IMPROPER CHOOSABILITY OF GRAPHS AND MAXIMUM AVERAGE DEGREE

Frédéric Havet, Jean-Sébastien Sereni

Projet MASCOTTE

Rapport de recherche
ISRN I3S/RR–2004 -11–FR

Avril 2004
Improper choosability of graphs and maximum average degree

F. Havet and J.-S. Sereni

April 2, 2004

Abstract

Improper choosability of planar graphs has been widely studied. In particular, Škrekovski investigated the smallest integer g_k such that every planar graph of girth at least g_k is k-improper 2-choosable. He proved [8] that $6 \leq g_1 \leq 9; 5 \leq g_2 \leq 7; 5 \leq g_3 \leq 6$ and $\forall k \geq 4, g_k = 5$. In this paper, we study the greatest real $M(k, l)$ such that every graph of maximum average degree less than $M(k, l)$ is k-improper l-choosable. We prove that for $l \geq 2$ then $M(k, l) \geq l + \frac{k}{l}$. As a corollary, we deduce that $g_1 \geq 8$ and $g_2 \geq 6$. We also provide an upper bound for $M(k, l)$. This implies that for any fixed l, $M(k, l) \xrightarrow{k \to \infty} 2l$.

1 Introduction.

Let G be a graph. We note $V(G)$ its vertex set and $E(G)$ its edge set.

A colouring is an application from the vertex set into a set of colours S. If $|S| = l$ we call it l-colouring. Let c be a colouring of G. The improperty of a vertex v in G under c, denoted by $im^c_G(v)$, is the number of neighbours u of v in G such that $c(u) = c(v)$. The improperty of c in G is $im^c_G(c) = \max\{im^c_G(v) - v \in V(G)\}$. A colouring is k-improper if its improperty is at most k and a graph is k-improper l-colourable if it admits a k-improper l-colouring. The k-improper chromatic number of G, denoted by $c_k(G)$, is the smallest integer l such that G is k-improper l-colourable. Note that 0-improper colouring is the usual notion of proper colouring, so the 0-improper chromatic number is exactly the chromatic number usually denoted $\chi(G)$.

One can analogously generalize the notion of choosability. A list-assignment of a graph G is an application L which assigns to each vertex $v \in V(G)$ a prescribed list of colours $L(v)$. L is an l-list-assignment provided each list is of size at least l. G is k-improper L-colourable if there exists a k-improper colouring c of G such that $\forall v \in V(G), v \in L(v)$. In this case, c is a k-improper L-colouring of G. G is k-improper l-choosable if it is k-improper L-colourable for every l-list-assignment L.

Colourings of planar graphs have been widely studied. In particular p_k and p^*_k, the smallest integers l such that every planar graph is k-improper l-colourable and k-improper l-choosable respectively, are known for almost all k. Indeed Thomassen showed in [9] that every planar graph is 5-choosable and there are planar graphs which are not 4-choosable [12] so $p^*_0 = 5$. Every planar graph is 4-colourable [1, 2] and there are graphs which are not 1-improper 3-colourable, so $p_0 = p_1 = 4$. But we do not know the exact value of p^*_1 which is either 4 or 5. However, it is conjectured that it is 4:

Conjecture 1 (Eaton and Hull [3], Škrekovski [6]) Every planar graph is 1-improper 4-choosable.
As shown independently by Eaton and Hull [3] and Škrekovski [6], every planar graph is 2-improper 3-choosable and for every k, there are planar graphs which are not k-improper 2-colourable. Hence $p_k = p_k^* = 3$ for any $k \geq 2$.

Moreover improper colourings of planar graphs have also been studied under some girth restrictions. The girth of graph is the smallest length of a cycle. The well-known theorem of Grötzsch [4, 11] states that every planar graph of girth at least 4 is 3-colourable. Voigt [13] showed a planar graph of girth 4 which is not 3-choosable and Thomassen [10] proved that every planar graph of girth at least 5 is 3-choosable. In [7], Škrekovski showed that every planar graph of girth at least 4 is 1-improper 3-choosable. In [8], Skrekovski investigated k-improper 2-choosability of planar graphs in relation with their girth. Denoting by g_k the smallest integer such that every planar graph of girth at least g_k is k-improper 2-choosable, he proved that $6 \leq g_1 \leq 9$, $5 \leq g_2 \leq 7$, $5 \leq g_3 \leq 6$ and $\forall k \geq 4, g_k = 5$. Hence the only unknown values are g_1, g_2 and g_3.

In this paper, we study the k-improper l-choosability of graphs in relation with their maximum average degree.

Definition 1 The maximal average degree of a graph G is:

$$M(G) := \max \{ \frac{\sum_{v \in V(H)} d_H(v)}{|V(H)|}, H \text{ subgraph of } G \}.$$

The girth and the maximum average degree of a planar graph are related to each other:

Theorem 1 Let G be a planar graph of girth g.

$$M(G) < \frac{2g}{g - 2}.$$

Proof. We recall the Euler’s formula for a planar graph H: $|V(H)| - |E(H)| + |F(H)| = 2$ with $|F(H)|$ the number of faces of H. Note that every subgraph H of G has girth at least g, so $g|F(H)| \leq 2|E(H)|$. Thus $2g - g|V(H)| + g|E(H)| = g|F(H)| \leq 2|E(H)|$. Hence $\frac{2|E(H)|}{|V(H)|} \leq \frac{2g}{g - 2} - \frac{4}{(g - 2)|V(H)|} < \frac{2g}{g - 2}$ for every subgraph H of G. \hfill \square

Let $M(k, l)$ be the greatest real such that every graph of maximum average degree less than $M(k, l)$ is k-improper l-choosable. Obviously, $M(k_1, l) \leq M(k_2, l)$ if $k_1 \leq k_2$.

We have that $M(k, 1) = \frac{2k + 4}{k + 2}$ since a graph is k-improper 1-choosable if, and only if, it has maximum degree at most k.

In order to introduce our method which uses some discharging process, we first present it in Section 2 for improper 2-choosability: we prove that for every $k \geq 0$,

$$4 - \frac{4}{k + 2} \leq M(k, 2) \leq 4 - \frac{2k + 4}{k^2 + 2k + 2}.$$

As a corollary, we obtain the following upper bounds for g_k which are better than Škrekovski’s ones: $g_1 \leq 8$, $g_2 \leq 6$, $g_3 \leq 6$ and $\forall k \geq 4, g_k = 5$.

