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Abstract. The paper deals with a parallel machines scheduling prob-
lem with dedicated tasks with sequence-dependent setup times that are
subject to the non-overlapping constraint. This problem emerges in the
productions where only one machine setter is available on the shop floor.
We consider that setups are performed by a single person who cannot
serve more than one machine at the same moment, i.e., the setups must
not overlap in time. We show that the problem remains NP-hard un-
der the fixed sequence of tasks on each machine. To solve the prob-
lem, we propose an Integer Linear Programming formulation, five Con-
straint Programming models, and a hybrid heuristic algorithm LOFAS
that leverages the strength of Integer Linear Programming for the Trav-
eling Salesperson Problem (TSP) and the efficiency of Constraint Pro-
gramming at sequencing problems minimizing makespan. Furthermore,
we investigate the impact of the TSP solution quality on the overall ob-
jective value. The results show that LOFAS with a heuristic TSP solver
achieves on average 10.5 % worse objective values but it scales up to 5000
tasks with 5 machines.

Keywords: Constrained Setup Times; Constraint Programming; Hy-
brid Heuristic

1 Introduction

The trend of flexible manufacturing brings many challenges typically arising
from low-volume batches of a larger number of product variants. One of such
challenges is the minimization of setups that must be performed when a machine
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switches from one product variant to another. Switching involves, e.g., tool ad-
justment, which requires a machine setter to reconfigure the particular machine
and make the desired adjustment.

In order to cut labor costs, the companies often try to limit the number
of machine setters. As a basic case, only a single machine setter is present on
the shop floor to perform the reconfigurations. Consequently, any schedule that
does not account for the limited capacity of a machine setter is deemed to be
infeasible, as a single machine setter cannot set two machines at the same time.

In this paper, we study a scheduling problem where the tasks are dedicated to
the machines and have sequence-dependent setup times. Each setup occupies an
extra unary resource, i.e., the machine setter, hence, setups must not overlap in
time. The goal is to minimize the makespan of the overall schedule. To solve the
problem, we design an Integer Linear Programming (ILP) model, five Constraint
Programming (CP) models, and heuristic algorithm LOFAS.
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(a) Feasible schedule.
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(b) Infeasible schedule, setups are overlapping.

Fig. 1: The illustration of a schedule with three machines and three tasks to be
processed on each machine [17].
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The same problem was addressed in [17]. This is the revised and improved
version of that paper. The main contributions of this revised and improved paper
with respect to [17] are:

– a complexity result for the restricted problem with fixed sequences of tasks
– two new CP models utilizing the concept of cumulative function
– LOFAS algorithm enhanced by a heuristic for the subproblem allowing to

solve larger instances
– experimental results showing the impact of the subproblem solution method

on the solution quality

The rest of the paper is organized as follows. We first survey the existing
work in the related area. Next, Sect. 3 gives the formal definition of the problem
at hand. In Sect. 4, we describe an ILP model, while in Sect. 5 we introduce five
CP models, and in Sect. 6 we propose the LOFAS algorithm. Finally, we present
computational experiments in Sect. 7 and draw conclusions in Sect. 8.

2 Related Work

There is a myriad of papers on scheduling with sequence-dependent setup times
or costs [2], proposing exact approaches [11] as well as various heuristics [15]. But
the research on the problems where the setups require extra resource is scarce.

An unrelated parallel machine problem with machine and job sequence-
dependent setup times, studied by [13], considers also the non-renewable re-
sources that are assigned to each setup, which affects the amount of time the
setup needs and which is also included in the objective function. On the other
hand, how many setups may be performed at the same time is disregarded. The
authors propose a Mixed Integer Programming formulation along with some
static and dynamic dispatching heuristics.

A lotsizing and scheduling problem with a common setup operator is tack-
led in [14]. The authors give ILP formulations for what they refer to as a dy-
namic capacitated multi-item multi-machine one-setup-operator lotsizing prob-
lem. Indeed, the setups to be performed by the setup operator are considered
to be scheduled such that they do not overlap. However, these setups are not
sequence-dependent in the usual sense. The setups are associated to a product
whose production is to be commenced right after the setup and thus the setup
time, i.e., the processing time of the setup, does not depend on a pair of tasks
but only on the succeeding task.

A complex problem that involves machines requiring setups that are to be
performed by operators of different capabilities has been addressed in [5]. The
authors modeled the whole problem in the time-indexed formulation and solved
it by decomposing the problem into smaller subproblems using Lagrangian Re-
laxation and solving the subproblems using dynamic programming. A feasible
solution is then composed of the solutions to the subproblems by heuristics, and,
if impossible, the Lagrangian multipliers are updated using surrogate subgradi-
ent method as in [19]. The down side of this approach is that the time-indexed
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formulation yields a model of pseudo-polynomial size. This is not suitable for
our problem as it poses large processing and setup times.

In [17], the problem with sequence-dependent non-overlapping setups is intro-
duced. The authors propose three CP models, ILP model and heuristics utilizing
a decomposition of the problem. The resulting subproblems deal with the order
of tasks on machines independently. The order of tasks is found by an ILP model
with lazy subtour elimination and the order of setups by a CP model.

3 Problem Statement

The problem addressed in this paper consists of a set of machines and a set of
independent non-preemptive tasks, each of which is dedicated to one particular
machine where it will be processed. Also, there are sequence-dependent setup
times on each machine. In addition, these setups are to be performed by a human
operator who is referred to as a machine setter. Such a machine setter cannot
perform two or more setups at the same time. It follows that the setups on all
the machines must not overlap in time. Examples of a feasible and an infeasible
schedule with 3 machines can be seen in Fig. 1. Even though the schedule in
Fig. 1b on the machines contains setup times, such schedule is infeasible since it
would require overlaps in the schedule for the machine setter.

The aim is to find a schedule that minimizes the completion time of the latest
task. It is clear that the latest task is on some machine and not in the schedule
of a machine setter since the completion time of the last setup is followed by at
least one task on a machine.

3.1 Formal Definition

Let M = {M1, ...,Mm} be a set of machines and for each Mi ∈ M , let T (i) =
{Ti,1, ..., Ti,ni

} be a set of tasks that are to be processed on machine Mi, and
let T =

⋃
Mi∈M T (i) = {T1,1, ..., Tm,nm

} denote the set of all tasks. Each task
Ti,j ∈ T is specified by its processing time pi,j ∈ N. Let si,j ∈ N0 and Ci,j ∈ N
be start time and completion time, respectively, of task Ti,j ∈ T , which are to
be found. All tasks are non-preemptive, hence, si,j + pi,j = Ci,j must hold.

