
Flight Radius Algorithms

Keywords:
Flight Radius Problem, Route Network Development, Time-independent Model, Graph Database,
Shortest Path Algorithms.

Abstract:
In this article, we present the flight radius problem (FRP) on the condensed flight network. The
problem is derived from a decision tool for airline managers to analyze and simulate a new mar-
ket. It concerns the network design and visualization when allocating a new flight. The flight
radius problem consists in finding routes passing through a specific flight that represent business
opportunities, for instance, regarding time and cost criteria. It is formulated as finding a maximal
subgraph of nodes belonging to routes satisfying a regret constraint. This constraint is defined
as a function of the optimal values of the time, distance, and cost criteria. We propose to com-
pare four algorithms: two algorithms that decompose the FRP in shortest path problems (SPP)
and solved them in parallel using either the Dijkstra or Bellman algorithm; the third algorithm
extends the Dijkstra algorithm to avoid useless computations; the fourth algorithm extends the
Bellman algorithm to compute all shortest paths for all criteria at once. These four algorithms
perform parallel computation when it is possible. The experimental evaluation demonstrates that
the best algorithm is the third one that meets the real-time constraints of the targeted industrial
application.

1 INTRODUCTION

The growth of air passenger needs has forced
airlines to improve their quality of service. The
airlines should offer flights that match with pref-
erences of passengers. For this reason, most of
airlines are interested in quality of service mod-
els (QSI). QSI is a market share model used by
most of airlines to estimate their part of the mar-
ket. The model determines the probability a trav-
eler selects a specific itinerary connecting an air-
port pair based on a list of criteria (Jacobs et al.,
2012). Then, let us suppose an airline network,
where nodes are the airports and arcs represent
flights. Each arc is associated with a time, dis-
tance, and cost. The question is to decide if it is
interesting to add a flight between a pair of air-
ports (Origin-Destination) in that network. More
precisely, adding a new arc would allow to passen-
gers to make itineraries that are neither longer
nor more expensive than going directly to their
destination? ? For this, the flight radius prob-
lem (FRP) consists in finding routes that pass
by a potential arc and satisfy a regret constraint.
This constraint aims to model passengers prefer-
ences. Practically, there are many criteria to be
considered but the three main considered in this

study are: time, distance, and cost. This prob-
lem is related to the route network development
problem which is considered as the initial problem
addressed by the airlines. It aims to determine a
set of routes to be operated in an airline’s network
(Idrissi et al., 2017).

The FRP is derived from the PlanetOptim
application developed by the company which
is a startup specialized in air transportation
and has developed a decision tool for airline
managers to analyze and simulate a new market
using QSI models. Then, given a specific flight
that is defined by an airport pair (origin &
destination), the process in the application starts
by finding important airports with respect to
the specific flight, and then estimates market
share for each route connecting the origin to
the destination. Following this, the airline man-
ager decides whether to add the new flight or not.

Our study goal is to improve the process of
simulating a new market. Thus, the solution pro-
posed by the FRP helps to reduce the size of the
network by removing uninteresting routes regard-
ing criteria of QSI models. Basically, it will al-
low to accelerate QSI computations by consider-
ing only interesting routes.

For instance, Figure (1) represents a screen-
shot of the application. Let us consider this ex-
ample for which a new route will be created be-
tween NCE and BKK. This new route allows pas-
sengers coming forward NCE (in connection with
NCE) to go either to PEK or ICN via BKK. Pass-
ing by the new flight can be a little bit longer
(respectively shorter) but cheaper (respectively
more expensive) than going directly to the final
destination . The choice depends on the passen-
gers since they have different preferences over the
criteria. For this reason, these preferences should
be integrated in this problem.

Figure 1: Screen-shot of the PlanetOptim application.
Colors of airports refer to their localization towards
the compass.

(Idrissi et al., 2018) formulated the FRP as
finding a maximal sub-graph such for each node
there exists a supported path by the regret con-
straint. Given a certain regret, we are search-
ing for paths that are neither longer nor more
expensive than the shortest path. The regret is
defined for each time and cost criteria. This rep-
resents the real life, when a passenger accepts to
pass through the new arc, the new path is ac-
cepted regarding to a certain regret. Then, the
solution either minimizes the cost or minimizes
the time. Such paths can be retrieved by using
shortest paths algorithms. We begin simply by
working on the condensed flight network (CFN).
In such network, we omit scheduling information
and keeps only transfer time information. This
approach yields to smaller graph size (See sec-
tion 4).

The authors proposed in (Idrissi et al., 2018)
two methods to solve the problem. The first one
is a query based on available procedures in the
database where the condensed flight network is
stored (See section 4.2). The second one is an
optimized algorithm based on Dijkstra algorithm.
Tests run to solve a part of the problem. It means
in outgoing direction. The algorithm is more ef-
ficient than the query and meets real-world re-
sponse time constraints.

In this paper, we compare four methods to
solve the FRP. The first two are algorithms that

decompose the FRP in shortest path problems
(SPP) and solved them in parallel using as short-
est path algorithm: Dijkstra and Bellman. The
third one extends the algorithm presented in
(Idrissi et al., 2018) to solve the FRP in both di-
rections with more than two criteria. However,
the last one uses a Bellman-Ford algorithm to
solve the problem that computes at once all short-
est paths from both origin and destination for all
criteria.

The four algorithms perform parallel compu-
tation when it is possible. Our aim is to study
the performance of a shortest path algorithm like
Bellman-Ford on solving the problem compared
to Dijkstra algorithm when adding more criteria.
We are especially interested in comparison the
runtimes of these algorithms which is important
for the user experience of PlanetOptim. Another
interesting metric is the number of nodes scanned.

The paper is organized as follows. Section 2
introduces some definitions of graph theory, then,
introduction of flight timetables and some algo-
rithms of shortest path. In Section 3, we review
related work of the air scheduling development
problems and transportation networks modelling
approach. Section 4 describes the CFN mod-
elling, the graph database, and also how we im-
plement the CFN in the graph database. Section
5 gives the formulation of the FRP, and its prop-
erties. Section 6 describes the four algorithms.
Section 7 is dedicated to experiments, questions
we aim to answer in this study.