In Section 3 we extend the lower bound of Section 2 to any value of l: we prove that for every $l \geq 2$ and $k \geq 0$,

$$l + \frac{lk}{l + k} \leq M(k, l).$$

Last, we provide for any value of l and k a graph which is not k-improper l-choosable, and we deduce that $M(k, l) \xrightarrow{k \to \infty} 2l$.

2
2 Improper 2-choosability

2.1 Lower bound for \(M(k, 2) \)

In this subsection, we shall prove the following theorem:

Theorem 2 For all \(k \geq 0 \), all graphs of maximum average degree less than \(\frac{4k+4}{k+2} \) are \(k \)-improper 2-choosable.

Note that if \(k = 0 \) the result holds trivially. Indeed a graph with maximum average degree less than 2 contains no cycle and so is a forest. Hence it is 2-choosable. Furthermore \(M(0, 2) \leq 2 \) since an odd cycle is not 2-colourable, so \(M(0, 2) = 2 \).

For bigger value of \(k \), we will need the following preliminary definitions and results:

Definition 2 If \(v \in V(G) \) then \(d_G(v) \) denotes the degree of \(v \) in the graph \(G \). For all positive integer \(d \), a vertex of degree equals to (resp. at most, resp. at least) \(d \) is called a \(d \)-vertex (resp. \(\leq d \)-vertex, resp. \(\geq d \)-vertex). For \(S \subseteq V(G) \) (resp. \(E \subseteq E(G) \)) we denote by \(G - S \) (resp. \(G - E \)) the induced subgraph of \(G \) obtained by removing the vertices (resp. edges) of \(S \) (resp. \(E \)) from \(V(G) \) (resp. \(E(G) \)). If \(S = \{v\} \) and \(E = \{vw\} \), we shall note \(G - v = G - S \) and \(G - \{vw\} = G - E \). The union (resp. intersection) of the graphs \(G_1 \) and \(G_2 \) is the graph \(G = G_1 \cup G_2 \) (resp. \(G = G_1 \cap G_2 \)) such that \(V(G) = V(G_1) \cup V(G_2) \) (resp. \(V(G) = V(G_1) \cap V(G_2) \)) and \(E(G) = E(G_1) \cup E(G_2) \) (resp. \(E(G) = E(G_1) \cap E(G_2) \)).

A graph is said to be \((k, 2)\)-minimal if it is not \(k \)-improper 2-choosable but each of its proper subgraphs is.

Lemma 1 (Škrekovski [8]) Let \(k \geq 1 \) and let \(G \) be a \((k, 2)\)-minimal graph. Then

(i) \(\delta \geq 2 \).

(ii) Two \((\leq k + 1) \)-vertices are not adjacent.

Definition 3 Let \(D \) be a digraph. The outdegree (resp. indegree) of a vertex \(u \) in \(D \) is denoted by \(d_D^+(u) \) (resp. \(d_D^-(u) \)). The *degree* of \(u \) is \(d_D(u) = d_D^+(u) + d_D^-(u) \); it is the degree of \(u \) in the underlying undirected graph.

If \(u \) and \(v \) are two of its vertices, a \((u, v)\)-dipath is a directed path from \(u \) to \(v \).

An *arborescence* is an oriented tree in which every path is directed from a vertex called the *root*. Note that in an arborescence every vertex except the root has indegree 1. The leaves of the arborescence are the vertices of outdegree 0. A vertex which is neither a leaf nor the root is an *internal vertex*. A *quasi-arborescence* is a directed graph obtained from an arborescence by identifying some leaves.

Let \(u \) be a vertex of a digraph \(D \). The *outsection* of \(u \) in \(D \), denoted \(A_D^+(u) \), is the set of vertices \(v \) such that there is a \((u, v)\)-dipath in \(D \).

Let \(G \) be a \((k, 2)\)-minimal graph. We partially orient \(G \) using the following process:

1. Orient each edge \(uv \) where \(v \) is a 2-vertex from \(u \) to \(v \).
2. If \(k \geq 3 \), orient each edge \(uv \) where \(v \) is a 3-vertex from \(u \) to \(v \).
3. While there is an unoriented edge \(uv \) where \(v \) an \(i \)-vertex with \(2 + k \leq i < \frac{3k}{2} + 2 \) and outdegree \(i - 1 \), we orient it from \(u \) to \(v \).
The digraph D induced by the oriented edges is called a *discharging digraph* of G.

The following proposition, whose proof is left to the reader, follows immediately from the definition of a discharging digraph.

Proposition 1 Let D be a discharging digraph of a $(k, 2)$-minimal graph.

- D has no 2-circuit since two $(\leq k + 1)$-vertices are not adjacent by Lemma 1 (ii). So it has no circuit at all.
- If $k \leq 2$, only vertices of degree 2 or $k + 2$ have indegree more than zero. If $k \leq 3$, only vertices of degree 2, 3 or $k + 2$ have indegree more than zero.
- Every 2-vertex has indegree exactly 2 in D and if $k \geq 3$, every 3-vertex has indegree exactly 3.
- For every vertex u, $A^+_D(u)$ is a quasi-arborescence whose leaves have degree 2 (resp. 2 or 3) in G if $k \leq 2$ (resp. $k \geq 3$). In particular, the indegree of the leaves in $A^+_D(u)$ is at most 2 (resp. 3).

Definition 4 A quasi-arborescence is a $(k, 2)$-quasi-arborescence if and only if:

- Every vertex has outdegree at most $\max\{2, 2k - 1\}$.
- Every leaf has indegree at most $\min\{k, 3\}$.

Lemma 2 Let $k \geq 2$. Let Q be a $(k, 2)$-quasi-arborescence rooted at u and L a 2-list-assignment of Q. Then any L-colouring of the leaves can be extended in a k-improper L-colouring of D such that u has improperty at most $k - 1$.

Proof. By induction on the number of vertices of Q, the result being trivially true if $|V(Q)| = 1$.

Suppose now that $|V(Q)| > 1$ and the result holds for smaller k-quasi-arborescences. Let v_1, \ldots, v_s be the outneighbours of u in Q. Note that $Q - u$ is the union of s $(k, 2)$-quasi-arborescences Q_i, $1 \leq i \leq s$ rooted at v_i that are disjoint except possibly on their leaves.