Each machine Mi ∈ M performs one task at a time. Moreover, the setup
times between two consecutive tasks processed on machine Mi ∈M are given in
matrix O(i) ∈ Nni×ni , O =

⋃
Mi∈M O(i). That is, oi,j,j′ = (O(i))j,j′ determines

the minimal time distance between the start time of task Ti,j′ and the completion
time of task Ti,j if task Ti,j′ is to be processed on machine Mi right after task
Ti,j , i.e., si,j′ − Ci,j ≥ oi,j,j′ must hold.

Let H = {h1, . . . , h`}, where ` =
∑

Mi∈M ni−1, be a set of setups that are to
be performed by the machine setter. Each hk ∈ H corresponds to the setup of a
pair of tasks that are scheduled to be processed in a row on some machine. Thus,
function st : H −→M ×T ×T is to be found. Also, sk ∈ N0 and Ck ∈ N are start
time and completion time of setup hk ∈ H, which are to be found. Assuming
hk ∈ H corresponds to the setup between tasks Ti,j ∈ T and Ti,j′ ∈ T , i.e.,
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st(hk) = (Mi, Ti,j , Ti,j′), it must hold that sk + oi,j,j′ = Ck, also Ci,j ≤ sk, and
Ck ≤ si,j′ . Finally, since the machine setter may perform at most one task at
any time, it must hold that, for each hk, hk′ ∈ H, k 6= k′, either Ck ≤ sk′ or
Ck′ ≤ sk.

The objective is to find such a schedule that minimizes the makespan, i.e.,
the latest completion time of any task:

min max
Ti,j∈T

Ci,j (1)

We note that minimizing the makespan for each machine separately does not
guarantee globally optimal solution. In fact, such a solution can be arbitrarily
bad. Consider a problem depicted in Fig. 2. It consists of two machines, M1
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(a) An instance where optimal sequences on machines separately lead to a
suboptimal solution.
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(b) Suboptimal sequence on one machine yields a globally optimal solution.

Fig. 2: Solving the problem greedily for each machine separately can lead to
arbitrarily bad solutions. The numbers depict the processing times of the tasks
and setups [17].

and M2, and two tasks on each machine, with processing times p1,1 = p2,1 =
1, p1,2 = p2,2 = d, where d is any constant greater than 2, and with setup times
o1,1,2 = o2,1,2 = d, o1,2,1 = o2,2,1 = d + 1. Then, an optimal sequence on each
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machine yields a solution of makespan 3d + 1, whereas choosing suboptimal
sequence on either of the machines gives optimal objective value 2d+ 3.

In the next subsection, we study the complexity of the problem where the
order of the tasks is predefined.

3.2 Complexity of the Problem with Fixed Sequences

It is easy to see that the problem with sequence-dependent non-overlapping
setups is strongly NP-hard even for the case of one machine, i.e., m = 1, which
can be shown by the reduction from the shortest Hamiltonian path problem.
However, we show that even the restricted problem where the task sequences
on each machine are fixed is NP-hard as well, suggesting another source of
hardness.

Definition 1 (Problem with fixed sequences). Let us denote the position
of task Ti,j on machine Mi by πi(j). Then the problem with fixed sequences of
tasks is defined as follows.
Input: M , T , O, sequences of tasks for each machine π1, π2, . . . , πm.
Output: a feasible schedule with non-overlapping setups such that ∀Mi ∈ M :
πi(j) < πi(j

′) =⇒ si,j < si,j′ minimizing maxTi,j∈T Ci,j .

Essentially, the problem is, given a fixed sequence of tasks on each machine,
find a feasible schedule for setups H such that the latest completion time of any
task is minimized.

?
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Fig. 3: Precedence graph of the problem with fixed sequences on machines.

It can be seen that the problem with fixed sequences is equivalent to 1|lij >
0,mn1, . . . , nm-chains|Cmax, i.e., a single machine scheduling problem with min-
imum time lags, where the precedence graph has a form of m chains of lengths
n1, . . . , nm, followed by a single common task (see Fig. 3). Indeed, consider the
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following reduction. Let us remind that by a minimum time lag lj,j′ > 0 between

tasks Tj and Tj′ (i.e., Tj
lj,j′−−→ Tj′) we mean that Tj′ cannot start earlier than

sj′ ≥ sj +lj,j′ , hence lj,j′ defines a minimum distance between the corresponding
start times.

Without loss of generality, let us assume in the reduction below that the
sequence of tasks on each machine Mi ∈ M is πi = (1, 2, . . . , ni). Then, the re-
duction goes as follows. The sequence of setups on each machine Mi ∈M defines
a chain of ni−1 tasks plus one dummy task di. The processing time of a dummy
task di is set to pi = 0. The processing times of each task representing setups
are equal to the corresponding setup time oi,j,j′ given by the tasks sequences. A
minimum time lag of length pi,1 connects each dummy task di to the first setup
on the corresponding machine. Then, in each chain corresponding to a machine
Mi, the length of time lag between j-th setup and (j + 1)-th setup has length
oi,j,j+1 + pi,j+1. Finally, the last setup in each chain is connected to the dummy
task ? with p? = 0 by the time lag of length oi,ni−1,ni

+ pi,ni
. See an example of

the graph in Fig. 3.
It is easy to see that the reduction the other way around is possible directly

as well, hence establishing the problem equivalence. Finally, we note that the
problem 1|lij > 0,m 2-chains|Cmax is known to be strongly NP-hard by the re-
duction from 3-partition problem due to [18]. This suggests that the constraint
requiring non-overlapping setups introduces yet another source of hardness to
the classical problem with sequence-dependent setup times. We will utilize the
solution for the problem with fixed sequences further in Sect. 6 as a part of the
proposed heuristic algorithm.

4 Integer Linear Programming Model

The proposed model is split into two parts. The first part handles scheduling of
tasks on the machines using efficient rank-based model [10]. This modeling uses
binary variables xi,j,q to encode whether task Ti,j ∈ T (i) is scheduled at q-th po-
sition in the permutation on machine Mi ∈M . Another variable is τi,q denoting
the start time of a task that is scheduled at q-th position in the permutation on
machine Mi ∈M .

The second part of the model resolves the question, in which order and when
the setups are performed by a machine setter. There, we need to schedule all
setups H, where the setup time πk of the setup hk ∈ H is given by the corre-
sponding pair of tasks on the machine. The ordering of setups is determined by
zk,l binary variables, that take value 1 if setup hl is scheduled after the setup
hk.

