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Minimum-Entropy Estimation in
Semi-Parametric Models ?

Eric Wolsztynski, Eric Thierry and Luc Pronzato

Laboratoire I3S, Université de Nice-Sophia Antipolis/CNRS

Abstract

In regression problems where the density f of the errors is not known, maximum
likelihood is unapplicable, and the use of alternative techniques like least squares
or robust M -estimation generally implies inefficient estimation of the parameters.
The search for adaptive estimators, that is, estimators that remain asymptotically
efficient independently of the knowledge of f , has received a lot of attention, see in
particular (Stein, 1956; Stone, 1975; Bickel, 1982) and the review paper (Manski,
1984). The paper considers a minimum-entropy parametric estimator that minimizes
an estimate of the entropy of the distribution of the residuals. A first construction
connects the method with the Stone-Bickel approach, where the estimation is de-
composed into two steps. Then we consider a direct approach that does not involve
any preliminary

√
n-consistent estimator. Some results are given that illustrate the

good performance of minimum-entropy estimation for reasonable sample sizes when
compared to standard methods, in particular concerning robustness in the presence
of outliers.

Key words: Adaptive estimation, efficiency, entropy, parameter estimation,
semi-parametric models, robustness, outliers

Résumé

Dans les problèmes de régression où la densité f des erreurs est inconnue, le
maximum de vraisemblance ne peut pas être utilisé pour estimer les paramètres
du modèle, et les techniques alternatives telles que moindres carrés ou M -
estimation robuste impliquent en général la perte d’efficacité de l’estimation.
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Beaucoup d’attention a été portée sur la recherche d’estimateurs adaptatifs,
c’est-à-dire qui demeurent asymptotiquement efficaces indépendamment de la
connaissance de f — voir en particulier (Stein, 1956; Stone, 1975; Bickel, 1982)
et la revue des différentes approches existantes (Manski, 1984). Nous consid-
érons ici un estimateur paramétrique qui minimise une estimée de l’entropie
de la distribution des résidus. Une première construction permet d’établir le
lien avec l’approche de référence de Stone et Bickel, où l’estimation est décom-
posée en deux étapes. Nous considérons ensuite une approche directe qui ne
nécessite pas d’estimateur

√
n-consistant préliminaire. Quelques résultats il-

lustrent dans les dernières parties les bonnes performances de l’estimation par
minimum d’entropie pour des échantillons de taille raisonnable, en particulier
concernant la robustesse de l’estimateur en présence de données aberrantes.

Mots-clés : Estimation adaptative, efficacité, entropie, estimation paramétrique,
modèle semi-paramétrique, robustesse, données aberrantes

1 Problem statement

We consider a general nonlinear regression problem with observations

Yi = η(θ̄, Xi) + εi , i = 1, . . . , n , (1)

where θ̄ is the unknown value of the model parameters θ ∈ Θ ⊂ IRp and η(θ, x)
is a known function of θ and the design variable x ∈ X ⊂ Rd. For F a function
Θ → IR, ∇F (θ) and ∇2F (θ) will denote its first and second order derivatives
with respect to θ, respectively a p-dimensional vector and a p× p symmetric
matrix. For g a function IR → IR, the first, second and third derivatives are
simple denoted g′, g′′ and g′′′. We shall assume the following throughout the
paper. We suppose that θ̄ ∈ int(Θ), Θ = int(Θ), and that η(θ, x) is bounded
on Θ× X and two times continuously differentiable w.r.t. θ ∈ int(Θ) for any
x ∈ X , ∇η(θ, x) and ∇2η(θ, x) being bounded on int(Θ) × X . The additive
noise (εi) forms a sequence of i.i.d. random variables with p.d.f. f (with respect
to the Lebesgue measure) that we suppose to be symmetric about zero. We
further assume that f is two times continuously differentiable, with bounded
derivatives f ′(.) and f ′′(.), and that the Fisher information for location

I(f) =

∞∫

−∞
[f ′(u)]2/f(u) du
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exists. For a given measure µ on the design variable x, the Fisher information
matrix MF (θ) associated with f and θ is given by

MF (θ) = I(f)
∫

X
∇η(θ, x)[∇η(θ, x)]>µ(dx) . (2)

We suppose that MF (θ̄) has full rank and that the identifiability condition

∫

X
[η(θ, x)− η(θ̄, x)]2µ(dx) = 0 ⇒ θ = θ̄ (3)

is satisfied.