2 PRELIMINARIES

This section gives definitions of graph theory
(Ahuja et al., 1993). Then, it describes the flight
timetables. To sum up, the section states some
shortest path algorithms.

2.1 Graph Theory

A graph G is a couple G = (V,E) consisting of a fi-
nite set V of nodes or vertices and a set E⊆V ×V
of arcs which are ordered pairs (u,v) if the graph
is directed. The node u is called the tail of the arc,
and v is called the head. Each arc (u,v) ∈ E has
an associated non-negative weight w(u,v). We
define |V |= n, the order of the graph as the num-
ber of nodes meanwhile |E| = m its size. Air-
line networks are weighted directed graphs where
weights represent the cost or the duration of the

flight. A direct flight from one city to another
does not necessarily imply that there is also a
direct return flight. A graph G′ = (V ′,E′) is a
subgraph of G if V ′ ⊆ V and E′ ⊆E. We say that
G′ is the subgraph of G induced by V ′ if E′ con-
tains each arc of E with both endpoints in V ′.
A path is a sequence of nodes {v1,v2, ...,vk} such
that for each 1≤ i < k,(vi,vi+1) ∈E. If addition-
ally v1 = vk, then the path is a cycle. The length
of a path P is the sum of its arc weights along
the path and is denoted by:

l(P) :=
k−1∑
i=1

w(vi,vi+1).

l?(s, t) for a given pair of nodes s and t, is the
length of the shortest path starting at s and end-
ing at t. A path in G is called simple if no
node occurs more than once. A graph G is con-
nected if there exists a path joining any two nodes.
A transportation network should be a connected
graph.

In this study, we restrict to flight networks
that rely on timetables. The section 4 describes
the modelling of the CFN.

2.2 Flight Timetables

A flight timetable is defined by a tuple (C,A,F ,T)
where A is a set of airports, F is a set of flights, T
is the periodicity of the timetable, and C is a set of
elementary connections. An elementary connec-
tion c∈ C is a tuple c = (f,o,d, ts, te) which repre-
sents flight f ∈F departing from the airport o∈A
at ts < T and arriving at the airport d∈A in time
te < T (Pajor, 2009). Concretely, an elementary
connection corresponds to an event in the flight
timetable. A passenger trip (c1, c2, . . . , cn−1, cn)
is a sequence of elementary connections, with the
origin of an elementary connection is the same as
the destination of its predecessor in the sequence,
and the elapsed time between two successive con-
nections is at least as great as the minimum con-
necting time:{

o(ci+1) = d(ci)
te(ci) +MCT (d)≤ ts(ci+1) , ∀ 1≤ i≤ n−1

Where MCT is the minimum connecting time
at the destination airport d(ci).

In this study, we omit schedule information
by working on the condensed network (see sec-
tion 4). In such network, we just consider the
transfer time without checking if the route is vi-
able, route that respects time constraints. How-

ever, the solution will give a lower bound on trav-
elling time.

2.3 Shortest path Algorithms

Shortest path algorithms are based on labeling
method for solving the shortest path problem.

Labeling method. The labeled method is de-
fined as follows (Cherkassky et al., 1996). For
each node v, the method maintains a distance
label d(v) which is an upper bound on the short-
est path length to the node v, parents p(v), and
status S(v). We have three status : unreached,
labeled, and scanned. Initially for each node v,
d(v) = inf , p(v) = nil, and S(v) = unreached.
For a start node, the method sets d(s) = 0 and
S(s) = labeled. Then, the algorithm starts by
scanning labeled nodes until there does not ex-
ist such node. The SCAN operation of a labeled
node consists in checking for all outgoing arcs
(v,w) ∈ E, if d(v) + l(v,w) < d(w). Then, if it
is, d(w) is updated. If there are no negative cy-
cles, the arcs (p(v),v) form a tree T rooted s.
When the algorithm stops, T is a shortest path
tree (SPT).

Function 1: SCAN(v)
foreach (v,w) ∈ E do

if d(v) + l(v,w) < d(w) then
d(w)← d(v) + l(v,w);
S(w)← labeled;
p(w)← v;

end
end
S(v)← scanned;

There are two categories of shortest path al-
gorithms: setting algorithms and correcting algo-
rithms. The two types of algorithms differ in the
strategy of selecting labeled nodes to be scanned
(Cherkassky et al., 1996). We present Dijkstra’s
algorithm and its speed-up techniques: Bidirec-
tional Dijkstra and A* search. We end by de-
scribing Bellman-Ford-Moore algorithm.

2.3.1 Setting Algorithms

Dijkstra’s algorithm. Dijkstra’s algorithm is
the most known setting algorithm that works
with positive weight arcs. In Dijkstra’s
algorithm, the principle is to select a node with
the minimum weight at each iteration. It scans

each node at most once. That leads to a com-
plexity of O(n2) as time bound in the worst case
(Ahuja et al., 1993) where n is the number of
nodes. Two sets are maintained, a permanently
set that represents selected nodes and temporary
set that designates nodes not yet selected. The al-
gorithm performs the node selections operation n
times. Each operation requires that it scans each
temporarily labeled node which leads to O(n2).
Besides, the algorithm performs the distance up-
dates operation for all outgoing arcs of a node v.
Overall, the algorithm requires O(m) since each
operation requires, a constant time, O(1). At the
end, Dijkstra’s algorithm solves the shortest
path problem in O(n2).

There are many versions of Dijkstra’s
algorithm with the aim of improving this time
bound by trying different data structures and
several implementations of the algorithm (Ahuja
et al., 1993). Using an adjacency list to repre-
sent the graph can reduce the bound to O((n +
m)× logn). The idea is to traverse all vertices of
the graph using BFS (Breadth-first search)
in O(n + m) and use a heap for labeled nodes to
extract the min in O(logn) time. Moreover, using
Fibonacci heaps to extract the minimum weight
can reduce the running time to O(m + n× logn)
(Fredman and Tarjan, 1987).