Let c be an L-colouring of the leaves of Q. Then by induction it can be extended in a k-improper L-colouring of each of the Q_i so that $\text{im}(v_i) \leq k - 1$. Since a leaf of Q has indegree at most $\min\{k, 3\}$ and $\text{im}_Q(x) = \text{im}_{Q_i}(x)$ for every vertex of Q_i which is not a leaf, then the union of these colourings is a k-improper L-colouring of Q such that $\text{im}(v_i) \leq k - 1$.

Now, one of the two colours of $L(u)$, say α, is assigned to at most $k - 1$ neighbours of u since $s \leq 2k - 1$. Thus setting $c(u) = \alpha$, we obtain the desired colouring. □

Obviously, the above result cannot be extended for $k = 1$ because it is hopeless to extend every L-colouring of the leaves in a colouring such that the root has improperty 0. However, one can prove the following weaker result:

Lemma 3 Let Q be a $(1, 2)$-quasi-arborescence rooted at u, L a 2-list-assignment of Q with $L(u) = \{\alpha, \beta\}$ and c an L-colouring of S the set of leaves of Q with indegree 1. One the following holds:

(i) c may be extended in a 1-improper L-colouring of Q such that $\text{im}(u) = 0$;
(ii) c may be extended in two different 1-improper L-colourings of Q, one such that $c(u) = \alpha$ and one such that $c(u) = \beta$.

Proof. We proceed by induction on the number of vertices of Q. Let v_1 and v_2 be two out-neighbours of u in Q. $Q - u$ is the union of two $(1, 2)$-quasi-arborescences Q_1 and Q_2, rooted at v_1 and v_2 respectively, that are disjoint except possibly on their leaves. Let S' be the set of leaves in $Q_1 \cap Q_2$ and $L(u) = \{\alpha, \beta\}$. We L-colour the leaves of Q_1 that have indegree 1 in Q_1. By induction, each of the Q_i satisfies (i) or (ii).

If at least one of the Q_i satisfies (ii), then one can extend c to $Q_1 \cup Q_2$ such that $\{c(v_1), c(v_2)\} \neq L(u)$, say $\alpha \notin \{c(v_1), c(v_2)\}$. Moreover for any vertex x not in $V(Q_1) \setminus S'$, $im_{Q_1}(x) = im_{Q_2}(x) \leq 1$. If a vertex $s' \in S'$ has improperty 2 then its two neighbours are coloured the same. So recolouring s' with the colour of $L(s') \setminus \{c(s')\}$, we get a 1-improper L-colouring of $Q_1 \cup Q_2$. Hence setting $c(u) = \alpha$, we get a 1-improper L-colouring of Q such that $im(u) = 0$. Thus Q satisfies (i).

Suppose now Q_1 and Q_2 both satisfy (i). Then, possibly with recolouring of vertices of S' as before, one can extend c into a 1-improper L-colouring of $Q_1 \cup Q_2$ such that $im(v_1) = im(v_2) = 0$. If $\{c(v_1), c(v_2)\} \neq L(u)$, say $\alpha \notin \{c(v_1), c(v_2)\}$ then setting $c(v) = \alpha$, we get a 1-improper L-colouring of Q such that $im(u) = 0$. Thus Q satisfies (i). If not then assigning to u the colours α and β, we get the two 1-improper L-colourings of Q satisfying (ii). \qed

Lemma 4 Let $k \geq 3$. Let D be a discharging digraph of a $(k, 2)$-minimal graph G.

(i) Every i-vertex with $4 \leq i \leq k + 1$ has outdegree zero.

(ii) Every i-vertex with $2 + k \leq i \leq 2k + 1$ has outdegree less than i.

Proof.

(i) Suppose, for a contradiction, that v is a vertex contradicting the assertion and let u be an outneighbour of v. Note that u is a $(< \frac{3k}{2} + 2)$-vertex by definition of a discharging digraph.

Let L be a 2-list-assignment of G. Let S be the set of leaves of $A^+_D(u)$. By minimality, let c be a k-improper L-colouring of $G - A^+_D(u)$.

$A^+_D(u)$ is a $(k, 2)$-quasi-arborescence: since it is dominated by v in D, u has outdegree less than $\frac{3k}{2} + 1$ and so at most $2k - 1$. Thus by Lemma 2, we can extend c to $G - vu$ so that $im(u) \leq k - 1$. Since the leaves have degree at most $3 \leq k$, the improperty of the leaves is at most $3 \leq k$. So we obtain a k-improper L-colouring of $G - vu$.

If $c(u) \neq c(v)$ or $im_{G - uv}(v) \leq k - 1$ then c is a k-improper L-colouring of G. Otherwise all the $k + 1$ neighbours of v are coloured the same so recolouring v with its other allowed colour yields a k-improper L-colouring of G.

Hence G is k-improper 2-choosable which is a contradiction.

(ii) Suppose, for a contradiction, that v is an i-vertex contradicting the assertion.

Let L be 2-list-assignment of G and c a k-improper L-colouring of $G - v$. There is a colour of $L(v)$, say α, that is assigned to at most k neighbours of v. Let v_1, \ldots, v_k be these neighbours.
Lemma 5 Let D be a discharging digraph of a $(2,2)$-minimal graph G.

(i) The outdegree of a 3-vertex is zero.

(ii) If v is an i-vertex with $i \in \{4;5\}$ then its outdegree is less than i.

Lemma 6 Let D be a discharging of a $(1,2)$-minimal graph G. There is no 3-vertex with outdegree 3 in D.

Proof. Suppose, for a contradiction, that v is a 3-vertex with outdegree 3. Let u be an outneighbour of v. Let $Q_1 = A_D^+(u)$, $Q_2 = A_{D-vu}^+(v)$, S be the set of leaves of $A_D^+(v)$ with indegree 1 in $A_D^+(v)$ and S' be the set of leaves with indegree 2 in $A_D^+(v)$.

Let L be a 2-list-assignment of G. By minimality of G, let c be a 1-improper L-colouring of $G - A_D^+(v)$. Vertices not in S have no neighbour in $G - A_D^+(v)$ and every vertex of S has exactly one neighbour in $G - A_D^+(v)$. Extend c to $S \cup S'$ by assigning to each vertex of S a colour of its list not assigned to its neighbour in $G - A_D^+(v)$ and any colour of its list to a vertex of S'.

Now Q_1 and Q_2 satisfy either (i) or (ii) of Lemma 3. If one of them satisfies (ii), then possibly with recolouring of vertices of S' one can extend c into a 1-improper L-colouring of $G - vu$ such that $c(v) \neq c(u)$. Hence c is a 1-improper L-colouring of G.

