
HAL Id: hal-02530703
https://hal.archives-ouvertes.fr/hal-02530703

Preprint submitted on 7 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimizing Flow Time on a Single Machine with Job
Families and Setup Times
Malapert Arnaud, Nattaf Margaux

To cite this version:
Malapert Arnaud, Nattaf Margaux. Minimizing Flow Time on a Single Machine with Job Families
and Setup Times. 2020. �hal-02530703�

https://hal.archives-ouvertes.fr/hal-02530703
https://hal.archives-ouvertes.fr

1

Minimizing Flow Time on a Single Machine with Job
Families and Setup Times.

Malapert Arnaud1 and Nattaf Margaux2

1 Université Côte d’Azur, CNRS, I3S, France
arnaud.malapert@univ-cotedazur.fr

2 Univ. Grenoble Alpes, CNRS, Grenoble INP??, G-SCOP, 38000 Grenoble, France
margaux.nattaf@grenoble-inp.fr

Keywords: single machine scheduling ; flow time ; job families ; setup times

Context and problem description In (Mason and Anderson 1991), the authors con-
sider a one machine scheduling problem with the goal of minimizing the average weighted
flow time. In this problem, jobs are grouped into families with the property that a setup
time is required only when processing switches from jobs of one family to jobs of another
family. Furthermore, setup times are additive: each setup for a new family of job consists of
the setdown from the previous family followed by a setup of the new family. These additive
setups are considered as sequence-independent. Note that a setup is required at time 0
before the very first job is processed. For this problem, they define several properties of an
optimal solution. These properties are then used in a branch-and-bound procedure.

If jobs belonging to the same family have equal processing times and unit weights,
the application of their results directly leads to a polynomial time algorithm. However,
if no setup time is required at time 0, i.e. before the very first job, their results cannot
be applied directly. The first goal of this paper is to prove this affirmation. The second
objective is to show how their results can be adapted in this special case. These results
are then used to define a polynomial time algorithm to compute the optimal flow time for
this special case. More generally, the objective is to use this algorithm for solving a parallel
machine scheduling problem with time constraints and machine qualifications described
in (Malapert and Nattaf 2019).

The problem considered in this paper is now formally described. Consider the problem
of scheduling a set N of n jobs on one machine. Each job belongs to a family f ∈ F and
the family associated with a job j is denoted by fj . Each family is then associated with
a number of jobs to process nf , a processing time pf , and a sequence independent setup
time sf . Thus, switching the production from family f to f ′ 6= f will require a setup time
sf ′ . Note that no setup time is needed between two jobs of the same family. The important
difference to the original problem is that the setup times are not additive anymore because
no setup time is required at time 0 before the very first job is processed. The goal is to
minimize the flow time which is the sum of the finishing time of all jobs.

Optimal solution properties The goal of this section is to describe several properties
and characteristics of an optimal solution. The properties will then be used to design our
polynomial-time algorithm.

To represent a solution, let S be a sequence representing an ordered set of n jobs.
Then, S can be seen as a series of blocks, where a block is a maximal consecutive sub-
sequence of jobs in S from the same family. Let Bi be the i-th block of the sequence
S = {B1, B2, . . . , Br}.
?? Institute of Engineering Univ. Grenoble Alpes

2

Successive blocks contain jobs from different families. Therefore, there will be a setup
time before each block (except the first one). The idea is to adapt SPT Smith’s rule (Smith
1956) for blocks instead of individual jobs. To this end, blocks are considered as individual
jobs with processing time Pi and weight Wi with: Pi = sfi + |Bi| · pfi and Wi = |Bi| where
fi denotes the family of jobs in Bi (which is the same for all jobs in Bi).

The following theorem states that there exists an optimal solution S containing exactly
|F| blocks and that each block Bi contains all jobs of the family fi.

Theorem 1. Let I be an instance of the problem. There exists an optimal solution S∗ =
{B1, . . . , B|F|} such that |Bi| = nfi where fi is the family of jobs in Bi.