Let us denote the set of all natural numbers up to n as [n] = {1, . . . , n}. We
define the following function φ : H →M× [maxMi∈M ni] (e.g., φ(hk) = (Mi, q)),
that maps hk ∈ H to setups between the tasks scheduled at positions q and
q + 1 on machine Mi ∈ M . Since the time of such setup is a variable (i.e., it
depends on the pair of consecutive tasks on Mi), the modeling with rank-based
model would contain non-linear expressions. Therefore, we use the a disjunctive
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model [3,4] that admits processing times given as variables. Its disadvantage over
the rank-based model is that it introduces a big M constant in the constraints,
whereas the rank-based model does not. See Fig. 4 for the meaning of variables.

The full model is stated as:

min cmax (2)

s.t.

cmax ≥ τi,ni
+

∑
Ti,j∈T (i)

pi,j · xi,j,ni
∀Mi ∈M (3)

∑
q∈[ni]

xi,j,q = 1 ∀Mi ∈M,∀Ti,j ∈ T (i) (4)

∑
Ti,j∈T (i)

xi,j,q = 1 ∀Mi ∈M, ∀q ∈ [ni] (5)

sk + πk ≤ sl +M · (1− zk,l) ∀hl, hk ∈ H : l < k (6)

sl + πl ≤ sk +M · zk,l ∀hl, hk ∈ H : l < k (7)

πk ≥ oi,j,j′ · (xi,j,q + xi,j′,q+1 − 1)

∀hk ∈ H : φ(hk) = (Mi, q),∀Ti,j , Ti,j′ ∈ T (i) (8)

sk + πk ≤ τi,q+1 ∀hk ∈ H : φ(hk) = (Mi, q) (9)

sk ≥ τi,q +
∑

Ti,j∈T (i)

pi,j · xi,j,q ∀hk ∈ H : φ(hk) = (Mi, q) (10)

where

cmax ∈ R+
0 (11)

τi,q ∈ R+
0 ∀Mi ∈M,∀q ∈ [ni] (12)

sk, πk ∈ R+
0 ∀hk ∈ H (13)

xi,j,q ∈ {0, 1} ∀Mi ∈M, ∀Ti,j ∈ T (i),∀q ∈ [ni] (14)

zk,l ∈ {0, 1} ∀hk, hl ∈ H : l < k (15)

The constraint (3) computes makespan of the schedule while constraints (4)–(5)
states that each task occupies exactly one position in the permutation and that
each position is occupied by exactly one task. Constraints (6) and (7) guarantee
that setups do not overlap. M is a constant that can be set as |H| ·maxiO

(i).
Constraint (8) sets processing time πk of the setup hk ∈ H to oi,j,j′ if task Ti,j′

is scheduled on machine Mi right after task Ti,j . Constraints (9) and (10) are
used to avoid conflicts on machines. The constraint (9) states that a task cannot
start before its preceding setup finishes. Similarly, the constraint (10) states that
a setup is scheduled after the corresponding task on the machine finishes.

4.1 Additional Improvements

We use the following improvements of the model that have a positive effect on
the solver performance.
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Fig. 4: Meaning of the variables in the model [17].

1. Warm Starts. The solver is supplied with an initial solution. It solves a
relaxed problem, where it relaxes on the condition that setups do not overlap.
Such solution is obtained by solving the shortest Hamiltonian path problem
given by setup time matrix O(i) independently for each machine Mi ∈ M .
Since such solution might be infeasible for the original problem, we transform
it in a polynomial time into a feasible one. It is done in the following way.
Since now the permutations on machines are fixed, the problem is reduced
to the problem with minimum time lags on a single machine, as described
in Sect. 3.2. The solution is constructed by scheduling first m setups in the
machine order, then followed by next m setups etc. Hence, for the case of
fixed permutations shown in Fig. 3, the order is (1, 1, 2) ≺ (2, 1, 2) ≺ . . . ≺
(m, 1, 2) ≺ (1, 2, 3) ≺ . . . ≺ (m,nm − 1, nm).

2. Lower Bounds. We supply a lower bound on cmax variable given as the
maximum of all best proven lower bounds for corresponding shortest Hamil-
tonian path problem on each machine.

3. Pruning of Variables. We can reduce the number of variables in the model
due to the structure of the problem. We fix values of some of the zk,l variables
according to the following rule. Let hk, hl ∈ H such that φ(hk) = (Mi, q)
and φ(hl) = (Mi, v) for any Mi ∈M . Then, q < v ⇒ zk,l = 1 holds in some
optimal solution. Note that the rule holds only for setups following from the
same machine.

The rule states that the relative order of setups on the same machine is
determined by the natural ordering of task positions on that machine. See
for example setups o1,1,2 and o1,2,3 in Fig. 1. Since these setups follow from
the same machine, their relative order is already predetermined by positions
of the respective tasks. Essentially, the rule fixes the precedences according
to the underlying precedence graph, as e.g., shown in Fig. 3.

5 Constraint Programming Models

A next way how the problem at hand can be tackled is by the Constraint Pro-
gramming (CP) formalism, where special global constraints modeling resources
and efficient filtering algorithms are used [16]. CP works with so-called inter-
val variables whose start time and completion time are denoted by predicates
StartOf and EndOf , and the difference between the completion time and the
start time of the interval variable can be set using predicate LengthOf .
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We construct the CP models as follows. We introduce interval variables Ii,j
for each Ti,j ∈ T , and the lengths of these interval variables are set to the
corresponding processing times:

LengthOf(Ii,j) = pi,j (16)

The sequence is resolved using the NoOverlap constraint. The NoOverlap(I)
constraint on a set I of interval variables states that it constitutes a chain of
non-overlapping interval variables, any interval variable in the chain being con-
strained to be completed before the start of the next interval variable in the
chain. In addition, the NoOverlap(I, O(i)) constraint is given a so-called tran-
sition distance matrix O(i), which expresses a minimal delay that must elapse
between two successive interval variables. More precisely, if Ii,j , Ii,j′ ∈ I, then
(O(i))j,j′ gives a minimal allowed time difference between StartOf(Ij′) and
EndOf(Ij). Hence, the following constraint is imposed, ∀Mi ∈M :

NoOverlap
( ⋃
Ti,j∈T (i)

{Ii,j} , O(i)
)

(17)

The objective function is to minimize the makespan:

min max
Ti,j∈T

EndOf(Ii,j) (18)

This model would already solve the problem if the setups were not required
to be non-overlapping. In what follows we describe three ways how the non-
overlapping setups are resolved. Constraints (16)–(18) are part of each of the
following models.