If Q_1 and Q_2 satisfy both (i), then possibly with recolouring of vertices of S' one can extend c into a 1-improper L-colouring of $G - vu$ such that $im(v) = im(u) = 0$. Hence c is a 1-improper L-colouring of G.

So G is 1-improper 2-choosable which is a contradiction.

Proof of Theorem 2. Let G be a $(k,2)$-minimal graph and D a discharging digraph of G. We start with a charge $w(v) = d(v)$ on each vertex and we apply the following discharging rule: every vertex gives $\frac{k}{k+2}$ to each of its outneighbours.

Let us examine the new charge $w'(v)$ of a vertex v:

- If v is a 2-vertex, it has indegree 2 so its new charge is $w'(v) = 2 + \frac{2k}{k+2} = \frac{4k+4}{k+2}$.

- If v is a 3-vertex and $k \geq 3$, it has indegree 3 so its new charge is $w'(v) = 3 + 3 \times \frac{k}{k+2} = \frac{6k+6}{k+2} > \frac{4k+4}{k+2}$. If v is a 3-vertex and $k = 2$ then it has outdegree 0 by Lemma 5 and indegree 0 by construction so $w'(v) = 3$.

- If $4 \leq d(v) \leq k + 1$, ($k \geq 3$), then by Lemma 4 (i), v has outdegree zero so its charge is $d(v) \geq 4 > \frac{4k+4}{k+2}$.
• If \(k + 2 \leq d(v) < \frac{3k}{2} + 2 \) then either \(v \) has outdegree at most \(d(v) - 2 \) and so its new charge is at least \(d(v) - (d(v) - 2) \times \frac{k}{k+2} = \frac{2d(v)}{k+2} + \frac{2k}{k+2} \geq 2 + \frac{2k}{k+2} = \frac{4k+4}{k+2} \), or by Lemmas 4, 5 and 6, it has outdegree \(d(v) - 1 \). In this case, by definition of a discharging digraph, \(v \) has indegree 1 so its new charge is:

\[
d(v) - (d(v) - 1) \times \frac{k}{k+2} + \frac{k}{k+2} = d(v) - (d(v) - 2) \times \frac{k}{k+2} = \frac{4k+4}{k+2}.
\]

• If \(\frac{3k}{2} + 2 \leq d(v) \leq 2k + 1, (k \geq 2) \), then by Lemmas 4 and 5, \(v \) has outdegree at most \(d(v) - 1 \). So \(w'(v) \geq d(v) - (d(v) - 1) \times \frac{k}{k+2} = \frac{2d(v)}{k+2} + \frac{k}{k+2} \geq \frac{3k+4+k}{k+2} = \frac{4k+4}{k+2} \).

• If \(d(v) \geq 2k + 2 \), then \(w'(v) \geq d(v)(1 - \frac{k}{k+2}) = \frac{2d(v)}{k+2} \geq \frac{4k+4}{k+2} \).

Hence \(Mad(G) \geq \frac{1}{|V|} \sum_{v \in V} d(v) = \frac{1}{|V|} \sum_{v \in V} w'(v) \geq \frac{4k+4}{k+2} \).

Corollary 1 Let \(G \) be a planar graph of girth \(g \).

1. If \(g \geq 8 \) then \(G \) is 1-improper 2-choosable, so \(g_1 \leq 8 \).

2. If \(g \geq 6 \) then \(G \) is 2-improper 2-choosable, so \(g_3 \leq g_2 \leq 6 \).

3. If \(g \geq 5 \) then \(G \) is 4-improper 2-choosable, so \(g_k \leq 4 \) for \(k \geq 5 \).

2.2 Upper bound for \(M(k, 2) \)

Let us fix \(k \geq 1 \). In this section, we shall construct a family of graphs \((G^k_n)_{n \geq 1} \) such that for all \(n \geq 1 \):

• \(G^k_n \) is not \(k \)-improper 2-colourable.

• \(Mad(G^k_n) = \frac{2n(4k^2 + 6k + 4) + 4k^2 + 6k + 2}{2n(k^2 + 2k + 2) + (k+1)^2} \).

Hence we will deduce:

Theorem 3 For all \(k \geq 1 \), \(M(k, 2) \leq \frac{4k^2 + 6k + 4}{k^2 + 2k + 2} = 4 - \frac{2k + 4}{k^2 + 2k + 2} \).

We denote by \(H_k \) the graph composed of two adjacent vertices \(u \) and \(v \) also connected by \(k + 1 \) disjoint paths of length 2. Take \(k \) copies of \(H_k \) and create the graph \(F_k \) by identifying the vertex \(v \) of each copy. Note that \(F_k \) has one vertex of degree \(k(k + 2) \), \(k \) vertices of degree \(k + 2 \) and \(k(k + 1) \) vertices of degree 2. Now we take \(2n + 1 \) copies of \(F_k \) and we join the vertices \(v \) of each copy creating a cycle of size \(2n + 1 \). At last we make a subdivision of all the edges of the cycle but one so as to obtain the graph \(G^k_n \).
Lemma 7 \(G^k_n \) is not \(k \)-improper 2-colourable.

Proof. First remark that in any \(k \)-improper 2 colouring of \(H_k \), \(v \) has impropriety at least 1. Indeed \(v \) is a \((k + 2)\) vertex in \(H_k \), so if it has impropriety zero then its \(k + 2 \) neighbours are coloured the same, but this is impossible since \(u \) is a neighbour of \(v \) adjacent to the \(k + 1 \) remaining neighbours. Hence in any \(k \)-improper colouring of \(F_k \), \(v \) has impropriety \(k \). So in order to colour the whole graph, we must properly colour the subdivided cycle with 2 colours, which is impossible.

Lemma 8 The maximum average degree of \(G^k_n \) is \(M^k_n = \frac{(2n+1)(4k^2+6k+4)-2}{(2n+1)(k^2+2k+2)-1} \).

Proof. As it is easily seen, the maximum average degree of \(G \) is its average degree, which is:

\[
\frac{(2n+1)[(1 \times k(k+2) + 2) + (k \times (k+2)) + (k(k+1) \times 2)] + (2n) \times 2}{(2n+1)(1 + k + k(k+1)) + 2n} = M^k_n.
\]

3 Improper \(l \)-choosability, \(l \geq 2 \)

3.1 Lower bound for \(M(k, l) \)

In this subsection, we shall prove the following theorem:

Theorem 4 For all \(l \geq 2 \) and all \(k \geq 0 \), all graphs of maximum average degree less than \(\frac{l(l+2k)}{l+k} \) are \(k \)-improper \(l \)-choosable.