Proof. Consider an optimal solution S = {B1, . . . , Bu, . . . , Bv, . . . , Br} with two blocks Bu

and Bv (u < v), containing jobs of the same family fu = fv = f . We show that moving
the first job of Bv at the end of block Bu can only improve the solution.

Let us define P and W as: P =
∑v−1

i=u+1 Pi + sf and W =
∑v−1

i=u+1 |Bi|. Note that
P (resp. W) is the total time of all jobs, including setups, (resp. the number of jobs)
performed between the last job of Bu and the first job of Bv. Let us call π this partial
sequence.

Let S′ be the sequence formed by moving the first job of Bv, say job jv, at the end of
block Bu , that is swapping the position of π and jv (see Fig. 1).

. . . Bu π jv Bv
. . .

(a) Sequence S

. . . Bu jv π Bv
. . .

(b) Sequence S′

Fig. 1. Construction of sequence S′ from sequence S.

First, the difference on the flow time is computed in the cases where |Bv| > 1 and where
|Bv| = 1.
If |Bv| > 1 (that is there are still jobs left in Bv after the removal of job jv), then the flow
times of jobs sequenced before Bu or after Bv do not change. All the jobs in π have their
flow times increased by pf and jv has its flow time decreased by P , giving a difference in
the total flow time of:

FTS′ − FTS =W · pf − P

If |Bv| = 1, then Bv is left with no jobs after moving job jv, and so the setup time associated
with Bv is deleted from the sequence. This reduces the flow times of all jobs sequenced
after π by the amount of sf , giving an additional reduction in the total net flow time:

FTS′ − FTS =W · pf − P −
r∑

i=v+1

|Bi| · sf

Hence, if one can prove that P/W ≥ pf , FTS − FTS′ < 0 and the flow time can only
be improved in S′.

Lemma 1. P
W ≥ pf

Proof. Consider the sequence S and suppose that pf > P/W . Let S′′ be the sequence
formed by moving the last job of Bu at the beginning of block Bv. If |Bu| > 1, then the
difference of flow time is: FTS′′ − FTS = P −W · pf . Since, by definition, pf > P/W , we
have that FTS′′ − FTS < 0 which contradict the fact that S is optimal.

3

If |Bu| = 1, FTS′′−FTS =

{
W · pf − P −

∑r
i=v+1 |Bi| · sf if u 6= 1

W · pf − P −
∑r

i=v+1 |Bi| · sf −
∑r

i=u+1 |Bi| · sfu+1 if u = 1
And then, S′′ is a better solution than S which is a contradiction. Hence, we have P/W ≥
pf . �

Therefore, by Lemma 1, FTS′ − FTS ≤ 0. Hence, swapping the position of job jv with π
leads to a solution S′ at least as good as S. Repeated applications of this operation yield
the result.

The mean processing time of a block Bi can be defined as MPT (Bi) = Pi/Wi. Theo-
rem 2 generalized the SPT rule for blocks.

Theorem 2. In an optimal sequence of the problem, the blocks 2 to |F| are ordered by
SMPT (Shortest Mean Processing Time). That is, if 1 < i < j then MPT (Bi) ≤
MPT (Bj).

This theorem is not exactly the same as the one in (Mason and Anderson 1991). Indeed,
their theorem allows the ordering of all blocks according the SMPT rule while Theorem 2
orders only blocks 2 to |F|. Figure 2 gives a counterexample showing that the SMPT rule
is not optimal when there is no setup at time 0.

f (nf × pf + sf)÷ nf =MPTf

1 2 11 2 12
2 3 12 9 15

(a) Problem instance with 2 families
and 5 jobs.

Family 1 precedes family 2 (SMPT).

FT = 19811 22 43 55 67

FT = 181

Family 2 precedes family 1 (No SMPT).

12 24 36 49 60

(b) Scheduling jobs of a family before those of the other
(Numbers are completion times of the jobs).

Fig. 2. The SMPT rule may lead to suboptimal solutions when no setup time is required at time 0.