5.1 CP1: with Implications

Let us introduce Isti,j for each Ti,j ∈ T representing the setup after task Ti,j . There
is
∑

Mi∈M ni such variables. As the interval variable Isti,j represents the setup
after task Ti,j , we use the constraint EndBeforeStart(I1, I2), which ensures
that interval variable I1 is completed before interval variable I2 can start. Thus,
the following constraint needs to be added, ∀Mi ∈M,∀Ti,j ∈ T (i):

EndBeforeStart(Ii,j , I
st
i,j) (19)

To ensure that the setups do not overlap in time is enforced through the
following constraint:

NoOverlap
( ⋃
Ti,j∈T

{Isti,j}
)

(20)

Notice that this constraint is unique and it is over all the interval variables
representing setups on all machines. This NoOverlap constraint does not need
any transition distance matrix as the default values 0 are desired.
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Since it is not known a priori which task will follow task Ti,j , the quadratic
number of implications determining the precedences and lengths of the setups
must be imposed. For this purpose, the predicate Next5 is used. Next(I) equals
the interval variable that is to be processed in the chain right after interval
variable I. Thus, the following constraints are added, ∀Mi ∈ M,∀Ti,j , Ti,j′ ∈
T (i), j 6= j′:

Next(Ii,j) = Ii,j′ ⇒ EndOf(Isti,j) ≤ StartOf(Ii,j′) (21)

Next(Ii,j) = Ii,j′ ⇒ LengthOf(Isti,j) = oi,j,j′ (22)

Note that the special value when an interval variable is the last one in the
chain is used to turn the last setup on a machine into a dummy one.

5.2 CP2: with Element Constraints

Setting the lengths of the setups can be substituted by the element constraint,
which might be beneficial as global constraints are usually more efficient. More
precisely, this model contains also constraints (19), (20), and (21), but constraint
(22) is substituted as follows.

Assume the construct Element(Array, k) returns the k-th element of Array,
(O(i))j is the j-th row of matrix O(i), and IndexOfNext(Ii,j)

6 returns the index
of the interval variable that is to be processed right after Ii,j . Then the following
constraint is added, for each Isti,j :

LengthOf(Isti,j) = Element
(
(O(i))j , IndexOfNext(Ii,j)

)
(23)

5.3 CP3: with Optional Interval Variables

In this model, we use the concept of optional interval variables [8]. An optional
interval variable can be set to be present or absent. The predicate PresenceOf is
used to determine whether or not the interval variable is present in the resulting
schedule. Whenever an optional interval variable is absent, all the constraints
that are associated with that optional interval variable are implicitly satisfied
and predicates StartOf , EndOf , and LengthOf are set to 0.

Hence, we introduce optional interval variable Iopti,j,j′ for each pair of distinct

tasks on the same machine, i.e., ∀Mi ∈ M,∀Ti,j , Ti,j′ ∈ T (i), j 6= j′. There are∑
Mi∈M ni(ni − 1) such variables. The lengths of these interval variables are set

to corresponding setup times:

LengthOf(Iopti,j,j′) = oi,j,j′ (24)

To ensure that the machine setter does not perform more than one task at
the same time, the following constraint is added:

5 Note that in the IBM CP Optimizer, the function TypeOfNext is used
6 Again, in the IBM CP Optimizer, the function TypeOfNext is used
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NoOverlap
( ⋃
Ti,j ,Ti,j′∈T

j 6=j′

{Iopti,j,j′}
)

(25)

In this case, to ensure that the setups are indeed processed in between two
consecutive tasks, we use the constraint EndBeforeStart(I1, I2), which ensures
that interval variable I1 is completed before interval variable I2 can start, but
if either of the interval variables is absent, the constraint is implicitly satisfied.
Thus, the following constraints are added, ∀Iopti,j,j′ :

EndBeforeStart(Ii,j , I
opt
i,j,j′) (26)

EndBeforeStart(Iopti,j,j′ , Ii,j′) (27)

Finally, in order to ensure the correct presence of optional interval variables,
the predicate PresenceOf is used. Thus, the following constraint is imposed,
∀Iopti,j,j′ :

PresenceOf(Iopti,j,j′)⇔ Next(Ii,j) = Ii,j′ (28)

Notice that each Ii,j (except for the last one on a machine) is followed by
exactly one setup. Thus, we tried using a special constraint called Alternative,
which ensures that exactly one interval variable from a set of variables is present.
However, preliminary experiments showed that adding this constraint is coun-
terproductive.

5.4 CP4: with Cumulative Function

In this model, the machine setter is represented as a cumulative function to avoid
the quadratic number of constraints of CP1 and CP2 or the quadratic number
of optional task variables of CP3. The definition of the non-negative cumulative
function has a linear number of terms.

Again, we use interval variables Ii,j for each Ti,j ∈ T to model the execution
of each task Ti,j ∈ T and Isti,j for each Ti,j ∈ T representing the setup after task
Ti,j . See Fig. 5 for the illustration of main concepts.

The idea now is that the lengths of the interval variables are not fixed. The
length of interval variables Ii,j is increased to wait for the machine setter if
he is busy on another machine, i.e., the length of interval variable Ii,j at least
the processing time task pi,j but may be prolonged until the machines setter is
available. Thus, the constraints (16) on the lengths of the interval variables Ii,j
are relaxed because they must only be greater than the corresponding processing
times:

LengthOf(Ii,j) ≥ pi,j (29)

The length of the setup executed by the machine setter will be determined by
the corresponding tasks. In particular, as the last setup on a machine becomes
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Fig. 5: Illustration of variables and constraints for CP4. The length of I1,1 is
greater than p1,1 as the completion of I1,1 must wait for the machine setter to
complete the setup Ist2,1.

a dummy setup (of zero length), we merely set the length of the setup variables
to be at least zero:

LengthOf(Isti,j) ≥ 0 (30)

The cumulative function is built thanks to primitive Pulse(a, h) that specifies
that h unit of resource is used during interval a. The cumulative function is
composed of Pulse terms for each Isti,j representing the usage of a machine setter,
and the cumulative function must remain lower than 1 because there is a single
machine setter: ∑

Ti,j∈T
Pulse(Isti,j , 1) ≤ 1 (31)

What remains to be done is to synchronize start and completion times be-
tween the tasks and setups. This is done using the constraint EndAtStart(I1, I2),
which ensures that interval variable I1 is completed exactly when interval vari-
able I2 starts, and by StartOfNext(Ii,j), which gives the start time of the
interval variable that is to be processed right after Ii,j . Thus, the following con-
straints are added, for each Isti,j :

EndAtStart(Ii,j , I
st
i,j) (32)

EndOf(Isti,j) ≥ StartOfNext(Ii,j) (33)

Note that the inequality in constraint (33) is necessary because StartOfNext
gives 0 for the last task on a machine and thus the completion time of the last
setup is equal to its start time (hence the length of the setup is 0). Also, note
that the setups cannot be shorter than required due to constraint (17).

5.5 CP5: without Setup Variables

This model exploits the same idea as CP4, but we can go even further and
completely omit the interval variables representing the setups. In this model,
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the interval variables Ii,j are, again, relaxed because they must only be greater
than the corresponding processing times, i.e., constraint (29) is kept.