The result of the theorem is trivial if \(k = 0 \) since a graph of maximum average degree less than \(l \) is \((l-1)\)-degenerate (i.e. each of its subgraph has a vertex of degree at most \(l-1 \)). Hence it is \(l \)-choosable. For bigger values of \(k \), we will need some preliminary results.
Definition 5 A graph is said to be \((k, l)\)-minimal if it is not \(k\)-improper \(l\)-choosable but every of its proper subgraph is.

Lemma 9 Let \(G\) be a graph, \(L\) a list-assignment and \(c\) an \(L\)-colouring. If a vertex \(v\) has improperty at least \(d(v) - |L(v)| + 2\) under \(c\), then there exists an \(L\)-colouring \(c'\) of \(G\) such that \(c'(u) = c(u)\) if \(u \neq v\) and \(im_{c'}(v) = 0\).

Proof. Let \(c(v) = \alpha\). Then \(v\) has at most \(d(v) - (d(v) - |L(v)| + 2) = |L(v)| - 2\) neighbours that are not coloured with \(\alpha\). Hence there exists a colour \(\beta \in L(v)\) that does not colour any neighbour of \(v\). So setting \(c(v) = \beta\) we obtain the desired colouring. \(\square\)

We now prove a generalization of Lemma 1.

Lemma 10 Let \(k \geq 1\) and let \(G\) be a \((k, l)\)-minimal graph. Then:

(i) \(\delta \geq l\).

(ii) Two \((\leq l + k - 1)\)-vertices are not adjacent.

Proof.

(i) Let \(L\) be an \(l\)-list-assignment and suppose \(v\) is a \((\leq l - 1)\)-vertex. By minimality let \(c\) be a \(k\)-improper \(L\)-colouring of \(G - v\). As \(v\) has at most \(l - 1\) neighbours in \(G\), there exists a colour, say \(\alpha\), that is not assigned to any neighbour of \(v\). Hence colouring \(v\) with \(\alpha\) yields a \(k\)-improper \(L\)-colouring of \(G\).

Hence \(G\) is \(k\)-improper \(l\)-choosable, a contradiction.

(ii) Let \(L\) be an \(l\)-list-assignment and suppose, for a contradiction, that \(u\) and \(v\) are two neighbours of degree at most \(l + k - 1\). By minimality, let \(c\) be a \(k\)-improper \(L\)-colouring of \(G - \{uv\}\). Then \(c\) is an \(L\)-colouring of \(G\) such that each vertex has improperty at most \(k\), except possibly \(u\) and \(v\) which may have improperty \(k + 1\). But in this case we use Lemma 9 to recolour these vertices and obtain a \(k\)-improper \(L\)-colouring of \(G\).

Hence \(G\) is \(k\)-improper \(l\)-choosable, a contradiction. \(\square\)

Definition 6 Let \(G\) be a \((k, l)\)-minimal graph. We partially orient \(G\) using the following process:

1. Orient each edge \(uv\) where \(v\) is a \((\leq l + k - 1)\)-vertex from \(u\) to \(v\).

2. While there is an \(i\)-vertex \(v\) with \(l + k \leq i < l + k + \frac{k}{2}\) having outdegree exactly \(i - l + 1\) and indegree 0, we orient one of its unoriented incident edges \(uv\) from \(u\) to \(v\).

The digraph \(D\) induced by the oriented edges is called a discharging digraph of \(G\).

The following remark follows from the definition of a discharging digraph.

Remark 1
• Only vertices of degree less than \(l + k + \frac{1}{k} \) can have indegree more than zero.

• For \(i \leq l + k - 1 \), every \(i \)-vertex has indegree exactly \(i \) in \(D \).

Definition 7 A quasi-arborescence rooted at \(u \) is a \((k, l)\)-quasi-arborescence if and only if:

- Every vertex has outdegree at most \(\max\{2, 2k - 1\} \).

- Every leaf has indegree at most \(l + k - 1 \)

Now we generalize Lemmas 2 and 3.

Lemma 11 Let \(k \geq 2 \) and let \(Q \) be a \((k, l)\)-quasi-arborescence rooted at \(u \). Let \(L \) be a list-assignment of \(Q \) such that \(|L(v)| \geq \max\{1, dQ(v) - k + 1\} \) if \(v \) is a leaf and \(|L(v)| \geq 2 \) otherwise. We denote by \(S \) the set of leaves that have indegree at least \(k + 1 \) in \(Q \) (and hence a colour-list of size at least 2). Any \(L \)-colouring of the leaves extends in an \(L \)-colouring of \(Q \) such that:

- \(\forall v \in S, \text{im}(v) \leq k \).

- \(\forall v \notin S, \text{im}(v) \leq k \).

Furthermore, possibly by recolouring some vertices of \(S \), this \(L \)-colouring of \(G \) can be made \(k \)-improper.

Proof. By induction on the number of vertices of \(Q \), the result being trivially true if \(|V(Q)| = 1 \). Suppose now that \(|V(Q)| > 1 \) and the result holds for smaller \((k, l)\)-quasi-arborescences.

Let \(v_1, \ldots, v_s \) be the outneighbours of \(u \) in \(Q \). Note that \(Q - u \) is the union of \(s \) \((k, l)\)-quasi-arborescences \(Q_i \) rooted at \(v_i \), \(1 \leq i \leq s \), that are disjoint except possibly on their leaves. We start by \(L \)-colouring all the leaves of \(Q \).

By induction we extend this colouring to an \(L \)-colouring of each of the \(Q_i \) such that \(\text{im}(v_i) \leq k - 1 \). Note that \(\text{im}_Q(x) = \text{im}_{Q_i}(x) \leq k \) for every vertex of \(Q_i \) which is not a leaf and \(\text{im}_Q(x) \leq k \) for each leaf not in \(S \). One of the two colours of \(L(u) \), say \(\alpha \), is assigned to at most \(k - 1 \) neighbours of \(u \) since \(\deg(u) \leq 2k - 1 \). Hence setting \(c(u) = \alpha \), we obtain the first desired colouring.

Now, we can recolour each leaf \(f \) of \(S \) with impropriety at least \(k + 1 \) using Lemma 9 since \(d_Q(f) - |L(f)| + 2 \leq d_Q(f) - d_Q(f) + k - 1 + 2 = k + 1 \). This concludes the proof.