In the classical situation where f is known, the Maximum Likelihood (ML) es-
timator θ̂n

ML is, under standard assumptions, asymptotically efficient, that is,
asymptotically normal with minimum variance:

√
n(θ̂n

ML− θ̄)
d→N (0,M−1

F (θ̄)).
The difficulty here is that we need an estimator that does not require the
knowledge of f , unlike ML estimation. Following Stein’s formulation, see
(Stein, 1956), the model (1) can then be termed semi-parametric, with θ and
f respectively its parametric and non-parametric parts, and f can be con-
sidered as an infinite-dimensional nuisance parameter for the estimation of θ.
In general, the presence of this nuisance parameter induces the loss of effi-
ciency. An estimator that remains asymptotically efficient in these conditions
is called adaptive. A precise definition is given in (Bickel, 1982) and Begun
et al. (1983) give a necessary condition for adaptive estimation. The issue
of adaptivity has motivated a large amount of work and major results have
been derived by a series of authors. In particular, Beran (1974) and Stone
(1975) proved that adaptive estimation in the location model was possible,
using respectively adaptive rank estimates, and an approximation of the score
function based on a kernel estimate of f constructed from residuals obtained
with a preliminary

√
n-consistent estimator. It is this second approach that

has been further developed by Bickel (1982), see also (Manski, 1984). Here we
shall follow an approach that consists of minimizing the entropy of a kernel
estimate constructed from the symmetrized residuals in the regression model
(1). The approach is introduced and justified in Section 2. In Section 3 a
two-step method is shown to coincide with the Stone-Bickel method, which
is adaptive under suitable conditions. Direct (one step) entropy minimization
is considered in section 4 for the location problem. An example illustrates
the good performance of the approach for moderate sample sizes (n = 100
observations). Generalization to the more general case of nonlinear regression
is considered in Section 5, with an example illustrating the robustness of the
estimator with respect to outliers.
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2 An introduction to minimum-entropy estimation

When f is known, the Maximum Likelihood estimator θ̂n
ML minimizes

H̄n(θ) = − 1

n

n∑

i=1

log f [ei(θ)] (4)

with respect to θ ∈ Θ. Since H̄n(θ̄) = −(1/n)
∑n

i=1 log f(εi) is an empirical
version of the (Shannon) entropy

H(f) = −
∞∫

−∞
log[f(u)]f(u)du ,

an intuitive idea is to base the estimation criterion on entropy. Indeed, the
entropy of the residuals being a measure of their dispersion, its minimization
forces them to gather. Consider the residuals ei(θ) obtained from the obser-
vations in the regression model (1),

ei(θ) = Yi − η(θ,Xi) = εi + η(θ̄, Xi)− η(θ,Xi) .

The density of ei(θ), given Xi, is thus

fe, Xi
(u) = f(u− η(θ̄, Xi) + η(θ,Xi)).

Since entropy is invariant by translation, we shall consider the 2n symmetrized
residuals 1 ei(θ),−ei(θ), with corresponding density given Xi

f s
e, Xi

(u) =
1

2

[
f(u− η(θ̄, Xi) + η(θ,Xi)) + f(u + η(θ̄, Xi)− η(θ,Xi))

]
.(5)

We can show that the entropy of the marginal distribution of the symmetrized
residuals,

f s
e (u) =

∫

X
f s

e, x(u)µ(dx) (6)

is maximum for θ = θ̄. Indeed,

H(f s
e ) =−1

2

∫

X




∞∫

−∞
f [u− η(θ̄, x) + η(θ, x)] log[f s

e (u)] du


 µ(dx)

1 Another possibility would be to use un-symmetrized residuals with the constraint
that their median, or their mean, is zero.
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−1

2

∫

X




∞∫

−∞
f [u + η(θ̄, x)− η(θ, x)] log[f s

e (u)] du


 µ(dx)

≥−
∫

X




∞∫

−∞
f(u) log[f(u)] du


 µ(dx) = H(f) ,

see, e.g., Ash (1965), Lemma 8.3.1 p. 238. Equality is obtained only if for
µ-almost all x and almost all u (Lebesgue)

f [u− η(θ̄, x) + η(θ, x)] = f [u + η(θ̄, x)− η(θ, x)] = f s
e (u) .