The main difference in this model is that the cumulative function only re-
quires the introduction of interval variables Si, one for each machine Mi. See
Fig. 6 for the illustration of main concepts. Variable Si starts with the first task
of the machine Mi and ends with the last task, which is enforced by the Span
constraint:

Span
(
Si,

⋃
Ti,j∈T (i)

{Ii,j}
)

(34)

M1M1

M2M2

S1S1

S2S2

p1,1p1,1

o2,1,2o2,1,2

o1,1,2o1,1,2

00

11
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I2,1I2,1 I2,2I2,2

tt

Fig. 6: Illustration of variables and constraints for CP5.

The cumulative function is now realized as follows:∑
Mi∈M

Pulse(Si, 1)−
∑

Ti,j∈T
Pulse(Ii,j , 1) ≤ 1 (35)

The first term enforces that the cumulative function remains non-negative
when the first task Ti,j of the machine Mi starts and that the machine setter
is not required at the end of the last task Ti,j of the machine Mi. The second
term enforces that the machine setter is available when a task Ti,j ends, possibly
after a waiting time as allowed by constraints (29), and that the machine setter
becomes available again when a task Ti,j starts.

Despite the lowest number of variables, the main drawback of this model
is that the schedule of the machine setter becomes implicit which leads to less
filtering.

5.6 Additional Improvements

We use the following improvements:
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1. Search Phases. Automatic search in the solver is well tuned-up for most
types of problems, leveraging the newest knowledge pertaining to variable
selection and value ordering heuristics. In our case, however, preliminary
results showed that the solver struggles to find any feasible solution already
for small instances. It is clear that it is easy to find some feasible solution,
e.g., by setting an arbitrary order of tasks on machines and then shifting the
tasks to the right such that the setups do not overlap. To make the solver find
some feasible solution more quickly, we set the search phases such that the
sequences on machines are resolved first, and then the sequences of setups
for the machine setter are resolved. This is included in all the CP models
described.

2. Warm Starts. Similarly to improvement (1) in Sect. 4.1, we boost the
performance by providing the solver with a starting point. We do this only
for CP3 as the preliminary numerical experiments showed a slight superiority
of CP3.
More precisely, we first find an optimal sequence of tasks minimizing makespan
on each machine separately and then we set those interval variables Iopti,j,j′

to be present if Ti,j′ is sequenced directly after Ti,j on machine Mi. This is
all that we set as the starting point. Notice that unlike in Sect. 4.1, we do
not calculate the complete solution but we let the solver do it. The solver
then quickly completes the assignment of all the variables such that it gets
a solution of reasonably good objective value.
Note that the optimal sequences on machines are solved using ILP so it can
be seen as a hybrid approach. This model with warm starts is in what follows
referred to as CP3ws.

6 LOFAS Heuristics

We propose an approach that guides the solver quickly towards solutions of
very good quality but cannot guarantee optimality of what is found. There are
two main phases of this approach. In the first phase, the model is decomposed
such that its subproblems are solved optimally or near-optimally and then the
solutions of the subproblems are put together so as to make a feasible solution of
the whole problem. In the second phase, the solution found is locally improved
by repeatedly adjusting the solution in promising areas. More details follow.

6.1 Decomposition Phase

The idea of the model decomposition is as follows. First, we find a sequence
of tasks minimizing makespan on each machine separately. Second, given these
sequences on each machine, the setups to be performed are known, hence, the
lengths of the setups are fixed as well as the precedence constraints with respect
to the tasks on machines. This is the problem with fixed permutations described
in Sect. 3.2.

The pseudocode for obtaining the initial solution is given in Algorithm 1.
It takes one machine at a time and finds a sequence for it while minimizing
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makespan. The time limit for the computation of one sequence on a machine is
given in such a way that there is a proportional remaining time limit for the
rest of the algorithm. Seq(i, TimeLimit) returns the best sequence it finds on
machine Mi ∈ M in the given TimeLimit. The TimeLimit is computed using
RemainingT ime(), which is the time limit for the entire run of the algorithm mi-
nus the time that already elapsed from the beginning of the run of the algorithm.
Just in case that no sequence is found in the given TimeLimit yet, the search is
allowed to continue until a first sequence is found (or up to RemainingT ime()).

In the end, the solution is found using the knowledge of the sequences on
each machine Mi ∈M .

Algorithm 1 Solving the decomposed model.

function SolveDecomposed
for each Mi ∈M do

T imeLimit← RemainingT ime()/(m− i + 2)
Seqi ← Seq(i, T imeLimit)

end for
Return Solve(Seq, RemainingT ime())

end function

Clearly, this decomposition may lead to a schedule arbitrarily far from the
optimum, as shown in Sect. 3.1. Hence, we apply the improving phase, that
explores other sequences on the machines.

6.2 Improving Phase

Once we have some solution to the problem, the idea of the heuristic is to improve
it applying the techniques known as local search [7] and large neighborhood
search [12].

It is clear that in order to improve the solution, something needs to be
changed on the critical path, which is such a sequence of setups and tasks on
machines that the completion time of the last task is equal to the makespan and
that none of these tasks and setups can be shifted to the left without violating
resource constraints (see an example in Fig. 7). Hence, we find the critical path
first.

The most promising place to be changed on the critical path could be the
longest setup. Hence, we find the longest setup on the critical path, then we
prohibit the two consecutive tasks corresponding to the setup from being pro-
cessed in a row again and re-optimize the sequence on the machine in ques-
tion. Two tasks are precluded from following one another by setting the corre-
sponding setup time to infinite value. Also, we add extra constraint restricting
the makespan to be less than the incumbent best objective value found. The
makespan on one machine being equal to or greater than the incumbent best
objective value found cannot lead to a better solution.
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Fig. 7: Illustration of a critical path depicted by dashed rectangles [17].

After a new sequence is found, the solution to the whole problem is again re-
optimized subject to the new sequence. The algorithm continues this way until
the sequence re-optimization returns infeasible, which happens due to the extra
constraint restricting the makespan. It means that the solution quality deterio-
rated too much and it is unlikely to find a better solution locally at this state.
Thus, the algorithm reverts to the initial solution obtained from the decomposed
model, restores the original setup times matrices, and tries to prohibit another
setup time on the critical path. For this purpose, the list of nogoods to be tried
is computed once from the first critical path, which is just a list of setups on the
critical path sorted in non-increasing order of their lengths. The whole iterative
process is repeated until the total time limit is exceeded or all the nogoods are
tried.

The entire heuristic algorithm is hereafter referred to as LOFAS (Local Op-
timization for Avoided Setup). The pseudocode is given in Algorithm 2.