The above result cannot be extended for \(k = 1 \). However one can prove the following:

Lemma 12 Let \(Q \) be a \((1, l)\)-quasi-arborescence rooted at \(u \), \(L \) be a list-assignment of \(Q \) such that \(|L(v)| \geq 2 \) if \(v \) is not a leaf, and \(|L(v)| \geq d_Q(v) \) otherwise. We denote by \(S \) the set of leaves with indegree at least 2. Let \(c \) be an \(L \)-colouring of the leaves. One of the followings holds:

(i) \(c \) can be extended in an \(L \)-colouring of \(Q \) such that \(\text{im}(u) = 0 \) and \(\text{im}(v) \leq 1 \) if \(v \notin S \);

(ii) \(c \) can be extended in two different \(L \)-colourings of \(Q \) \(c_1 \) and \(c_2 \) such that \(c_1(v) = c_2(v) \) if \(v \neq u \) and \(\text{im}^{c_i}(v) \leq 1 \) if \(v \notin S \).

Furthermore, possibly by recolouring vertices of \(S \), all these \(L \)-colourings can be made \(1 \)-improper. Moreover, if \(|L(u)| \geq 3 \) then (i) holds.
Proof. By induction on the number of vertices, the result being obvious if \(|V(Q)| = 1 \).

\(Q - u \) is the union of two \((1, l)\)-quasi-arborescences \(Q_1 \) and \(Q_2 \) rooted at \(v_1 \) and \(v_2 \) respectively. They are disjoint except possibly on their leaves. Let \(c \) be an \(L \)-colouring of the leaves of \(Q \). By induction we extend \(c \) to \(Q_1 \) and \(Q_2 \). Note that for each vertex \(v \) of \(Q - S \) \(\text{im}_Q(v) = \text{im}_Q(v) \leq 1 \).

If at least one of the \(Q_i \) satisfies (ii), or if \(|L(u)| \geq 3 \), we can suppose that \(\{c(v_1), c(v_2)\} \neq L(u) \) and hence we extend \(c \) into an \(L \)-colouring of \(Q \) fulfilling (i).

If both \(Q_1 \) and \(Q_2 \) satisfy (i), then either \(c(v_1) = c(v_2) \) and hence setting \(c(u) \in L(u) \{c(v_1)\} \) yields an \(L \)-colouring of \(Q \) that satisfies (i); or colouring \(u \) with two colours of its list gives the two desired colourings of (ii).

Now we can recolour with impropriety zero each leaf \(f \in S \) that has impropriety at least 2 in \(Q \) using Lemma 9, since \(d_Q(f) - |L(f)| + 2 \leq 2 \). This concludes the proof. \(\square \)

Using these results, we can say more about the structure of a discharging digraph. The following lemma generalizes Proposition 1.

Lemma 13 Let \(D \) be a discharging digraph of a \((k, l)\)-minimal graph \(G \).

(i) Every vertex \(u \) with \(l + k \leq d(u) \leq l + 2k - 1 \) has outdegree at most \(d(u) - l + 1 \). In particular, \(D \) is acyclic.

(ii) For every vertex \(u \), \(A_D^+(u) \) is a \((k, l)\)-quasi-arborescence. In particular, the indegree of the leaves in \(A_D^+(u) \) is at most \(l + k - 1 \).

Proof. (ii) follows easily from (i). So, let us prove (i).

Let \(L \) be an \(l \)-list-assignment of \(G \). First, \(D \) has no 2-circuit since two \((\leq l + k - 1)\)-vertices are not adjacent by Lemma 10. Note also that in order to create a circuit in \(D \), it is necessary to create a vertex \(u \) of outdegree at least \(d(u) - l + 2 \). Now suppose, for a contradiction, that \(D \) contains a vertex \(u \) of outdegree at least \(d(u) - l + 2 \) and let \(D' \) be the digraph obtained just after having created the first such vertex \(u \). Let \(u \rightarrow v \) be the last edge that is oriented in \(D' \). \(u \) has \(d(u) - l + 2 \) outneighbours (including \(v \)) while \(v \) has \(d(v) - l + 1 \) outneighbours. We distinguish two cases depending whether the orientation of \(uv \) creates a circuit (which is necessary the first), or not.

First Case: the orientation of \(uv \) creates a circuit \(C \). Let \(w \) be the inneighbour of \(u \) in \(C \). We define \(Q_1 = A_{D' - uw}^+(v) \), \(Q_2 = A_{D' - uw}^+(u) \) and \(Q = Q_1 \cup Q_2 \). Note that \(Q_1 \) and \(Q_2 \) are \((k, l)\)-quasi-arborescences which are disjoint, except possibly on some leaves. In particular the outdegree in \(D' \) of every internal vertex \(x \) of \(Q \) is at most \(d_G(x) - l + 1 \). More precisely every internal vertex \(x \neq w \) satisfies \(d_{D'}^+(x) = d_G(x) - l + 1 \) while \(d_{D'}^+(w) = d_G(w) - l \) and for all every vertex \(v \) \(d_{D'}^+(x) = 1 \). Recall that \(d_G(w) = d^+(w) + d^-(w) \). Let \(F \) be the set of leaves in \(Q \), \(S \) the set of leaves that have indegree at least \(k + 1 \) in \(Q \) and \(\bar{S} = F \setminus S \). We define \(\bar{Q} = Q - \bar{S} \). By minimality, let \(c \) be a \(k \)-improper \(L \)-colouring of \(G' = G - \bar{Q} \). Let \(f \in S \): if \(f \) has impropriety at least \(k - d_G(f) + 1 \), then using Lemma 9 we recolour it with impropriety 0 since \(d_G(f) - |L(f)| + 2 = d_G(f) - d_G(f) - l + 2 \leq l + k - 1 - d_G(f) - l + 2 = k - d_G(f) + 1 \).