From the identifiability condition (3), this implies θ = θ̄. The same is true for
the conditional entropy of the symmetrized residuals

Eµ{H(f s
e,X)}=−

∫

X




∞∫

−∞
f s

e,x(u) log[f s
e,x(u)] du


 µ(dx)

≥−
∫

X




∞∫

−∞
f(u) log[f(u)] du


 µ(dx) = H(f) ,

with equality attained only if H(f s
e,x) = H(f) for µ-almost all x, which again

implies θ = θ̄. Notice that from a classical result in information theory,

Eµ{H(f s
e,X)} ≤ H(f s

e ) .

We can perform a local study of H(f s
e ) around θ = θ̄. Direct calculation gives

∇f s
e (u)|θ=θ̄ = 0 , and ∇2f s

e (u)|θ=θ̄ = f ′′(u)
∫

X
∇η(θ̄, x) [∇η(θ̄, x)]> µ(dx).

The entropy of f s
e satisfies

∇H(f s
e ) =−

∞∫

−∞
[1 + log f s

e (u)]∇f s
e (u) du,

∇2H(f s
e ) =−

∞∫

−∞

1

f s
e (u)

∇f s
e (u)[∇f s

e (u)]> du

−
∞∫

−∞
[1 + log f s

e (u)]∇2f s
e (u) du .

Since (f log f)′′ = (1 + log f)f ′′ + (f ′)2/f , we obtain

∇H(f s
e )|θ=θ̄ = 0 , ∇2H(f s

e )|θ=θ̄ = MF (θ̄) ,
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Fig. 1. Behaviors of different criteria plotted as functions of θ: H(fs
e ) (dots) is almost

undistinguishable from Eµ{H(fs
e,X)} (dash-dotted line), although always larger; the

dashed line is for the ML criterion (4), the curve with crosses corresponds to the
estimate (7) (with An = ∞), the full line to (13) (with Un ≡ 1). The model is
η(θ, x) = exp(−θ), with n = 100 observations, 10 at each Xj = 1 + (j − 1)/9,
j = 1, . . . , 10, θ̄ = 1, the εi have the Laplace density f(u) = (1/

√
2) exp(−√2|u|).

that is, the entropy H(f s
e ) is locally concave with zero derivative at θ = θ̄.

Similar results are obtained for the conditional entropy Eµ{H(f s
e,X)},

∀x ∈ X , ∇f s
e,x(u)|θ=θ̄ = 0 , ∇2f s

e,x(u)|θ=θ̄ = f ′′(u)∇η(θ̄, x) [∇η(θ̄, x)]> ,

and

∇Eµ{H(f s
e,X)}|θ=θ̄ = 0 , ∇2Eµ{H(f s

e,X)}|θ=θ̄ = MF (θ̄) .

Both entropies are presented in Figure 1 as functions of θ for a nonlinear
one-parameter model.

The ML criterion H̄n(θ) given by (4) cannot be used since f is unknown. The
situation is similar for H(f s

e ) and Eµ{H(f s
e,X)} that use f and θ̄. To define a

criterion approaching H(f s
e ) we can simply plug a symmetric kernel estimate

f̂ θ
n of f s

e in H, to obtain H̄n(θ) = H(f̂ θ
n). For technical reasons, we introduced a

truncation of the integral in (Pronzato and Thierry, 2001a,b), and the criterion
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Ĥn(θ) to be minimized is then given by

Ĥn(θ) = −
An∫

−An

log[f̂ θ
n(u)]f̂ θ

n(u)du , (7)

where (An) is a suitably (slowly) increasing sequence of positive numbers (to
be chosen in accordance with the decrease of the bandwidth hn of the kernel
estimate f̂ θ

n, see Section 4). Such an estimate is plotted in Figure 1 (curve with
crosses). Similarly, when a kernel estimate f i,θ

ni
of the conditional distribution

f s
e,Xi

can be constructed (design with replications, see Section 5.1), we can
plug it in H to approach Eµ{H(f s

e,X)}.

