (ξ
2) = 1

2r/2�(r/2)
(ξ 2)r/2−1e(ξ 2)/2 with


E[ξ 2] = r V [(ξ 2)] = 2 r

arg max
ξ 2

[
γr (ξ

2)
] = r − 2 (A10)

defined in [0, ∞[ where �(r) = ∫ ∞
0 tr−1e−t dt . For a

given value ξ 2(x), P(ξ 2
0 ; r) = ∫ ξ 2

0
0 µr (ξ

2) dξ 2 is the
probability, for a correct model the observed value to
be lower that the threshold ξ 2

0 while 1 − P(ξ 2
0 ; n) is

the probability, even for a correct model, the observed
value to be higher than ξ 2

0 .
As a consequence, considering an initial estimate q0

of covariance Q−1
0 and a set of measures mi of covari-

ance Q−1
i , with the corresponding equations, minimis-

ing the expectation of the criterion given in (4) corre-
sponds exactly to minimise the Mahanalobis about all
available information, i.e. maximise the likehood of the
estimate.

This statistical interpretation is the one chosen by
Kanatani (1996a).

Presenting the AIC Criterion. In order to evaluate
the estimation, Kanatani proposes, following Akaike
(1997), to develop an absolute statistical criterion.

He considers a set of measures mi , with:

(i) their true values m̄i so that we measure mi =
m̄i + εi where εi is a Gaussian white noise with
zero mean and covariance Q−1

i ,
(ii) their estimated value m̃i , defined by Eq. (4), and

particularly,

(iii) a set of new virtual measures m∗
i with no rela-

tion with the other measures but having the same
statistical distribution, i.e. the same covariances
Q−1

i .

The main idea is that a “good” parameter is not the
one which is optimal for the measures used to estimate
it (because it is already tuned for these measures) but
optimal for “new” measures, i.e. a parameter which
correctly predicts the data. So that the chosen statistical
criterion is:

L̄2
∗ = E

[
1

2
‖q − q0‖2

Q0
+

M∑
i=1

1

2
‖m∗

i − m̃i‖2
Qi

]
(A11)

given the related constraints.
If we want to estimate L̄2

∗ from what has been cal-
culated, i.e. L2, we may write from (4):

L̄2
∗ = L2 + d with

d = E

[
1

2

M∑
i=1

‖m∗
i − m̃i‖2

Qi
− ‖mi − m̃i‖2

Qi

]
(A12)

given the related constraints. This is an unbiased es-
timator of L̄2

∗ since both sizes of this equation have
the same expectation. Here d is the expectation of chi-
square random variable, thus equal to its number of
degrees of freedom as reviewed in (A10).

As a consequence, a more general model M′ of cost
L2′

with d ′ > 1 degrees of freedom is chosen with re-
spect to a more specific modelM of costL2 with d ≥ 1
degrees of freedom if and only if L2′ + d ′ < L2 + d
which can be written:

L2′

d ′ < �(d, d ′)
L2

d
− �(d, d ′) with


0 ≤ �(d, d ′) = d

d ′ ≤ 1

0 ≤ �(d, d ′) = 1

d
− 1

d ′ ≤ 1 � L2′

d ′

(A13)

so that, considering that �(d, d ′) is negligible in the
expression, we see that the formalism is roughly equiv-
alent of choosing the ratio of the number of degrees of
freedom in (36) as function �(d, d ′).
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Now we can estimate d from:

d = 1

2

M∑
i=1

E
[‖m∗

i − m̃i‖2
Qi

] − E
[‖mi − m̃i‖2

Qi

]
... from the previous equation,

= 1

2

M∑
i=1


E

[‖m∗
i − m̄i‖2

Qi

]︸ ︷︷ ︸
measurement error

+ E
[‖m̄i − m̃i‖2

Qi

]︸ ︷︷ ︸
estimation error




−E
[‖mi − m̃i‖2

Qi

]
... since both errors are not correlated,

= 1

2

M∑
i=1

E
[‖mi − m̄i‖2

Qi

] + E
[‖m̄i − m̃i‖2

Qi

]
−E

[‖mi − m̃i‖2
Qi

]
... since m∗

i and mi have the same distribution,

= 1

2

M∑
i=1


 E

[‖mi − m̃i‖2
Qi

]︸ ︷︷ ︸
measurement correction

+E
[‖m̃i − m̄i‖2

Qi

]︸ ︷︷ ︸
estimation error




+E
[‖m̄i − m̃i‖2

Qi

] − E
[‖mi − m̃i‖2

Qi

]
... since both quantities are also not correlated,

=
M∑

i=1

E
[‖m̃i − m̄i‖2

Qi

]
thus, from (A10), finally equal to the estimation error
degrees of freedom since it follows a chi-square distri-
bution. Each measure is defined by ni − pi degrees of
freedom and also function of the parameter itself de-
fined by n − p degrees of freedom, we thus obtain :
d = n − p + ∑

i ni − pi .
Unfortunately, as discussed for instance in Torr

(1998) and Biernacki et al. (1998) this criterion is
usually selecting models with a too many parameters
(see Lingrand (1999) for a more complete discussion)

Figure 13. Profile of �P (d ′ + 1, d ′), d ′ ∈ {1, 32}, for P = 0.5 (upper curve) and P = 0.9 (lower curve).

whereas other more flexible criteria (e.g. Torr, 1998 for
a review) are always to be tuned by a few non-intuitive
parameters. A step further, in our case, the number of
degrees of freedom is not counted as for the AIC, since
for each measure we consider the dimension of the
measurement correction υi = mi − m̃i given the mea-
surement equation, i.e. pi , and not of the estimation
error number of degrees of freedom, i.e. ni − pi . It has
been discussed all along this paper, and it particular for
some important particular cases (see Section 2.2) that
this is a more relevant point of view.