Bidirectional Dijkstra. In some applications
of the shortest path problem, we want uniquely
to determine the shortest path between two
nodes. Bidirectional Dijkstra’s algorithm
solves the problem of finding the shortest path
between two nodes faster since it eliminates
some unnecessary computations by reducing the
number of visited vertices in practice. In
Bidirectional Dijkstra’s algorithm, we ap-
ply Dijkstra’s algorithm between origin node
(forward search) and destination node (backward
search) at the same time and stop when the short-
est path is found. That is, some nodes w has been
processed, i.e., deleted from the queue of both
searches (Ahuja et al., 1993).

A* search. The A* search is an acceleration al-
gorithm of Dijkstra’s algorithm in the sense
that it preferably settles nodes that are closer to
the destination when finding the shortest path
between two nodes. The algorithm is based on
heuristic function h(v) that estimates the weight
of the cheapest path from v to the destination.
Then, at each step, it selects a labeled node v with
the smallest weight, defined as l(v) = d(v)+h(v).

In transportation networks, the classical way to
use A* estimates h(v) based on the Euclidean
distance between these two nodes (Delling et al.,
2009b). It is easy to see that A* search is equiva-
lent to Dijkstra’s algorithm when h(v) is zero.

2.3.2 Correcting Algorithms

The Bellman-Ford-Moore algorithm is known as
a correcting shortest path algorithm. It achieves
the best currently known bound of time with neg-
ative weight arcs O(nm) where m is the number
of edges. The algorithm maintains the set of la-
beled nodes in a FIFO queue and allows detect-
ing negative cycle in a weighted directed graph.
In Bellman-Ford, arcs are considered one by one.
The next node to be scanned is removed from the
head of the queue; a node that becomes labeled
is added to the tail of the queue. The algorithm
performs at most n−1 passes through arcs. Since
each pass requires O(1) computations for each
arc, this implies O(nm) time bound for the al-
gorithm. Bellman-Ford-Moore is qualified as a
robust algorithm since there is no priority queue.
Some heuristics have been introduced to improve
the practice performance of the algorithm. For
instance, (Cherkassky et al., 1996) introduce a
parent checking heuristic that scans a node
only if its parent is not in decrease.

(Cherkassky et al., 1996) provide an extensive
computation study of shortest path algorithms
with theoretical explanations and experimental
results in function of different instances of vari-
ous problems.

3 RELATED WORK

In this section we give a review literature about
air scheduling development optimization prob-
lems with focus on the route network develop-
ment problem that presents the scope of our
study. Then, we introduce the main approaches
to model transportation networks.

3.1 Air Scheduling Development
Problems

The air scheduling development problem has been
broken, in practice, into several subproblems
(Barnhart and Cohn, 2004). This is due to its
very large-scale nature. Thereby, the route net-
work development, schedule design, fleet assign-
ment, aircraft routing, and crew scheduling are

the five facets of the air scheduling development
optimization problems. The airline has to re-
solve these problems before beginning an oper-
ation (Rebetanety, 2006):
Route network development : deciding

which set of origin-destination pairs to serve.
Schedule design : defining the frequency of

each flight. Scheduling determines where and
when the airline will fly.

Fleet assignment : specifying the type and the
size of aircraft serving each flight in a given
schedule.

Aircraft routing : determining feasible air-
craft routes under maintenance and time con-
straints.

Crew scheduling : assigning crews to flights.

Route network development. The route
network development is a key element of an air-
line process. Given a fleet plan that determines
the constraints of each aircraft, the route network
development consists in determining the set of
routes to be flown: airline manager should select
which route to add or delete (Hall, 2012). Adding
a new flight to the current network or creating a
new route on the network is a complicated pro-
cess that has some impacts notably on the flight
schedules. Schedules have to be chosen according
to all flights connected with the new flight but
either to those of competitors.

Route network development approaches.
The most common approach is route profitability
models that have the objective to allow airlines
to select routes that maximize total airline prof-
its, given a set of candidate routes and expected
demands, subject to fleet constraints. Such mod-
els are designed to offer the airline with the eco-
nomic impacts of adding a new route to its net-
work. The accuracy of route profitability models
depends on the accuracy of the inputs and the
nature of assumptions, typically, demand, rev-
enue, operating cost estimates and assumptions
concerning expected market shares. The evalu-
ation of the market share, that the airline can
gain of the total demand, uses a QSI models or
a logic-based model (see (Jacobs et al., 2012) for
more information). Nowadays, the QSI models
are more used by airlines due to the complexity
of maintaining parameter estimates in logic-based
model.

A second approach has been given by (Sha
et al., 2015) who proposed a discrete-choice model
using random-utility theory. The utility function

is a linear function of decision variables with in-
teraction effects. The preferences for each vari-
able are estimated using historical datasets. The
decision of route selection is then modeled using
a binary choice model derived from the utility
function. The advantage of this approach is that
it takes into account the uncertainty constraints.
However, the approach requires historical data to
build the model.

A third approach is the network design mod-
els, that are addressed to design the network of an
airline. On the route network development, such
models are used to plan routes in the network.
Basically, two sets of decision variables designed
are: one assigning supply to the network and an
other assigning demand to the network. This ap-
proach models the problem as integer program-
ming problems with an objective function of max-
imizing the profit (Barnhart and Cohn, 2004).

The FRP is related to the route network de-
velopment problem. It comes before applying the
route network development models cited above.
Given a set of candidate routes passing through
the specific flight, the problem consists in se-
lecting the subnetwork that contains interesting
routes regarding the regret constraint. Therefore,
instead of applying route profitability models to
the whole network. It would be applied only on
important routes respecting the preferences mod-
eled by the regret constraint. Normally, it will
help to speed-up QSI computations on the appli-
cation.

(Idrissi et al., 2017) formulated the FRP as
finding a maximal sub-graph that for each node
there exists a supported path by the regret con-
straint (see section 5). Given a certain regret, we
are searching paths that are neither longer nor
more expensive than the shortest path. The re-
gret is defined for each time and cost criteria. In
literature, this kind of problem consists to find
Pareto paths which can be found in polynomial
time using lexicographic order (Gandibleux et al.,
2006). However, we are looking for paths satisfy-
ing the time or distance or cost criterion which is
a sufficient condition to solve the FRP.