This construction can be formally justified following an approach similar to
Beran (1978). We consider here the simple case of the location model, but the
justification remains valid for a general nonlinear regression model when the
design consists of replications and the entropy of f s

e,Xi
can be estimated for

each i, see Section 5.1. In a location model, the distribution of the observations
Yi has the density g(y) = f(y − θ̄). Let us define β̂ = (θ̂, f̂) as a couple of
postulated values for θ and f in the semi-parametric model, with f̂ symmetric.
The associated density for the observations can then be expressed as gβ̂(y) =

f̂(y − θ̂). Consider a kernel estimate ĝn of g, formed from the observations
Y1, . . . , Yn,

ĝn(u) =
1

nhn

n∑

i=1

K
(

u− Yi

hn

)

with K a symmetric kernel function, for instance the normal density. The
estimator in (Beran, 1978) is obtained by minimizing the Hellinger distance 2

between ĝn and gβ̂. Consider instead the Kullback-Leibler divergence

L(ĝn, gβ̂) =

∞∫

−∞
log[ĝn(y)/gβ̂(y)]ĝn(y)dy

as the φ-divergence to be minimized. We then need to maximize the term∫∞
−∞ log

[
f̂(u− θ̂)

]
ĝn(u) du with respect to β̂. Write f̂(u) = [h(u)h(−u)]1/2

(h is not necessarily a p.d.f.), the maximum is obtained when h minimizes
L ([ĝn(u + θ) + ĝn(−u + θ)]/2, h(u)). Since L(p, q) is minimal when p and q
are proportional, we need to select h?(u) = [ĝn(u + θ) + ĝn(−u + θ)]/2, and
thus

f̂ = f̂ θ
n(u) =

1

2
[ĝn(u + θ) + ĝn(−u + θ)]

2 One may refer, e.g., to Beran (1977); Pak (1996) for parameter estimation based
on the Hellinger distance in parametric models.
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=
1

2nhn

n∑

i=1

K

(
u− (Yi − θ)

hn

)
+ K

(
u + (Yi − θ)

hn

)
. (8)

The value of θ that minimizes L(ĝn, gβ̂) then corresponds to

θ̂n = argmin
θ

H(f̂ θ
n) , (9)

with f̂ θ
n given by (8), which is thus a kernel estimate based on the symmetrized

residuals Yi − θ,−Yi + θ.

Other entropy estimates than (7) could be used to estimate θ (in particular,
another type of plug-in estimate of the entropy of f̂ θ

n will be considered in the
next sections). In fact, one motivation for the entropy-minimization approach
is that it allows a lot of flexibility: many methods are available to estimate
the entropy Ĥn(θ), and kernel estimation of the conditional distribution f s

e, Xi
,

see (5), or of the marginal f s
e , see (6), is only one possibility. One may refer to

Beirlant et al. (1997) for a survey which includes plug-in, sample spacing and
nearest neighbor methods. Different types of consistency results are obtained
(weak, strong, L2,

√
n, . . .) depending on the method and the assumptions, in

particular on f . The application of these methods to semi-parametric estima-
tion via entropy minimization is quite challenging.

3 Adaptivity of a two-step method with data splitting

As in (Bickel, 1982) we consider randomized designs, for which the Xi’s are
i.i.d. with measure µ, independently of the measurement errors εi

3 .

The method is termed two-step since it is based on a preliminary estimate
θ̂n
1 (which uses all data points Y1, . . . , Yn). This estimate is assumed to be
asymptotically locally sufficient (in the sense of Le Cam 1969). In our situation,
the standard LS estimator θ̂n

LS = argminθ∈Θ
∑n

i=1 [Yi− η(θ,Xi)]
2 can be used

as preliminary estimate.

The method uses data splitting in the sense that the data set is split into two
parts (Y1, . . . , Ym) and (Ym+1, . . . , Yn), with m = m(n) →∞ and m/n → 0 as
n → ∞. The first data set (Y1, . . . , Ym) is used to construct an estimate θ̂m

1

(similar to θ̂n
1 but with m data points only) and to obtain residuals ei(θ̂

m
1 ), i =

1, . . . , m. Then we construct a kernel estimate f̂m from the 2m symmetrized

3 More generally, one might consider the situation where the empirical distribution
of the Xi’s converges almost surely at rate

√
n to some distribution function G on

X , see Manski (1984).
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residuals ±ei(θ̂
m
1 ), i = 1, . . . , m,

f̂m(u) =
1

2mhm

m∑

i=1

[
K

(
u− ei(θ̂

m
1 )

hm

)
+ K

(
u + ei(θ̂

m
1 )

hm

)]
,

with K(.) a suitable kernel function (e.g. the normal density).