Preliminary experiments confirmed the well-known facts that ILP using lazy
approach is very efficient for searching an optimal sequence on one resource,
and CP is more efficient for minimizing makespan when the lengths of interval
variables and the precedences are fixed. Nevertheless, for instances with many
tasks, the solution involving ILP might be computationally infeasible. Hence,
we also propose to find a suboptimal sequence for each machine by a heuristic
method. Thus, in what follows, we distinguish the following two variants of the
algorithm

1. Exact subproblem. The sequence is found by ILP with lazy subtour elimi-
nation, as described in [17]. In the experiments below, we denote this variant
as LOFAS.

2. Heuristic subproblem. The suboptimal sequence is found by Guided Lo-
cal Search algorithm implemented in Google’s OR-Tools [1]. Note that this
algorithm is a metaheuristic, hence, it consumes all the time limit assigned
even if the objective value is not improving for several iterations (i.e., cannot
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Algorithm 2 Local Optimization for Avoided Setup [17].

function LOFAS
Sinit ← SolveDecomposed
Sbest ← Sinit

Pcrit ← critical path in Sinit

nogoods ← {hk ∈ H ∩ Pcrit}
sort nogoods in non-increasing order of lengths
for each hk ∈ nogoods do

hk′ ← hk

while true do
(Mi, Ti,j , Ti,j′)← st(hk′)
oi,j,j′ ←∞
impose constraint: maxTi,j∈T (i) Ci,j < ObjV al(Sbest)

Seqi ← Seq(i, RemainingT ime()/2)
if Seqi is infeasible then

Revert to Sinit

Restore original O(i),∀Mi ∈M
break

end if
Snew ← Solve(Seq, RemainingT ime())
if ObjV al(Sbest) > ObjV al(Snew) then

Sbest ← Snew

end if
if RemainingT ime() ≤ 0 then

return Sbest

end if
Pcrit ← critical path in Snew

hk′ ← longest setup ∈ {hk ∈ H ∩ Pcrit}
end while

end for
return Sbest

end function
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prove optimality). In the experiments, we denote this variant as LOFAS /w
heur.

7 Experimental Results

For the implementation of the constraint programming approaches, we used
the IBM CP Optimizer version 12.9 [9]. The only parameter that we adjusted
is Workers, which is the number of threads the solver can use and which we
set to 1. In Google’s OR-Tools, we only set LocalSearchMetaheuristic to
GuidedLocalSearch.

For the integer programming approach, we used Gurobi solver version 8.1 [6].
The parameters that we adjust are Threads, which we set to 1, and MIPFocus,
which we set to 1 in order to make the solver focus more on finding solutions of
better quality rather than proving optimality. We note that parameters tuning
with Gurobi Tuning Tool did not produce better values over the baseline ones.

The experiments were run on a Dell PC with an Intel R© CoreTM i7-4610M
processor running at 3.00 GHz with 16 GB of RAM. We used a time limit of 60
seconds per problem instance.

7.1 Problem Instances

We evaluated the approaches on randomly generated instances of various sizes
with the number of machines m ranging from 1 to 50 and the number of tasks on
each machine ni = n, ∀Mi ∈M , ranging from 2 to 50. Thus, we generated 50×
49 = 2450 instances in total. Processing times of all the tasks and setup times are
chosen uniformly at random from the interval [1, 50]. Instances are publicly avail-
able at https://github.com/CTU-IIG/NonOverlappingSetupsScheduling.
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Fig. 8: Comparison of CP models.

https://github.com/CTU-IIG/NonOverlappingSetupsScheduling
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7.2 Scalability with Respect to Machines and Tasks

Fig. 8a shows the dependence of the best objective value found by CP models
within the 60s time limit on the number of machines, averaged over the various
number of tasks. Analogically, Fig. 8b shows the dependence of the best objective
value on the number of tasks, averaged over the varying number of machines.

The results show that the performances of CP models are almost equal (the
graphs almost amalgamate). However, it can be seen that the curve of CP5 is
not complete. It is because CP5 fails to find any solution for 88 of the largest
instances, despite having the lowest number of variables. We note that CP3 is
the best on average but the advantage is negligible. On the other hand, CP4 has
better worst-case performance. We will no longer distinguish between the CP
models and we will use the minimum of all five CP models that will be referred
to as CPmin.

The comparison of CP3ws to ILPws is shown in Fig. 9. Recall that both
the approaches get a warm start in a certain sense. The results confirm lower
performance of the ILP approach. When the ILP approach model did not get
the initial solution as a warm start, it was not able to find any solution even for
very small instances (i.e., 2 machines and 8 tasks). In fact, the objective value
found by the ILPws is often the objective value of the greedy initial solution
given as the warm start (i.e., Sect. 4.1).
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Fig. 9: Comparison of exact models with warm starts.

Further, we compare the best objective value found by the heuristic algorithm
LOFAS and LOFAS /w heur. from Sect. 6 against CPmin and ILPws. The results
are shown in Fig. 10. Note that we omit the results of CP3ws (CP3 model with
warm starts) in Fig. 10 as the results were almost the same as those of LOFAS
and the curves amalgamated.

To obtain better insight into the performance of the proposed methods, we
compared the resulting distributions of achieved objectives from each method.
We took results of each method for all instances and ordered them in a non-
decreasing way with respect to achieved objective value and plotted them. The
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Fig. 10: Comparison of exact models and the heuristic algorithms.

results are displayed in Fig. 11. It can be seen that the proposed heuristics are
able to find the same or better solutions in nearly all cases. Furthermore, we
note that LOFAS /w heur. outperformed both CPmin and ILPws as well. For
the ILPws, one can notice a spike at around 65 % of instances. This is caused by
the fact that for some instances, the ILP solver was not able to improve upon
the initial warm start solution in the given time limit and these instances thus
contribute to the distribution with higher objective values.
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Fig. 11: Objective distributions of different methods.

A comparison of LOFAS to CP3ws on larger instances [17] showed the supe-
riority of LOFAS. However, LOFAS still did not find any solution to the biggest
instances (as reported in [17]) because the time limit was exceeded during the
decomposition phase, i.e., during seeking an optimal sequence for a machine.
This was the motivation for developing LOFAS /w heur.
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7.3 Comparison of Exact and Heuristic Subproblem in LOFAS

In this section, we compare solution quality produced by LOFAS heuristics
with different methods for solving the machine subproblem, i.e., the method
Seq(i, TimeLimit). The experiments were designed to asses if and how much
different objective values are achieved when using the heuristic solution of the
subproblem and if the heuristic variant scales better.