3.2 Modelling Transportation
Networks

There are mainly two approaches in the litera-
ture to model transportation networks: the time-
independent and the time-dependent. The time-
independent is mostly used in road networks
where each arc is assigned a constant value which

may be travel time, distance or any other metrics
that we would like to minimize. Such model is
more simpler since it excludes time-dependencies.
For this reason, a lot of research focused toward
accelerating shortest path algorithms on time-
independent models (Pajor, 2009). The time-
dependent model is an efficient and compact ap-
proach to model time-dependencies. In the case
of flight networks, a node is introduced for each
airport and an edge is inserted if there is a di-
rect connection between two airports. At each
edge, we store a function rather than a constant
value. This function returns the arrival time at
the destination airport according to the depar-
ture time from the source airport (Delling et al.,
2008). This model yields to small graph with real-
istic travel time. However, transfer time between
airports are not included.

To overcome this issue, the time-expanded
model was proposed to included transfer times.
In the graph, each node is an event of the
timetable and an edge connects two consecutive
events. Thereby, this approach yields to a huge
graph since that it includes all time-dependent
information.

The time-independent model lets to a con-
densed graph where an edge corresponds to all
aggregated connections between a pair of nodes.
In this kind of model, an airport is represented
by a single node rather than multiple nodes per
airport. In our study, we focus on the condensed
model which yields a very small graph and rep-
resents the structure of the flight network ade-
quately. Then, we obtain a lower bound regard-
ing the travel time between two airports.

4 CONDENSED FLIGHT
NETWORK

4.1 Modelling

First, we define the condensed graph. It is gen-
erated from the flight timetable where nodes
represent airports meanwhile the presence of an
arc indicates that there exists at least one el-
ementary connection between two airports. In
such graph, we omit time scheduling and keep
only the transfer time. Then, each arc is con-
structed by aggregating all elementary connec-
tions between each pair of airports. Let Cod =
{c ∈ C | o = o(c)∧d = d(c)} be the set of elemen-
tary connections between two airports o & d. The

following labels are associated with the arc (o,d)
(Idrissi et al., 2017):
• Fod = |Cod| is the number of elementary con-

nections between o and d;
• Cod =

∑
c∈Cod

cap(c) is the total capacity
filled;

• Pod =
∑

c∈Cod
pax(c) is the total number of

passengers;
• Rod =

∑
c∈Cod

r(c) is the total revenue;
• R̄od = minc∈Cod

r(c)
pax(c) is the minimum rev-

enue per passenger;
• Tod = minc∈Cod

t(c) is the minimum flight du-
ration;

• Dod is the distance between the two airports.

The cost, time, and distance criteria are repre-
sented respectively by R̄od, Tod, and Dod. To take
into account the transfer time, we propose to rep-
resent it by an arc in the graph. This technique is
often used to model the information about trans-
fer since it is important in computing shortest
paths (Delling et al., 2009a). The model con-
sists in introducing for each airport node A ∈ A
a terminal node. Then, we insert two more nodes
per airport: a departure node to model flight de-
partures and an arrival node to represent flight
arrivals. In this way, we can model the fact that
all flights either begin or end at the airport fol-
lowing the flight timetable. Then, we introduce
three different types of arcs. board at is inserted
from an airport to departure node, and finally a
connect to to model the transfer time between
an arrival node and departure node of the same
airport with a transfer time (see Figure 2). The
graph contains four airports: NCE, BKK, PEK,
ICN and four flight arcs referenced by year month.
Nodes in thin style represent departures (origin
nodes), dashed nodes for arrival nodes (desti-
nation nodes). Double arcs is transferring time
meanwhile bold arcs model flight time. Besides,
dotted arcs for arrivals and dashed arcs for de-
partures.

NCE

d1

o1

BKK

o2

d2

PEK

o3

d3

ICN

o4

d4

year month

year month

co
n
n
ec
t
toali

gh
t a

t

board at

bo
ar
d a

t

alight at

ali
gh
t a

t

board at

ye
ar

mo
nt
h

con
n
ect

to

year month

bo
ar
d a

t

alight at

co
n
n
ec
t
to

Figure 2: Model of condensed flight network. Source
(Idrissi et al., 2018)

4.2 Graph Database Structure

The condensed flight network (CFN) is gener-
ated from a NoSQL database and stored in Neo4j
graph database using a time-independent ap-
proach (Neo Technology, 2017). It is one of the
most popular graph databases where queries can
easily be expressed through Cypher query lan-
guage. Neo4j is used for many applications, typ-
ically recommendation systems and complex net-
works like transportation network. Neo4j graph
database follows the property graph model to
store and manage its data. In Neo4j, data are
represented in nodes, relationships, and proper-
ties or attributes. Both nodes and relationships
contain properties (Robinson et al., 2015). A re-
lationship connects a pair of nodes, it has a di-
rection, a type, a start node, and an end node.
Neo4j graph database is proved suited for the
shortest path calculation for transport purposes
(Miler et al., 2014).

Shortest path algorithms in graph
database. Neo4j is an efficient graph database
for performing graph traversal like shortest path
computations (Holzschuher and Peinl, 2014).
(Miler et al., 2014) compare the performance
of Dijkstra’s algorithm in transportation
network stored in a relational database and
stored in a graph database. Results show that
Neo4j outperforms other databases. However,
the graph database consumes a lot of memory
when dealing with large transportation networks.
In our study, we are working on the condensed
flight network which is not a large network.
Thus, the memory consumption of Neo4j is not
an issue.

Besides, Neo4j proposed APOC (Awesome
Procedures on Cypher) as stored procedures
that regroup a list of procedures. Graph al-

gorithms are part of these procedures namely
some shortest path algorithms (Neo Technology,
2017). Bidirectional Dijkstra’s algorithm
is one of these graph search algorithms that solves
the single-source shortest path problem for a
weighted graph (see section 2.3). In addition, the
graph database Neo4j offers the possibility to im-
plement algorithms as user defined procedures to
call in Cypher query. That is can be easy to use
it by the final user. Therefore, graph database
is the right choice to store the condensed flight
network and then calculate the shortest path.