Now, let \(L_1 \) be the following list-assignment of \(Q_1 \):

\[L_1(x) = L(x) \setminus \{z \mid \exists z \in N_{G - Q_1}(x), c(z) = \alpha \} \text{ if } x \notin S, \text{ and } L_1(x) = \{c(x)\} \text{ otherwise.} \]

Note that if \(x \neq w \) is an internal vertex then:

\[|L_1(x)| \geq l - (d_G(x) - d_Q(x)) = l - d_G(x) + d_G(x) - l + 1 + 1 = 2 \]
and since $d^+(u) = d_G(w) - l$ but u is yet uncoloured:

$$|L_1(w)| \geq l - (d_G(w) - d_{Q_1}(w)) + 1 = l - d_G(w) + d_G(w) - l + 1 + 1 = 2.$$

For the root v, $d^-(v) = 0$ but u is uncoloured yet so:

$$|L_1(v)| \geq l - (d_G(v) - d_{Q_1}(v)) + 1 = l - d_G(v) + d_G(v) - l + 1 + 1 = 2,$$

and for a leaf $f \in S$:

$$|L_1(f)| \geq l - d_G(f) + d_Q(f) \geq l - (l + k - 1) + d_Q(f) = d_Q(f) - k + 1.$$

Thus we may apply Lemmas 11 and 12. To do so, we L_1-colour all the leaves in Q.

Suppose first $k \geq 2$. By Lemma 11, we obtain an L_1-colouring c_1 of Q_1 such that $im_{Q_1}(v) \leq k - 1$. Note that c_1 extends c into an L-colouring of $G - Q_2$ such that each vertex has improperty at most k except possibly some vertices of S. Furthermore, $im_{G - Q_2}(v) \leq k - 1$. We define a list-assignment L_2 of Q_2 by $L_2(u) = L(u) \setminus \{\alpha - 3z \neq v \in N_{G - Q_2}(u), c(z) = \alpha\}$, $L_2(x) = \{c(x)\}$ if x is a leaf and $L_2(x) = L(x) \setminus \{\alpha - 3z \in N_{G - Q_2}(x), c(z) = \alpha\}$ otherwise. Note that we have $|L_2(u)| \geq 2$. We now apply Lemma 11 so as to get an L_2-colouring of Q_2 and hence an L-colouring of G. Every vertex not in $S \cup \{u, v\}$ has improperty at most k. If $x \in \{u, v\}$ then: $im_G(x) \leq im_{G - Q_2}(x) + 1 \leq k - 1 + 1 = k$ since there cannot be in $L_2(u)$ the colour of a neighbour of u in $G - (Q_2 - v)$. If $f \in S$ has improperty at least $k + 1$, then we recolour it with improperty 0 using Lemma 9 since $d_{Q_2}(f) - |L(f)| + 2 \leq l + k - 1 - 2 = k + 1$. Thus we obtain a k-improper L-colouring of G.

Suppose now $k = 1$. Applying Lemma 12, we obtain an L_1-colouring of $G - Q_2$ such that every vertex not in S has improperty at most 1, and either v has improperty 0 (i), or it has improperty 1 and we can indifferently colour it with two colours of its list (ii). Note that if v has one neighbour distinct from u which is an internal vertex in Q_2 then $|L_1(v)| \geq 3$ so we may suppose that v fulfils (i). Defining L_2 as before, we can apply Lemma 12 to Q_2 so as to obtain an L_2-colouring of Q_2 and hence an L-colouring of G such that u fulfils (i) or (ii). Now, every vertex not in $S \cup \{u, v\}$ has improperty at most 1. If v satisfies (i), then either u also satisfies (i) or u satisfies (ii) but in this case we may suppose u and v are coloured differently so in all cases they have improperty at most 1 in G. If v satisfies (ii), then the only neighbour of v in Q_2 is u. Hence we may safely suppose that u and v are coloured differently, so they have improperty at most 1 in G.

Finally, we can recolour each leaf of S that has improperty at least 2 by using Lemma 9 and thus we obtain a 1-improper L-colouring of G.

Hence G is k-improper l-choosable, a contradiction.

Second Case: there is no circuit in D'. Then $Q = A^+_D(u)$ is a quasi-arborescence. Moreover each internal vertex v has outdegree at most (and hence exactly) $d(v) - l + 1$. Let v_1, \ldots, v_s be the outneighbours of u, we define $Q_j = A^+_D(v_j)$, $1 \leq j \leq s$. The Q_i are (k, l)-quasi-arborescences that are disjoint except possibly on their leaves. Let F be the set of leaves in Q, S the set of leaves with indegree at least $k + 1$ in Q and $\hat{S} = F \setminus S$. We define $Q = Q - \hat{S}$. Let L be an l-list-assignment of G. By minimality, let c be a k-improper L-colouring of $G' = G - Q$. Let f be a leaf in \hat{S}. If f has improperty at least $k - d_Q(f) + 1$, we recolour it with improperty 0 using Lemma 9 since: $d_G(f) - |L(f)| + 2 \leq d_G(f) - d_Q(f) - l + 2 \leq l + k - 1 - d_Q(f) - l + 2 = k - d_Q(f) + 1$.

12
For each vertex \(v \in Q \), we define \(L'(v) = L(v) \setminus \{ \alpha \} \) if \(v \notin S \) and \(L'(v) = \{ c(v) \} \) otherwise. Note that for an internal vertex \(v \):

\[
|L'(v)| \geq l - (d_G(v) - d_Q(v)) = l - d_G(v) + d_G(v) - l + 1 + 1 = 2.
\]

For a leaf \(f \in S \):

\[
|L'(f)| \geq l - d_G(f) + d_Q(f) \geq l - (l + k - 1) + d_Q(f) = d_Q(f) - k + 1.
\]

Suppose first \(k \geq 2 \). We \(L' \)-colour all the leaves, use Lemma 11 so as to extend it into an \(L' \)-colouring of each of the \(Q_i \), and possibly with recolouring some leaves in \(S \) we get a \(k \)-improper \(L \)-colouring of \(G - u \) such that \(\text{im}(v_j) \leq k - 1 \), \(1 \leq j \leq s \).

Now \(|L'(u)| \geq |L(u)| - d(u) + d'_D(u) = l - d(u) + d(u) - l + 2 \geq 2 \). And \(u \) has \(d^+(u) = d(u) - l + 2 \leq 2k + 1 \) out-neighbours in \(D' \). Thus there is a colour of \(L'(u) \), say \(\alpha \), that is assigned to at most \(k \) out-neighbours of \(u \). Thus setting \(c(u) = \alpha \) yields a \(k \)-improper \(L \)-colouring of \(G \) by definition of \(L' \).

Suppose now \(k = 1 \). We \(L' \)-colour all the leaves, use Lemma 12 so as to extend it into an \(L' \)-colouring of each of the \(Q_i \), and possibly with recolouring some leaves in \(S \) we get a 1-improper \(L \)-colouring of \(G - u \) such that for each \(v_j \) either \(\text{im}(v_j) = 0 \) or \(v_j \) can safely be recoloured with another colour of \(L'(v_j) \).