An Alternative to the AIC Criterion. Another point
of view might be to forget about estimating the “ab-
solute” cost of a given model, but only compare two
models, using “relative” costs values.

A well-established methodology, so called “extra
sum-of-squares” principle (e.g. Draper and Smith,
1981), provides such a method for comparing models
in a hierarchy. Here, we wish to test whether the ex-
tra set of parameters defined in the more general model
M′ (of costL2′

with d ′ degrees of freedom) is statically
significant with respect to the more specific model M
(of cost L2 with d degrees of freedom) (i.e. if we can
reject the corresponding null hypothesis H0 that this
extra-parameterisation is negligible). This extra sum-
of-squares due to M′ after M (and in addition to it)
is then defined as �2(M′|M) = L2 − L2′

which is a
chi-square distribution with p′ − p degrees of freedom,
under H0. If H0 is not true then �2(M′|M) has a non-
central chi-square distribution, but still independent of
M′. Therefore, the following F-statistics expresses the
evidence against H0:

f =
[
L̄2 − L̄2′

d ′ − d

] /[
L̄2′

d ′

]
(A14)
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which probability density function is:

νδ,d ′( f ) = �
(

δ+d ′
2

)
�

(
δ
2

)
�

(
d ′
2

) (
δ
d ′

) δ
2 f

δ−2
2(

1 + δ
d ′ f

) δ+d′
2

(A15)

with δ = d ′ − d . Significance can the be assessed by
comparing the previous statistics with the inverse cu-
mulative density function of (A15).

Coming back to our notations, this is equivalent to
compare:

L2′

d ′ < �P(d, d ′)
L2

d
with �P(d, d ′)

= d

d ′
1

1 + f (d ′ − d)/d ′ (A16)

The �P(d, d ′) values, for d ′ ∈ {1..8} and d ∈ {d ′ +
1..8}, given a probability of P = 0.5 are shown in the
following matrix:



0.25 0.14 0.09 0.06 0.04 0.03 0.02

0.38 0.25 0.17 0.12 0.09 0.07

0.47 0.34 0.25 0.19 0.14

0.54 0.41 0.31 0.25

0.60 0.47 0.37

0.64 0.52

0.68




allowing to have a look at the order of magnitude of
such values.

Their “exponential-like” profiles with respect to the
number of degrees of freedom is illustrated in Fig. 13.

Unfortunately, these values are only valid: (i) in the
linear case, (ii) for a given probability threshold and
(iii) in the case where the measurements errors have
a Gaussian distribution. This is why, in our formalism
(see (36)) we consider this is application dependent and
thus user defined. Generalisation to other modelisation
of the errors may be a challenging subject, although the
approximate profile given in (A17) seems to be quite
efficient for model comparisons such as in Lingrand
(1999).

More precisely, we have verified numerically that
the function �P(d, d ′) derived from this small piece of
theory is easily approximated by:

�P(d, d ′) = e−κ (d ′−d)/d ′

with

{
κ = 8.8 for P = 0.5
κ = 3.1 for P = 0.9

(A17)

with a precision of about 5%.
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Notes

1. http://www.ail.cs.gunma-u.ac.jp/˜kanatani/e
2. Notations: We write vectors and matrices in bold letters,

matrices being written with capital letters. The duals of vec-
tors are represented as the transpose of a vector and scalars in
italic, the dot-product being written as xT y and the cross-product
x × y or [x]× y. The identity matrix is written I. We represent
the components of a matrix or a vector using superscripts from
0 to 2, e.g.: x = (x0, x1, x2)T . Here x ≡ y means λ x = y for
some λ �= 0.

3. Although, this is exactly what will be needed in the sequel,
we could also have easily select another set of equations, for in-
stance those which errors are maximal. This is easily obtained by
sorting the set of equations before applying the reduced square-
root decomposition.

4. In fact, since using the normal equations of the criterion, we may
-in theory- converge towards a maximum or a saddle point of
the criterion. This in fact would be detected by the algorithmic
schema described here.

5. This is not a limitation, because (i) if two models do not share
the parameter components, it is always possible to concate-
nate the two parameters and assign default values on q0 for
those components which will not be evaluated for a given
model; on the other hand (ii) for a model M1 with a mea-
surement equation c1

i (q, ; mi ) = 0 and another model M2

with a measurement equation ; c2
i (q, mi ) = 0 we can use the

common measurement equation (qn+1−2) c1
i (q, mi ) + (qn+1−

1) ; c2
i (q, mi ) = 0 using a new qualitative variable qn+1 ∈ {1, 2}

with cn+1
0 (q, qn+1) = qn+1−i with i ∈ {1, 2} as additional con-

straint, depending on the model.
6. These constants have not been made explicit in the previous

sections because they are transparent for the estimation process,
but are mandatory for a given module to be adapted to different
configurations.
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