The estimator is obtained by performing one single modified Newton step for
the minimization of an estimate Ĥn(θ) of the entropy of the marginal f s

e , see
(6), starting at θ̂n

1 . The estimate Ĥn(θ) that we consider is only valid for θ
close to θ̂m

1 but is such that the method coincides with that of Bickel (1982)
and Manski (1984) 4 :

Ĥn(θ) = − 1

n−m

n∑

i=m+1

log f̂m[ei(θ)] . (10)

A pure Newton step would give

θ̂n = θ̂n
1 − [∇2Ĥn(θ̂n

1 )]−1∇Ĥn(θ̂n
1 ) ,

with

∇Ĥn(θ) =− 1

n−m

n∑

i=m+1

∇f̂m[ei(θ)]

f̂m[ei(θ)]

=
1

n−m

n∑

i=m+1

ρm[ei(θ)]∇η(θ, Xi) , (11)

where ρm = (f̂m)′/f̂m. Define the following truncated version of ρm,

ρ
m

(u) = ρm(u)Um(u) ,

where Um(u) = 0 if |u| > am of f̂m(u) < bm or |(f̂m)′(u)| > cm f̂m(u), and
consider ∇Ĥn(θ), given by (11) but with ρ

m
substituted for ρm. The modified

Newton step uses
θ̂n = θ̂n

1 −M−1
n (θ̂n

1 )∇Ĥn(θ̂n
1 )

with Mn(θ) an approximation of ∇2Ĥn(θ),

Mn(θ) =
In

m− n

n∑

i=m+1

∇η(θ, Xi)[∇η(θ, Xi)]
>

4 Their approach does not rely on entropy minimization, but constructs an approx-
imation of the score function used in ML estimation. The estimate Ĥn below is thus
more an approximation of H̄n, see (4), than of H(fs

e ). See also the discussion in
Section 6.

9



where
In =

1

n−m

n∑

i=m+1

ρ2
m

[ei(θ̂
m
1 )] .

This construction of θ̂n coincides with the estimator of Bickel (1982) and Man-
ski (1984) who show that it is adaptive when the tuning parameters hm, am, bm

and cm satisfy hm → 0, am → ∞, bm → 0, cm → ∞, m−1amh−3
m → 0 and

hmcm → 0 as m →∞.

In fact, as noticed in (Manski, 1984), data splitting is only used for technical
reasons: the fact that the residuals ei(θ), i = m + 1, . . . , n and the kernel esti-
mate f̂m are based on independent samples facilitates the proof of adaptivity.
Also, f̂m in (10) does not depend explicitly on θ, unlike the estimator con-
structed in Section 4. However, Stone’s estimator for location (1975) does not
use data splitting, at the expense of a more delicate proof, see also Andrews
(1989). Moreover, the numerical results presented in (Manski, 1984) show that
data splitting degrades the performances of the estimator. For that reason, a
more direct method is presented in the next section, although its adaptivity
remains an open issue, see (Pronzato et al., 2004).

4 Direct entropy minimization

We consider the case of a location model Yi = θ̄ + εi, i = 1, . . . , n, and refer
to Section 5 for the extension to nonlinear regression. For any θ ∈ Θ we form
the n residuals ei(θ) = Yi − θ, i = 1, . . . , n, and construct

f̂ θ
n(u) =

1

2

[
kθ

n(u) + kθ
n(−u)

]
(12)

to be used to compute Ĥn(θ) given by (7), with

kθ
n(u) =

1

nhn

n∑

i=1

K

(
u− ei(θ)

hn

)

where K(.) is symmetric about zero. f̂ θ
n is then a kernel density estimate based

on the 2n symmetrized residuals ±ei(θ). We assume some standard regularity
assumptions for K(.) (such that

∫∞
−∞ |u|K(u)du < ∞, K is two times continu-

ously differentiable with derivatives of bounded variation, see Schuster (1969)).
A classical choice is the normal density K(u) = 1/

√
2π exp (−u2/2). Alter-

natively, we also consider the following entropy estimator, to be compared to
(10),

Ĥn(θ) = − 1

n

n∑

i=1

log f̂ θ
n, i[ei(θ)] Un[ei(θ)] (13)

10



where f̂ θ
n, i is similar to (12), but does not use ei(θ), that is,

f̂ θ
n, i(u) =

1

2

[
kθ

n, i(u) + kθ
n, i(−u)

]
(14)

with

kθ
n, i(u) =

1

(n− 1) hn

n∑

j=1, j 6=i

K

(
u− ej(θ)

hn

)
, i = 1, . . . , n .