The same calculation as above shows there exists a colour of \(L'(u) \), say \(\alpha \), that is assigned to at most 1 neighbour of \(u \), say \(v_1 \). We set \(c(u) = \alpha \). If \(v_1 \) satisfies the first condition, we have a 1-improper \(L \)-colouring of \(G \). If \(v_1 \) satisfies the second condition then we may suppose that \(c(u) \neq c(v) \) and thus we also have a 1-improper \(L \)-colouring of \(G \).

Hence \(G \) is \(k \)-improper \(L \)-choosable, a contradiction.

\[\square \]

Proof of Theorem 4. Let \(G \) be a \((k, l)\)-minimal graph and \(D \) a discharging digraph of \(G \). We start with a charge \(w(v) = d(v) \) on each vertex and we apply the following discharging rule: every vertex gives \(\frac{d(v)k}{l+k} \) to each of its out-neighbours.

Let us examine the new charge \(w'(v) \) of a vertex \(v \):

- If \(d(v) \leq l + k - 1 \) it has indegree \(d(v) \) so its new charge is \(w'(v) = d(v) + \frac{d(v)k}{l+k} \geq l + \frac{lk}{l+k} \).

- If \(l + k \leq d(v) < l + k + \frac{1}{k} \) then either \(v \) has outdegree at most \(d(v) - l \) and its new charge is at least \(d(v) - (d(v) - l) \times \frac{k}{l+k} = \frac{d(v)}{l+k} + \frac{lk}{l+k} \geq l + \frac{lk}{l+k} \), or by Lemma 13, it has outdegree \(d(v) - l + 1 \). In this case, by definition of a discharging digraph, \(v \) has indegree 1 so its new charge is:

\[
w'(v) = d(v) + (d(v) - l + 1) \times \frac{k}{l+k} = \frac{d(v)}{l+k} + \frac{k}{l+k} \geq l + \frac{k}{l+k}.
\]

- If \(l + k + \frac{1}{k} \leq d(v) \leq l + 2k - 1 \), then by Lemma 13, \(v \) has outdegree at most \(d(v) - l + 1 \). So \(w'(v) \geq d(v) - (d(v) - l + 1) \times \frac{k}{l+k} = \frac{d(v)}{l+k} + \frac{k-1}{l+k} = l + \frac{kl}{l+k} \).

- If \(d(v) \geq l + 2k \), then \(w'(v) \geq d(v)(1 - \frac{k}{l+k}) = \frac{d(v)}{l+k} \geq \frac{l^2 + 2kl}{l+k} = l + \frac{kl}{l+k} \).
Hence $\text{Mad}(G) \geq \frac{1}{|V|} \sum_{v \in V} d(v) = \frac{1}{|V|} \sum_{v \in V} w'(v) \geq l + \frac{kl}{l+k}$.

3.2 Upper bound for $M(k,l)$

In this section we shall construct for all $l \geq 2$ and all $k \geq 1$, a graph G^k_l which is not k-improper l-colourable. So its maximum average degree will give an upper bound for $M(k,l)$. To construct G^k_l, take $k+1$ copies of H_k (defined in Subsection 2.2) and identify their vertex v. We define G^k_l, $l \geq 3$, inductively. First we create the graph M^k_l by taking k copies of G^k_l and adding a vertex w which we join to every other vertices. Then we take $l-1$ copies M^1, \ldots, M^{l-1} of M^k_l and we join all the vertices w_1, \ldots, w_{l-1} (so that they form a complete graph of size $l-1$). Now, we add $k+2$ vertices $z_0, z_1, \ldots, z_{k+1}$ each joined to each of the w_i, $1 \leq i \leq l-1$. Last we add the edges z_0z_i for $1 \leq i \leq k+1$.

![Diagram of G^k_l](image)

Lemma 14 For all $l \geq 2$ and all $k \geq 1$, the graph G^k_l is not k-improper l-colourable.

Proof. The result is clear for G^k_2. Suppose the result is true for $l-1 \geq 2$ and let us prove it for G^k_l. First note that in any k-improper l-colouring of M^i, the vertex w_i has improperty k. Indeed, w_i has a neighbour of its colour in each copy of G^k_{l-1} since otherwise G^k_{l-1} would be k-improper $(l-1)$-colourable. Hence each of the w_i, $1 \leq i \leq l-1$, cannot have any neighbour of its colour in $G^k_l - M^i$. In particular, as the subgraph induced by w_1, \ldots, w_{l-1} is complete, all the z_i, $0 \leq i \leq k+1$, must be coloured the same. But then w_0 must have improperty $k+1$. □

Lemma 15 The number of vertices of G^k_l is:

$$n^k_l = 2l + (l+1)k + \sum_{i=2}^l \frac{(l-1)!}{(l-i)!} k^i.$$

In particular, it is a polynomial in k of degree l and dominant coefficient $(l-1)!$.

Proof. n^k_l satisfies: $n^k_2 = k^2 + 3k + 3$ and $\forall l \geq 3, n^k_l = (k \times n^k_{l-1} + 1) \times (l-1) + k + 2$. □

Let s^k_l denotes the sum of the degrees of the vertices in G^k_l. We have the following result:
Lemma 16 s^k_l is a polynomial in k of degree l whose dominant coefficient is $2l!$.

Proof. s^k_l satisfies: $s^k_2 = 4k^2 + 10k + 6$ and $s^k_l = (l-1)(k \times s^k_{l-1} + 2k \times n^k_{l-1} + l + k) + (l+1)k + 2l$ if $l \geq 3$. Hence it is a polynomial in k of degree l. Furthermore, denoting by c^k_l its dominant coefficient, we have: $c^k_2 = 4$ and $\forall l \geq 3$, $c^k_l = (l-1) \times c^k_{l-1} + 2k \times (l-1)!$. Thus $c^k_l = 2l!$. \hfill \square

Proposition 2 $\lim_{k \to \infty} Mad(G^k_l) = 2l$.

Proof. It is clear that the maximum average degree of G^k_l is its average degree. Then by Lemmas 15 and 16, we have:

$$\lim_{k \to \infty} Mad(G^k_l) = 2 \frac{l!}{(l-1)!} = 2l.$$ \hfill \square

Corollary 2 For any fixed l, $\lim_{k \to +\infty} M(k,l) = 2l$.

Proof. It follows from Theorem 4 and Proposition 2. \hfill \square

References