4.3 Implementation

Existing database. Currently, we are working
on a real-world database that used MongoDB. Data
are collected and queried monthly then it makes
sense to create a relationship per period which is
a month of the year. The relationship represents
flight information (see Figure 2). We dispose of
historical data about the last fifteen years. The
current database stored data in a disconnected
way and did not use a graph structure.

Figure 2 in section 4.1 illustrates the con-
densed graph in Neo4j. It represents the moti-
vation example of the figure 1 modeled in Neo4j.

When testing the shortest path algorithm, it
assumes that all nodes are reachable from the
source. We use a fictive source and arcs to get
a connected graph since some real-world data are
missing. Hence, we introduce a connector node
to connect each origin node to destination nodes.
That leads to good results when the graph is con-
nected. Let’s n the order of the original graph and
m its size, the generated graph has n′ = 3∗n + 1
nodes and m′ = m+ 5∗n arcs.

The condensed graph was generated for two
years and has 4,577 nodes and 1,125,418 relation-
ships of all types. Thus, the transformed con-
densed graph has 13,732 nodes and 1,148,303 re-
lationships.

5 PROBLEM FORMULATION

This section outlines the formulation of the
flight radius problem defined and also some of its
properties.

5.1 Formulation

The flight radius problem consists in retrieving
only relevant routes passing through a specific

flight, and satisfying the regret constraint. The
considered flight is represented by an arc (o,d) in
the graph (CFN) where o,d ∈ V . Then, we are
interested in retrieving paths passing by the arc
(o,d) that could be relevant regarding the regret
defined for the time, distance, and cost criteria.
More precisely, travelling from o1 ∈ V to d1 ∈ V
by passing through the arc (o,d) is interesting if
and only if the path {o1, ..,o,d, ..,d1} between o1
and d1 satisfied the regret constraint. The satis-
faction of the constraint depends on the shortest
path between o1 and d1.

Our goal is to find alternative paths that
are slightly longer or cheaper than the shortest
path but passing by the arc (o,d). Let R be a
Boolean regret constraint defined on paths of
the graph G. Therefore, the problem consists in
finding a maximal subgraph, in terms of nodes,
such that each node supports a path satisfied
by the regret constraint R. It means that there
exists a path connecting nodes of this sub-graph
passing through the arc (o,d) satisfying the time
or distance or cost criteria. Such paths are called
valid paths.

The problem is formulated as follows:

Input: a graph G = (V,E), the arc (o,d), and
the regret constraint R

Output: a maximal subgraph G′ = (V ′,E′) of
G that each node belongs to a path passing
through the arc (o,d) and satisfying the regret
constraint.

In this paper, we use the regret constraint R to
identify which paths are supported. Let’s define
what the regret constraint R is. Let w(i, j) be the
weight of the arc (i, j) and let l?(i, j) be the length
of the shortest path from i to j. Let l(i, j) be the
length of a path passing through the arc (o,d),
and let consider the following regret constraint
defined for each criterion:

Rod(i, j) = l(i, j)≤ l?(i, j) +K (1)

Where K ≥ 0. Each node must support at
least a valid path. Then, we are looking for re-
trieving paths that satisfied at least one criterion.

5.2 Properties

The flight radius problem consists in finding valid
paths. These paths depend on finding shortest
path. Most traditional path finding are based on
shortest path finding:

l(i, j)≥ l?(i,o) +w(o,d) + l?(d,j) (2)

o d

i j

Figure 3: Decomposition of path. The red arc repre-
sents the studied arc (o,d) while the dotted arc is the
shortest path.

Property. The subpath of a valid path is also
a valid path.

The shortest path satisfies the triangle in-
equality property. Then, following the shortest
path from i to o, passing by the arc (o,d), and
then following the shortest path from d to j is
always a valid path if it exists (see Figure 3).

Proof.

l
?(i,o) + w(o,d) + l

?(d,j)≤ l
?(i, j) + K

���l
?(i,o) + w(o,d) + l

?(d,j)≤���l
?(i,o) + l

?(o,j) + K

w(o,d) + l
?(d,j)≤ l

?(o,j) + K

−−→
Rod(j) = l(o,j)≤ l

?(o,j) + K (3)

Following to the inequality 3, the subpath from o
to j of a valid path is also valid. In addition, the
subpath from i to d is valid.

l
?(i,o) + w(o,d) + l

?(d,j)≤ l
?(i, j) + K

l
?(i,o) + w(o,d) +���l

?(d,j)≤ l
?(i,d) +���l

?(d,j) + K

l
?(i,o) + w(o,d)≤ l

?(i,d) + K

←−−
Rod(i) = l(i,d)≤ l

?(i,d) + K (4)

Finally, search can be restricted to shortest
valid paths starting from o or ending at d. Note
that when K = 0, the set of valid paths represents
all the shortest paths passing by the arc (o,d).
Lemma 1. Let p be a valid path, all the nodes
belong to G′. For any shortest path p from d to
i in G. If the arc (o,d) belongs to p, then it is
a valid path and consequently i is going in the
subgraph G′.

The subpath of the shortest path is also a
shortest path (Ahuja et al., 1993). Consequently,
nodes j represent supported nodes: nodes that
paths satisfy the regret constraint.

Solving the subproblem of finding the subpath
from o to each node j is similar to find the sub-
path from each i to d in the reverse graph.

6 ALGORITHMS

In this section, we propose four algorithms:
two algorithms that decompose the FRP in short-
est path problems (SPP) and solved them in
parallel using either the Dijkstra or Bellman al-
gorithm; the third algorithm extends the Dijk-
stra algorithm to avoid useless computations; the
fourth algorithm extends the Bellman algorithm
to compute all shortest paths for all criteria at
once. These algorithms perform parallel compu-
tations when it is possible.