In (13), Un defines a smooth truncation for large residuals, Un(z) = U(|z|/An−
1) with U(z) = 1 for z ≤ 0, 0 for z ≥ 1 and U(z) varying smoothly between 0
and 1, with U ′(0) = U ′(1) = 0, maxz |U ′(z)| = d1 < ∞, maxz |U ′′(z)| = d2 <
∞.

Define θ̂n = argminθ∈Θ Ĥn(θ), with Ĥn(θ) given by (7) or (13). Notice that
Ĥn(θ) is two times continuously differentiable w.r.t. θ ∈ int(Θ). Convergence
in probability when n→∞ will be denoted p→ (θ,pÃ will be used when the con-
vergence is uniform with respect to θ), and convergence in distribution will be
denoted d→. Under common measurability conditions (see, e.g., Lemmas 2 and
3 of Jennrich (1969)) the standard, and rather general, approach for proving
asymptotic normality (and hopefully asymptotic efficiency) of θ̂n minimizing
some criterion Ĥn(θ) can be decomposed into three steps:

A) show that Ĥn(θ)
θ,pÃH(θ), n → ∞, with Ĥn(θ) continuous in θ for any n,

and that H(θ̄) < H(θ) for any θ 6= θ̄;
B) show that ∇2Ĥn(θ)

θ,pÃ∇2H(θ), n → ∞, with ∇2H(θ̄) positive definite
(Â 0);

C) decompose ∇Ĥn(θ̄) into ∇H̄n(θ̄) + ∆n(θ̄), with
√

n∇H̄n(θ̄)
d→N (0,M1)

and
√

n∆n(θ̄)
p→0 as n→∞.

The uniform convergence in (A) proves the weak consistency of θ̂n (θ̂n p→θ̄).
(A) and (B) imply that ∇2Ĥn(θ̂n)

p→M2 = ∇2H(θ̄) Â 0 as n → ∞. Finally,
consider the following Taylor expansion of ∇Ĥn(θ) at θ = θ̂n,

∇Ĥn(θ̂n) = 0 = ∇Ĥn(θ̄) + (θ̂n − θ̄)>∇2H[αnθ̂n + (1− αn)θ̄] ,

with αn ∈ [0, 1] (see Jennrich (1969) who uses a similar approach for LS estima-
tion). (C) then implies asymptotic normality, that is,

√
n(θ̂n− θ̄)

d→N (0,M−1
2

M1 M−1
2 ). The adaptivity of θ̂n would then directly follow from M−1

2 M1M
−1
2 =

M−1
F (θ̄), the inverse of the Fisher information matrix (2).

One may notice that step (C) allows some freedom in the choice of the function
H̄n(θ), even though it would be natural to pick (4), for which the asymptotic
normality

√
n∇H̄n(θ̄)

d→N (0,M1) holds under standard assumptions, with
M1 = MF (θ̄) (asymptotic properties of the ML estimator). Also, according

11



to the review (Beirlant et al., 1997),
√

n-consistency of Ĥn(θ) is difficult to
obtain, but notice that it is not a prerequisite for

√
n-consistency of θ̂n (we

only need
√

n∆n(θ̄)
p→0, n →∞).

In the case of the location model, assuming that, additionally to the assump-
tions of previous sections, f has unbounded support, f and its derivatives f ′, f ′′

and f ′′′ are bounded and that there exists a strictly increasing function B such
that for all u ∈ IR, B(u) ≥ sup|y|<u 1/f(y), we can prove (A) for the entropy
estimate (13) provided that Bn = B(3An) (respectively hn) increases (respec-
tively decreases) slowly enough (Bn = nα, hn = 1/(nα log n) with α < 1/3 is
suitable). The proof is based on (Dmitriev and Tarasenko, 1973, Theorem 4)
and (Newey, 1991, Corollary 3.1). Similarly, with slightly stronger conditions
on f we can prove (B), that is, ∇2Ĥn(θ)

θ,pÃ∇2H(θ), with ∇2H(θ̄) = I(f), the
fisher information for location (Bn = nα, hn = 1/(nα log n) with α < 1/7 is
suitable). A key step to prove adaptivity of θ̂n at step (C) would be to show
that

− 2√
n

n∑

i=1

(kθ̄
n,i)

′(−εi)

kθ̄
n,i(εi) + kθ̄

n,i(−εi)
Un(εi)

d→N (0, I(f)) ,

the term on the left-hand side being the major contribution to
√

n∇Ĥn(θ̄)
when Ĥn(θ) is given by (13). The conditions required on the functions f , K
and U for this to hold are currently under investigation 5 .