We have generated instances with m ∈ {5, 10, 15, 20} machines and the num-
ber of tasks on each machine n ranging from 50 up to 1000. For each combination
of m and n, we have generated 10 instances. The results are reported in Tab. 1.
The column objective denotes the mean objective value if all instances were
solved in the given time limit. Otherwise, we report the number of instances
that were solved within the time limit. The results confirm the hypothesis that
LOFAS gives better solutions regarding the objective, whereas LOFAS /w heur.
is able to find some solutions for larger instances when LOFAS does not manage
to find any solution. More precisely, LOFAS scales only up to 300 tasks on 15
machines or 350 tasks on 5 machines. A heuristic solution of the subproblem in
LOFAS /w heur. allows obtaining a solution for instances of up to 1000 tasks
on 5 machines. However, with the increasing number of machines, the CP solver
struggles to produce any feasible solution to the whole problem, given the se-
quences on machines. Therefore, LOFAS /w heur. did not find a solution for any
instance with 20 machines, starting from 400 tasks.

To provide further details into the behavior of the algorithm, we report two
other statistics. Dead ends shows how many times the algorithm hit an infeasible
subproblem (due to the constraint on the objective) and restarted to the original
solution, and improv. reports the number of iterations, where one iteration means
avoiding the largest setup on the critical path and solving the subproblem. It
can be clearly seen that these two numbers are significantly lower for LOFAS /w
heur. because it almost always wastes all the time allocated to a subproblem,
whereas LOFAS is able to save some time on smaller instances, which is efficiently
used for exploring more potential improvements. Note that for the instances that
were not solved, these numbers are always zero.

Table 1: Comparison of exact and heuristic subproblem solvers in LOFAS heuris-
tics.

LOFAS with exact subproblem LOFAS with heuristic subproblem

m n objective [–] dead ends [–] improv. [–] objective [–] dead ends [–] improv. [–]

5 50 1504.1 (±57.8) 64.6 (±2.4) 134.3 (±51.4) 1517.9 (±55.2) 0.0 (±0.0) 4.9 (±1.8)

10 50 1514.9 (±49.4) 91.4 (±43.4) 349.1 (±145.9) 1545.9 (±32.2) 0.0 (±0.0) 0.8 (±1.2)

15 50 1623.3 (±48.3) 0.0 (±0.0) 15.0 (±31.6) 1871.9 (±24.3) 0.0 (±0.0) 0.0 (±0.0)

20 50 2012.1 (±29.4) 0.0 (±0.0) 3.9 (±6.0) 2485.8 (±45.2) 0.0 (±0.0) 1.6 (±0.7)

5 100 2874.9 (±88.7) 72.2 (±46.2) 247.3 (±127.6) 2939.6 (±83.1) 0.0 (±0.0) 4.8 (±2.5)

10 100 2982.7 (±92.9) 67.9 (±52.0) 189.3 (±108.1) 3063.3 (±70.1) 0.0 (±0.0) 2.3 (±1.8)

15 100 2879.6 (±59.5) 17.9 (±17.1) 77.0 (±28.4) 3279.2 (±34.7) 0.0 (±0.0) 0.0 (±0.0)

20 100 2985.8 (±32.0) 0.0 (±0.0) 15.6 (±19.7) 4035.0 (±50.9) 0.0 (±0.0) 0.0 (±0.0)

5 150 4162.4 (±156.2) 66.5 (±36.1) 125.6 (±62.5) 4258.9 (±150.6) 0.0 (±0.0) 2.4 (±3.1)

10 150 4309.0 (±128.0) 25.5 (±16.8) 79.3 (±40.0) 4415.2 (±120.9) 0.0 (±0.0) 0.7 (±1.3)

15 150 4315.1 (±95.0) 6.4 (±7.2) 43.6 (±13.8) 4673.6 (±72.0) 0.0 (±0.0) 0.0 (±0.0)

20 150 4348.3 (±44.1) 5.6 (±7.3) 22.3 (±7.3) 5456.4 (±60.1) 0.0 (±0.0) 0.0 (±0.0)
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5 200 5612.8 (±130.1) 39.6 (±22.8) 67.8 (±26.3) 5707.2 (±126.7) 0.0 (±0.0) 5.1 (±1.9)

10 200 5629.6 (±64.2) 5.6 (±10.2) 30.9 (±18.2) 5734.3 (±56.6) 0.0 (±0.0) 1.4 (±1.5)

15 200 5677.4 (±112.7) 7.6 (±5.4) 25.4 (±6.9) 6032.4 (±64.7) 0.0 (±0.0) 0.0 (±0.0)

20 200 5674.0 (±92.6) 3.4 (±3.6) 10.8 (±3.1) 7023.8 (±61.8) 0.0 (±0.0) 0.0 (±0.0)

5 250 6803.2 (±115.6) 27.6 (±12.4) 40.7 (±9.4) 6903.8 (±115.6) 0.0 (±0.0) 4.8 (±0.4)

10 250 6958.9 (±131.7) 5.8 (±7.2) 19.0 (±5.5) 7100.1 (±125.5) 0.0 (±0.0) 0.6 (±1.3)

15 250 7011.9 (±177.1) 1.3 (±1.5) 7.2 (±3.9) 7417.1 (±45.5) 0.0 (±0.0) 0.2 (±0.4)

20 250 6999.8 (±58.8) 0.6 (±0.8) 2.1 (±1.6) 8339.4 (±107.6) 0.0 (±0.0) 0.0 (±0.0)

5 300 8129.7 (±99.2) 15.2 (±9.1) 20.9 (±11.6) 8246.7 (±91.4) 0.0 (±0.0) 2.3 (±2.5)

10 300 8237.6 (±92.3) 4.7 (±4.1) 8.6 (±4.2) 8384.7 (±54.9) 0.0 (±0.0) 0.6 (±1.0)

15 300 8361.0 (±61.4) 2.4 (±2.4) 5.1 (±2.8) 8707.8 (±61.1) 0.0 (±0.0) 0.0 (±0.0)

20 300 5/10 0.3 (±0.5) 0.4 (±0.5) 9883.1 (±131.9) 0.0 (±0.0) 0.0 (±0.0)

5 350 9719.8 (±177.5) 14.6 (±5.5) 16.3 (±4.3) 9822.0 (±177.5) 0.0 (±0.0) 4.6 (±0.5)

10 350 6/10 4.2 (±4.1) 4.6 (±4.3) 9785.4 (±51.6) 0.0 (±0.0) 1.1 (±1.2)

15 350 2/10 0.1 (±0.3) 0.1 (±0.3) 10417.9 (±96.9) 0.0 (±0.0) 0.0 (±0.0)

20 350 0/10 0.0 (±0.0) 0.0 (±0.0) 2/10 0.0 (±0.0) 0.0 (±0.0)

5 400 8/10 5.0 (±3.4) 6.0 (±4.3) 11234.6 (±96.3) 0.0 (±0.0) 3.4 (±1.3)