All algorithms have the same input and out-
put.

input : a CFN G = (V,E), an arc (o,d), the
criteria C

output: the set of supported nodes S

For sake of simplicity, the algorithm simply
returns the set of supported nodes and does worry
about storing the parents of the supported nodes.
In practice, the algorithm also returns the union
of the supported trees for each direction and for
each criterion. Based on the regret functions, let’s
define:

R(i,dir) =
{

Rod(o,j), if (dir = out)
Rod(j,d), if (dir = in)

6.1 Shortest Path Decomposition

The shortest path decomposition solve two
shortest path problems, one from the origin o
and the other from the destination d, for each
direction and for each criterion in parallel.Then
the supported nodes are computed by checking
the regret constraint.

Algorithm 1: SP Decomposition
foreach dir ∈ {in,out} in parallel

foreach c ∈ C in parallel
ShortestPaths(o,c,dir);
ShortestPaths(d,c,dir);
foreach i ∈ V do

if R(i,dir) then
S← S∪{i} ;

end
end

end
end
return S

The shortest path subroutine is either the Di-
jkstra or the Bellman algorithm. The computa-
tion of the shortest paths from the origin and from
the destination is sequential so that finding the
supported nodes is made easier.

6.2 Flight Radius Algorithms

Here, we design variants of the Dijkstra and Bell-
man algorithm tailored for solving the flight ra-
dius problem.

6.2.1 Dijkstra FR Algorithm

We present an algorithm that compute the short-
est path from o, and then computes lazily the
shortest path from d by skipping unsupported
nodes. Here, the criteria are processed sequen-
tially. At each iteration, the algorithm scans the
node with the minimum weight and then relax
its neighbors. So, we check if the node satisfies
the regret function otherwise we skip the node.
Therefore, we skip non supported nodes that can-
not be extended into valid paths. The algorithm
ends if the queue becomes empty or if all non
supported nodes have been closed.

Algorithm 2: Dijkstra FR Algorithm
foreach dir ∈ {in,out} in parallel

foreach c ∈ C do
Dijkstra(o,c,dir);
enqueue(Q,d);
while Q 6= ∅ and isNotClosed() do

i← argminj∈Q(d[j]);
dequeue(Q,i);
if R(i,dir) then

S← S∪{i} ;
SCAN (i,c,dir);

end
end

end
end
return S

6.2.2 Bellman FR Algorithm

We propose a variant of the Bellman algorithm
that computes at once all shortest paths from the
origin and from destination for all criteria. Here,
the SCAN function updates all paths from the ori-
gin and from the destination for all criteria.

Algorithm 3: Bellman FR Algorithm
foreach dir ∈D in parallel

enqueue (Q,o);
enqueue (Q,d);
while (Q 6= ∅) do

i← dequeue(Q);
SCAN (i,C,dir));

end
foreach i ∈ V do

if R(i,dir) then
S← S∪{i} ;

end
end

end
return S

7 EXPERIMENTS

In this section, we evaluate the algorithms
to solve the flight radius problem on real-world
datasets. We are especially interested in compar-
ing the runtimes of the algorithms which impact
the user experience of PlanetOptim. Another in-
teresting metric is the number of nodes scanned
by the algorithm which determines the accessed
property values (criteria) of a relation that incurs
extra IO the first time those properties are ac-
cessed because the properties reside in a separate
store file from the relationships (after that, how-
ever, they’re cached) (Robinson et al., 2015). Our
experimental protocol aims to answer the follow-
ing questions:
1. Which algorithm is the fastest and, will, there-

fore provides the best user experience?
2. Is it worthwhile to design algorithms for flight

radius problem compared to the decomposi-
tion into shortest path problems?

3. Does reduction of the number of scanned
nodes provoke a reduction of the runtime ?

4. How does the performance evolve with the
number of criteria ?
First, we present how the benchmarks in-

stances have been generated. Second, the run-
times of the algorithms are compared, and then,
the relation between runtimes and number of
scanned nodes is studied. Last, we analyze the
ratio of the flight radius algorithms over shortest
path decompositions depending on the number of
criteria.

All the experiments were led on a computer
running on Ubuntu 16.04.5 with 32 GB of RAM
and one Intel Core i7-3930K 3.20GHz processors

(6 cores). The implementation is based on Neo4j
and APOC version 3.2.0. All algorithm are im-
plemented in Java 8.

7.1 Instances Generation

The Neo4j database contains historical data for
the years 2016 and 2017 (24 year-months). Each
year-month corresponds to a different graph. The
condensed flight network contains 13,732 nodes
and 1,148,303 arcs.

A benchmark instance must specify the year-
month, the OD-pair (o,d), the number of criteria,
and their regrets.
The number of criteria is one (time duration),
two (time duration, distance), or three (time du-
ration, distance, cost). For each criterion, two
values are considered for its regret K: 0 and the
median (over all relations and year-months). The
value 0 means that only shortest paths passing
through the arc (o,d) are valid, whereas many
other paths are valid with the median. For in-
stance, the median duration of a flight is approx-
imately two hours. So a path between i and j
passing through the arc (o,d) is valid if it does
not exceed the duration of the shortest path be-
tween i and j by four hours (the median duration
plus the minimum connection time).
For each year-month, each number of criteria, and
each combination of criteria values, a few pairs of
origin and destination (o,d) are drawn randomly.
At the end, more than ten thousand instances
have been tested.

7.2 Algorithms Comparison

Table 1 gives the average, standard deviation, and
maximum runtime in milliseconds of the shortest
path decompositions and of the flight radius al-
gorithms using Bellman or Dijkstra. The Dijk-
stra variants are approximately two times faster
and have a lower standard deviation than their
Bellman counterparts. The algorithm based on
Dijkstra is slightly faster than the decomposition
whereas it is not the case for Bellman.