We conclude this section by some simulation results that illustrate the good
finite sample behavior of minimum-entropy estimation in the location model,
see Table 1. The estimators used in the comparison are the ordinary Least
Squares (LS) estimator, the Minimum Hellinger Distance (MHD) estimator
(Beran, 1978) and the Minimum-Entropy estimators minimizing (7) for ME1

and (13) for ME2. We take An = ∞ in (7) and Un(x) ≡ 1 in (13). After
considering different smoothing techniques, using the broad study of Berlinet
and Devroye (1994), we selected the bandwidth hn of the kernel estimators
(12) and (14) with the double kernel method, based on residuals obtained
from a robust M -estimator. We compare the empirical value Ĉn of the covari-
ance E{v̂nv̂n

>}, with v̂n =
√

n(θ̂n − θ̄), for the different estimators, making
100 repetitions of the estimation procedure with n = 100 observations each.
Also, we compare the methods for different noise distributions: the standard
normal, the bi-exponential or Laplace density (f(u) = (1/

√
2) exp(−√2|u|)),

and Student’s tν distributions with ν = 3, 5 and 10 degrees of freedom. The
optimum asymptotic values of Ĉn, M−1

F (θ̄), obtained for ML estimation, are
also given in Table 1.

5 One difficulty which is not present in two-step approach with data splitting of
Section 3 is due to the fact that (kθ̄

n,i)
′(−u) 6= −(kθ̄

n,i)
′(u). On the other hand,

ρm(−u) = −ρm(u) in (11).
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Table 1
Values of Ĉn in the location model.

f N (0, 1) exp t3 t5 t10

M−1
F 1 0.5 0.5 0.8 0.9455

LS 1.09 0.94 1.13 0.96 1.03

MHD 1.12 0.72 0.50 0.86 1.0

ME1 1.12 0.71 0.48 0.83 0.99

ME2 1.19 0.74 0.57 0.84 0.98

5 Entropy minimization in nonlinear regression

5.1 Design with replications

Assume that the design consists of replications at fixed points X1, . . . , Xm,
where Xj receives the weight µj. The design measure µ thus has a finite
number of support points, and, for a total of n observations, nj = nµj are
made at X = Xj.

We consider first a two-stage method, with m minimum-entropy estimations
at the first stage and one (weighted) LS estimation at the second. For each
Xj, j = 1, . . . , m, we solve a location problem. Let Yji

denote the observations
made at X = Xj, i = 1, . . . , nj, and η̂j denote the estimated response at
X = Xj obtained by a minimum-entropy estimator. If η̂j is adaptive, √nj[η̂

j−
η(θ̄, Xj)]

d→N (0, I−1(f)), nj→∞. Having solved m location problems of this
type, we form a LS estimation problem by considering the estimated responses
η̂j as pseudo-observations, and minimize Jn(θ) =

∑m
j=1 µj[η(θ, Xj)− η̄j]2. One

can then show that the estimator θ̂n that minimizes Jn(θ) satisfies
√

n(θ̂n −
θ̄)

d→N (0,M−1
F (θ̄)). Adaptivity in nonlinear regression with replications thus

directly follows from adaptivity in the location model.

One can expect a one-stage estimator to exhibit a better finite sample behavior
than the two-stage procedure above. Using a justification similar to that given
in Section 4 for the location model, we suggest the following method:

(i) form the kernel estimates f̂ j,θ
nj

of the conditional distributions f s
e,Xj

of (sym-
metrized) residuals for each design point Xj separately, using (12) or (14) and
estimate their respective entropies Ĥnj

(θ,Xj), using (7) or (13);
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(ii) compute the conditional entropy

Eµ{Ĥn(θ, X)} =
m∑

j=1

µjĤnj
(θ, Xj) . (15)

Again, the adaptivity of θ̂n that minimizes Eµ{Ĥn(θ, X)} would follow from
adaptivity in the location model. However, the conditional entropy (15) can
only be estimated in the case of designs consisting of replications, and this
approach does not extend to more general designs.