Proof (Th. 2). Let S = {B1, B2, . . . , Bu, Bu+1, . . . , B|F|} be a sequence in which blocks Bu

and Bu+1, 1 < u ≤ u+1 ≤ |F|, are not in SMPT order; that is,MPT (Bu) > MPT (Bu+1).
Consider the change in total flow time if the processing order of Bu and Bu+1 is reversed.
Clearly the flow times of any jobs originally scheduled before run Bu will not be changed.
Also, the total time to complete blocks Bu and Bu+1 will not be changed, so the flow times
of any jobs scheduled after Bu+1 will not be altered. Hence, only the flow times of the jobs
in blocks Bu and Bu+1 needs to be considered. Each job in Bu+1 has its completion time
reduced by Pu and each job in Bu has its completion time increased by Pu+1. Thus, the
change in weighted flow time is given by:

∆Fw =Wu · Pu+1 −Wu+1 · Pu

But, since MPT (Bu) > MPT (Bu+1), Pu ·Wu+1 > Pu+1 ·Wu, and so ∆Fw < 0.

The following section explains how these results are used to define a polynomial time
algorithm for solving the problem.

4

Polynomial-time algorithm Theorem 1 states that there exists an optimal solution
S containing exactly |F| blocks and that each block Bi contains all jobs of family fi.
Theorem 2 states that the blocks B2 to B|F| are ordered by SMPT . Finally, one only
needs to determine which family is processed in the very first block.

Algorithm 1 take as input the jobs grouped in blocks and in SMPT orders. The algo-
rithm starts by computing the flow time of this schedule. Each block is then successively
moved to the first position (see Figure 3) and the new flow time is computed. The solution
returned by the algorithm is therefore the one achieving the best flow time.

B1, . . . , Bf−1 sf Bf sf+1Bf+1, . . . , B|F|

(a) SMPT Sequence

Bf s1 B1, . . . , Bf−1 sf+1Bf+1, . . . , B|F|

(b) Bf is moved in the first position.

Fig. 3. SMPT Sequence and Move Operation.

For sake of readability, let F (f) denote the internal flow time of the block f , i.e the
flow time of its jobs when starting at time 0:

∑nf

1 i× pf

Algorithm 1: SMPT Scheduling without setup at time 0.
Data: nf , pf , sf for f ∈ F in SMPT order (MPTf ≤MPTf+1) such that nf > 0.
Result: The optimal flow time FT .
// Compute the flow time FT1 of the SMPT sequence {B1, . . . , B|F|}
FT1 ← F (1); P ← n1 × p1;
for f ← 2 to |F| do

// shift jobs of Bf and add their internal flow times
FT1 ← FT1 + nf × (P + sf) + F (f)
P ← P + sf + (nf × pf) // Ending time of Bf

// Note that P is the makespan of the SMPT sequence
// Compute the flow time when the block Bf is in the first position
FT ← FT1; W ← n;
for f ← |F| to 2 do

W ←W − nf // Number of jobs in {B1, . . . , Bf−1}
P ← P − sf − (nf × pf) // Ending time of Bf−1 in the SMPT sequence
// Compute the variations of the flow time
∆f ← −(P + sf)× nf // For Bf

∆− ← (nf × pf + s1)×W // For {B1, . . . , Bf−1}
∆+ ← (s1 − sf)× (n− nf −W) // For {Bf+1, . . . , B|F|}
FTf ← FT1 +∆− +∆f +∆+ // For the entire sequence
if FTf < FT then FT ← FTf // Update the best flow time

The complexity for ordering the families in SMPT order is O(|F| log |F|). The com-
plexity of Algorithm 1 is O(|F|). So, the complexity for finding the optimal flow time is
O(|F| log |F|).

References

Malapert A., Nattaf M., 2019, “A New CP-Approach for a Parallel Machine Scheduling Problem
with Time Constraints on Machine Qualifications” CPAIOR 2019, pp. 426-442.

Mason, A. J. and Anderson, E. J., 1991, “Minimizing flow time on a single machine with job classes
and setup times” Naval Research Logistics (NRL), Vol. 38(3), pp. 333-350.

Smith, W. E., 1956, “Various optimizers for single-stage production” Naval Research Logistics
(NRL), Vol. 3(1-2), pp. 59-66.