Figure 4 analyzes the relation between the
runtime and the number of scanned nodes for
each algorithm. Each point represents one in-
stance and its x coordinate is the runtime in mil-
liseconds, whereas its y coordinate is the num-
ber of scanned nodes. The color of a point indi-
cates which algorithm solved the instance. The
flight radius algorithm based on Bellman scans
less nodes than the shortest path decomposition

SP Decomposition FR Algorithm
Dijkstra Bellman Dijkstra Bellman

avg 266 500 231 604
std 60 198 90 282
max 418 1328 644 1612

Table 1: Distribution of runtimes given in millisec-
onds.

based on Bellman (red points are below the blue
ones), but without reducing the runtimes (blue
points are on the the left of the red ones). It
means that the additional time spent to read all
properties is not compensated by the decrease in
the number of scanned nodes. For Dijkstra, the
number of scanned nodes for the decomposition
only depends on the number of criteria whereas
it is not the case for the flight radius algorithm.
In this case, a lower number of scanned nodes
implies a reduction of the runtime because the
number of read properties is also reduced (green
points are on the left and below purple points).
As expected, Dijkstra based algorithms scan less
nodes than those based on Bellman.

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●
●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●●
● ●

●

●●

●● ●
●

● ● ●● ●●●
●●

●

●

●●●

●

●
●● ●●●

●
●

●●
●

●
●

●●●

●

●
●

●
●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●
● ●

●
●

●●
● ●

●

●●

●● ●
●

● ● ●● ●● ●
● ●

●

●

●● ●

●

●
● ● ● ●●

●
●

● ●
●

●
●

●● ●

●

●
● ●

●
●

● ●
● ●

●

● ●

●● ●
●

● ●●●●● ●
● ●

●

●

●●●

●

●
●● ●● ●

●
●

● ●
●

●
●

●● ●

●

●●●●
● ●●

● ●
●●

●

●
●

● ● ●●
●

●
●

●

●
●●●
●

●

●

●
●
●

●●
●●

● ●●
●

●
● ●

● ●
●

●●●
●

● ●
●●●

● ●●● ●
●● ●●

●
●

●
● ●● ●

● ●●●
●

●●
●● ●● ●

●

●● ●
●

●●●●●●
●

●

●
●

●
●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●
● ●●

●

●

● ●●●●

●
●● ●

●
●

●

●
●

●

●●● ●●
●

●
●

●

●
●

●●●●
● ●●

●●

●● ● ●
●

●

●

● ●●●
●

●

● ●
●●

●

●
●●

●

●

●

●● ●●
●

●
●

●

●●
●

●●

●

●

●
●

●

● ●● ●●

●● ●
●

●

●

●

●

●
● ●●

●

●

● ●●●
●

●
●● ●

●
●

●

●
●

●

●●● ● ●
●

●
●

●

●
●

●●●●
●● ●

● ●

● ●● ●
●

●

●

● ●●●
●

●

●●
●●

●

●
●●

●

●

●

●●● ●
●

●
●

●

●●
●

● ●

●

●

●
●

●

● ●●●●

●● ●
●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●●
● ●

●

●●

●● ●
●

● ● ●● ●● ●
● ●

●

●

●●●

●

●
●●●●●

●
●

● ●
●

●
●

●● ●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●
●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●
●●●

● ●
● ●

●

●
●

● ● ●●
●

●
●

●

●
● ●●

●
●

●

●
●

●
●●

●●
●● ●
●
●

●●● ●
●

●● ●
●

●●
●●●● ●●● ●
●● ●●

●
●
●

●●●●
● ●●●

●
●●

●●●●●
●

● ●●
●

●● ●●
●●●

●

●
●

●
●

●

●

●●

●
●

●

●

●
●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

● ●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

● ●

●
●

●

●●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

● ●

●
●

●
●

●

●
●

●
●●●

●● ●

●

●

●

●
●

●

●

●

●
●

●●
●

● ●

●
●

●● ●

●
●

●●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

● ●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●
●

●
●

●
●

●
●

●
●

●● ●
●

●
●
●

●
●

●
● ●● ●

●
●

●

●

●

●

●

●

●

●●

●

●

● ● ●
●●●

●
●●

●

●
●

●

● ●
●

●
●

●
●

●
● ●●

●

●

●

●●
●
●

●
●

●
●●

● ●●
●●
●

●
●

●● ● ●

●

●
● ●● ●●

●
●●●●

●●
● ●

●
●●

●
●

●
●●

●●
● ●●

●
●

●●
●
● ●

●●
● ●
●

●● ●
●●

●●
●

●● ●
●●● ●● ●

●

●●
●
●●
●

●
●●
●●

●
●● ●

●
●●

●

● ●● ●
● ●●●
● ●

●
●

● ●
●

●
●
● ●●

● ●●● ●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●● ● ●●

● ●
●●

●
●

●●● ●
●

●

●●
●

●
●●

●● ●

●

●● ● ●
● ●●

●●
●●

●● ●
●●●●

●

●

●

●

●
●●●

●
●

●●
●●

●●●
●

●●

●●
●

●
●

●
●●●●

●
●

●

●
●● ●●

●

● ●●
●
●
●● ●

●●

● ●

●

●●
●

●

● ●
●

●

●

●
●

●

●

●

●●
●

● ●●● ●
●

● ●●
●

●
●

●

● ● ●●
●

●

●
●●●
●●

●

●
●●
●

●
●

●●
●

● ●●
●●
●●

●
●●

● ●●
●

●
● ● ●

●● ● ●
●

●

●
● ● ●

●●
●

●

●
● ●●● ●

●
● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

● ●

●

●
●●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●●●

●

● ●
● ●●

●
●

●● ●● ●●

●
●●● ●●

●
●

●
●

●

●●

●●

● ●●
● ● ●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●
●●● ●
● ●●●●●●●

●
●●

●
●●
●

●●●●
●●
●●● ●

●

●
● ●●

●
● ●●

●
● ●

●●●●●
●●● ●

●
● ●● ●●

●
●●

●●
●●

●●
●

●
●

●
●●● ●●

●●●● ●●
●

●
●● ●●●
●● ●

● ● ●●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●
●

● ●

●

●

●

●

●
●

●
1e+05

2e+05

400 800 1200 1600
Runtime

S
ca

nC
ou

nt

Algorithm ● FR Bellman FR Dijkstra SP Bellman SP Dijkstra

Figure 4: Analysis of the runtimes and scan counts.