10 400 0/10 0.0 (±0.0) 0.0 (±0.0) 11113.3 (±113.8) 0.0 (±0.0) 0.4 (±0.5)

15 400 0/10 0.0 (±0.0) 0.0 (±0.0) 11770.8 (±85.4) 0.0 (±0.0) 0.0 (±0.0)

20 400 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 450 8/10 3.2 (±4.7) 3.2 (±4.7) 12276.4 (±157.3) 0.0 (±0.0) 3.2 (±1.7)

10 450 0/10 0.0 (±0.0) 0.0 (±0.0) 12498.1 (±131.5) 0.0 (±0.0) 1.0 (±0.7)

15 450 0/10 0.0 (±0.0) 0.0 (±0.0) 13095.3 (±77.9) 0.0 (±0.0) 0.0 (±0.0)

20 450 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 500 3/10 0.8 (±1.3) 1.0 (±1.7) 13910.3 (±226.5) 0.0 (±0.0) 3.3 (±1.3)

10 500 0/10 0.0 (±0.0) 0.0 (±0.0) 13888.2 (±188.1) 0.0 (±0.0) 0.7 (±0.8)

15 500 0/10 0.0 (±0.0) 0.0 (±0.0) 7/10 0.0 (±0.0) 0.0 (±0.0)

20 500 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 550 0/10 0.0 (±0.0) 0.0 (±0.0) 15077.0 (±150.9) 0.2 (±0.4) 2.9 (±0.7)

10 550 0/10 0.0 (±0.0) 0.0 (±0.0) 15196.8 (±197.6) 0.0 (±0.0) 0.2 (±0.4)

15 550 0/10 0.0 (±0.0) 0.0 (±0.0) 1/10 0.0 (±0.0) 0.0 (±0.0)

20 550 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 600 0/10 0.0 (±0.0) 0.0 (±0.0) 16528.5 (±260.3) 0.2 (±0.4) 3.0 (±1.2)

10 600 0/10 0.0 (±0.0) 0.0 (±0.0) 16706.7 (±327.2) 0.0 (±0.0) 0.2 (±0.4)

15 600 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

20 600 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 650 0/10 0.0 (±0.0) 0.0 (±0.0) 17676.3 (±172.8) 0.2 (±0.4) 1.9 (±1.7)

10 650 0/10 0.0 (±0.0) 0.0 (±0.0) 18235.4 (±173.0) 0.0 (±0.0) 0.2 (±0.4)

15 650 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

20 650 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 700 0/10 0.0 (±0.0) 0.0 (±0.0) 19114.6 (±317.8) 0.4 (±0.8) 3.2 (±0.4)

10 700 0/10 0.0 (±0.0) 0.0 (±0.0) 19532.0 (±198.8) 0.0 (±0.0) 0.0 (±0.0)

15 700 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

20 700 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 750 0/10 0.0 (±0.0) 0.0 (±0.0) 20477.8 (±296.6) 0.1 (±0.3) 2.9 (±0.6)

10 750 0/10 0.0 (±0.0) 0.0 (±0.0) 20774.5 (±123.7) 0.0 (±0.0) 0.2 (±0.4)

15 750 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

20 750 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 800 0/10 0.0 (±0.0) 0.0 (±0.0) 21762.7 (±179.1) 1.2 (±1.2) 2.8 (±2.1)

10 800 0/10 0.0 (±0.0) 0.0 (±0.0) 8/10 0.1 (±0.3) 0.5 (±0.7)

15 800 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

20 800 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 850 0/10 0.0 (±0.0) 0.0 (±0.0) 23144.0 (±210.5) 1.5 (±1.8) 2.8 (±2.6)

10 850 0/10 0.0 (±0.0) 0.0 (±0.0) 9/10 0.0 (±0.0) 0.0 (±0.0)

15 850 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

20 850 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 900 0/10 0.0 (±0.0) 0.0 (±0.0) 24555.4 (±316.8) 1.1 (±1.5) 2.7 (±1.8)

10 900 0/10 0.0 (±0.0) 0.0 (±0.0) 1/10 0.0 (±0.0) 0.0 (±0.0)

15 900 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

20 900 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)
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5 950 0/10 0.0 (±0.0) 0.0 (±0.0) 25701.5 (±188.7) 0.5 (±0.7) 2.2 (±1.1)

10 950 0/10 0.0 (±0.0) 0.0 (±0.0) 3/10 0.0 (±0.0) 0.0 (±0.0)

15 950 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

20 950 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 1000 0/10 0.0 (±0.0) 0.0 (±0.0) 27054.0 (±275.9) 1.7 (±1.6) 3.3 (±1.9)

10 1000 0/10 0.0 (±0.0) 0.0 (±0.0) 1/10 0.0 (±0.0) 0.0 (±0.0)

15 1000 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

20 1000 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

7.4 Discussion

We have seen that performances of CP models are almost equal with CP3 being
the best but its advantage is almost negligible. Further, the experiments have
shown that ILP without a warm start cannot find a feasible solution for instances
with n ≥ 8 tasks reliably, whereas with warm starts it was significantly better
than the best CP model without a warm start. The quality of the solutions
from CP with warm starts is much better than ILP with warm starts (even
though the warm start for CP is not a complete solution), as can be seen in
Fig. 9. As expected, the heuristic algorithm LOFAS produced the best solutions
among all compared methods, although only slightly better than CP3 model
with warm starts. Smaller instances evidenced that LOFAS achieves objective
values quite close to optimal ones. The advantage of LOFAS /w heur. can be
seen in its scalability capabilities as it can solve instances with up to 1000 tasks
on 5 machines. On the 50 × 49 instance set from Sect. 7.1, LOFAS /w heur.
rendered solutions of objective value worse on average by 10.5 % than LOFAS.

8 Conclusions

This paper tackled the problem of scheduling sequence-dependent non-overlapping
setups on dedicated machines. An ILP model, five CP models, and a heuristic
approach were proposed. The results showed that all exact methods are find-
ing solutions far from optima within the given time limit, whereas the proposed
heuristic algorithm finds high-quality solutions in very short computation time.

The main contributions of this paper with respect to [17] are new CP models
using the cumulative function and a new complexity result for the restricted
version of the problem. Furthermore, we have proposed an enhancement to the
LOFAS algorithm proposing a heuristic for the subproblem, which allows solving
larger instances, and extensive experimental evaluation that showed the effect
of the subproblem solution method on the scalability and solution quality.

For future work, we will consider a more complex problem, which will avoid
the limitation that the tasks are already assigned to machines. Also, instead of
non-overlapping setups for one machine setter, we will consider more machine
setters that will be treated as a resource with limited capacity.
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