Last, Table 2 gives the geometric mean of
the improvements provided by the FR algorithms
over the SP decompositions in terms of runtimes
and number of scanned nodes. The improvement
is the ratio of the runtime of the FR algorithm
over the SP decomposition for Bellman or Di-
jkstra. The improvement is lower than 1 if the
FR algorithm is better than the SP decomposi-
tion and greater than 1 otherwise. Both FR al-

Dijkstra Bellman
Runtime #Scans Runtime #Scans

1 0.69 0.57 1.04 0.81
2 0.79 0.41 1.15 0.57
3 1.09 0.43 1.37 0.49

Table 2: Improvements of the FR algorithms over the
SP decompositions.

gorithms based on Dijkstra or Bellman reduces
the number of scanned nodes and the reduction
increases with the number of criteria. The run-
times are not reduced for Bellman, but are also
reduced for Dijkstra when the number of criteria
is one or two. When there are three criteria, the
reduction of scanned nodes does not compensate
for the additional parallelization of the decompo-
sition.

To conclude, the FR algorithms based on Dijk-
stra is the most efficient, and satisfy the real-time
constraint of PlanetOptim. Beside, the runtimes
of the algorithms increase with the number of cri-
teria in spite of the parallelization. When there
are three criteria, the reduction of the number of
scanned nodes does not help to reduce the run-
times of the FR algorithms based on Dijkstra, a
perspective is to parallelize along the criteria.

8 CONCLUSION

This work presents the algorithm of solving
the flight radius problem. We propose to com-
pare four algorithms: two algorithms that decom-
pose the FRP in shortest path problems (SPP)
and solved them in parallel using either the Di-
jkstra or Bellman algorithm; the third algorithm
extends the Dijkstra algorithm; the fourth algo-
rithm extends to the Bellman algorithm to com-
pute all shortest paths from both origin and des-
tination for all criteria at once. The experimental
evaluation demonstrates that the FR algorithms
based on Dijkstra is the most efficient, and sat-
isfy the real-time constraint of PlanetOptim. Be-
sides, the FR algorithms based on Dijkstra can be
enhanced by following the same parallel process-
ing of the SP decomposition. The next step of the
study is to include QSI computations. We hope
that the flight radius solution accelerates the com-
putations by working on the small graph rather
than the entire graph with uninteresting routes.

REFERENCES

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B.
(1993). Network flows: theory, algorithms, and
applications. Prentice hall.

Barnhart, C. and Cohn, A. (2004). Airline sched-
ule planning: Accomplishments and opportuni-
ties. Manufacturing & service operations man-
agement, 6(1):3–22.

Cherkassky, B. V., Goldberg, A. V., and Radzik, T.
(1996). Shortest paths algorithms: Theory and
experimental evaluation. Mathematical program-
ming, 73(2):129–174.

Delling, D., Giannakopoulou, K., Wagner, D., and
Zaroliagis, C. (2008). Timetable information up-
dating in case of delays: Modeling issues. Arrival
Technical Report.

Delling, D., Pajor, T., Wagner, D., and Zaroliagis,
C. (2009a). Efficient Route Planning in Flight
Networks. ATMOS, 12.

Delling, D., Sanders, P., Schultes, D., and Wagner, D.
(2009b). Engineering route planning algorithms.
In Algorithmics of large and complex networks,
pages 117–139. Springer.

Fredman, M. L. and Tarjan, R. E. (1987). Fi-
bonacci heaps and their uses in improved net-
work optimization algorithms. Journal of the
ACM (JACM), 34(3):596–615.

Gandibleux, X., Beugnies, F., and Randriamasy, S.
(2006). Martins’ algorithm revisited for multi-
objective shortest path problems with a maxmin
cost function. 4OR: A Quarterly Journal of Op-
erations Research, 4(1):47–59.

Hall, R. (2012). Handbook of transportation science,
volume 23. Springer Science & Business Media.

Holzschuher, F. and Peinl, R. (2014). Performance
optimization for querying social network data.
In EDBT/ICDT Workshops, pages 232–239.

Idrissi, A. K., Malapert, A., and Jolin, R. (2017).
The route network development problem based
on qsi models. In International Conference
on Operations Research and Enterprise Systems
(ICORES 2017), pages 3–11.

Idrissi, A. K., Malapert, A., and Jolin, R. (2018).
Solving the flight radius problem. In Proceed-
ings of the 7th International Conference on Op-
erations Research and Enterprise Systems - Vol-
ume 1: ICORES,, pages 304–311. INSTICC,
SciTePress.

Jacobs, T. L., Garrow, L. A., Lohatepanont, M., Kop-
pelman, F. S., Coldren, G. M., and Purnomo, H.
(2012). Airline planning and schedule develop-
ment. In Quantitative Problem Solving Methods
in the Airline Industry, pages 35–99. Springer.

Miler, M., Medak, D., and Odobašić, D. (2014).
The shortest path algorithm performance com-
parison in graph and relational database
on a transportation network. Promet-
Traffic&Transportation, 26(1):75–82.

Neo Technology (2017). Neo4j. https://www.neo4j.
com.

Pajor, T. (2009). Multi-modal route planning. PhD
thesis, Universitat Karlsruhe (TH) - Institut
fÃ 1

4 r Theoretische Informatik (ITI).
Rebetanety, A. (2006). Airline schedule planning in-

tegrated flight schedule design and product line
design. University Karlsruhe (TH). PhD the-
sis, PhD thesis, 2006. Available at http://www.
iks. kit. edu/fileadmin/User/calmet/stdip/dip-
rabentanety. pdf. Accessed 2013 January 30.

Robinson, I., Webber, J., and Eifrem, E. (2015).
Graph databases: new opportunities for con-
nected data. ” O’Reilly Media, Inc.”.

Sha, Z., Moolchandani, K., Maheshwari, A.,
Thekinen, J., Panchal, J. H., and DeLauren-
tis, D. A. (2015). Modeling airline decisions
on route planning using discrete choice models.
In 15th AIAA Aviation Technology, Integration,
and Operations Conference, page 2438.

APPENDIX

We would like to thank Carine Fedele <
Carine.Fedele@unice.fr > for its insightful com-
ments on the paper, as these comments led us to
an improvement of the work.