5.2 General situation: an upper bound on the conditional entropy

Suppose that in the situation of Section 5.1 we mix all (symmetrized) residuals
together and estimate the entropy Ĥn(θ) of their marginal distribution by (7)
or (13). Replace µ by µn in (15), with µn the empirical measure of the design
points Xi. Let U be a random variable with distribution conditional on X =
Xj given by f̂ j,θ

nj
. Then, Eµn{Ĥn(θ,X)} = H(U |X) the conditional entropy of

U given X, and, as mentioned in Section 2, H(U |X) ≤ H(U) = Ĥn(θ), the
entropy obtained by mixing up all residuals. The latter can be constructed for
any design, and forms an upper bound on the criterion Eµn{Ĥn(θ, X)} given
by (15). Figure 2 presents Ĥn(θ) and Eµn{Ĥn(θ, X)} for the same nonlinear
one-parameter model as in Figure 1 when the entropy estimation uses (13)
(with Un ≡ 1) (Ĥn(θ) is also presented in Figure 1, where it can be seen that
estimation by (7) or (13) produces similar results).

5.3 Example

We take η(θ, x) = θ1 exp(−θ2x), with θ̄ = (100, 2)>, the design measure µ is
supported at Xj = 1 + (j − 1)/9, j = 1, . . . , 10, with weights µj = 1/10 for
all j. We compare the performances of the ordinary Least Squares estimator
(LS), the Minimum Hellinger Distance estimator (MHD) of Beran (1978) and
the Minimum-Entropy estimator (ME) minimizing (7) with An = ∞ and hn

obtained by the double kernel method applied on residuals of a robust M -
estimation. We make 100 replications of the experiment using n = 100 obser-
vations and compare the empirical covariance matrices Ĉn of v̂n =

√
n(θ̂n− θ̄)

for the different estimators and different distributions of the measurement er-
rors εi (standard normal, bi-exponential and Student’s tν distributions with
ν = 3, 5 and 10 degrees of freedom). Both MHD and ME mix all residuals
together (kernel estimates of the marginal distributions are used). The trace
and determinant of Ĉn are compared to trace(M−1

F ) and det(M−1
F ) obtained
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Fig. 2. Behaviors of different criteria plotted as functions of θ for the same example
as in Figure 1: H(fs

e ) (dots), Eµ{H(fs
e,X)} (dash-dotted line), Ĥn(θ) (full line) and

Eµn{Ĥn(θ, X)} (circles).

Table 2
Values (Tn, Dn) of the trace (×10−3) and determinant (×10−2) of Ĉn for different
f and estimators

f N (0, 1) exp t3 t5 t10

Ĉn = M−1
F (6.2, 0.8) (3.1, 0.2) (3.1, 0.2) (4.9, 0.5) (5.8, 0.75)

LS (8.8, 1.2) (13.6, 3.6) (9.1, 2.0) (9.7, 2.2) (9.7, 2.1)

MHD (9.1, 1.4) (3.8, 0.5) (6.4, 0.6) (7.9, 1.4) (7.1, 1.7)

ME (9.2, 1.25) (3.8, 0.4) (4.9, 0.4) (7.8, 1.2) (6.8, 1.35)

asymptotically (n →∞) by ML estimation. The results are presented in Table
2.

Finally, in order to illustrate the robustness properties of the minimum-entropy
estimator, we introduce q outliers, q = 20, 40, 60, 80, in addition to the n = 100
regular observations, when f corresponds to the Laplace distribution. They
correspond to errors εi normally distributed N (10, 4) with q/10 observations
at each of the Xj’s.

Table 3 presents the results for trace(Ĉn) and det(Ĉn) obtained in this case
and shows that minimum-entropy estimation (ME1 for (7) and ME2 for (13))

15



Table 3
Values (Tn, Dn) of the trace (×10−3) and determinant (×10−2) of Ĉn when q out-
liers are added to the n = 100 regular observations, f corresponds to the Laplace
distribution.

q 20 40 60 80

LS (84.25, 42.8) (146.25, 67.0) (184.45, 58.2) (208.7, 58.5)

MHD (4.25, 0.9) (12.7, 2.25) (23.4, 4.5) (56.95, 19.8)

ME1 (4.0, 0.5) (9.8, 1.7) (6.0, 0.9) (6.7, 13.6)

ME2 (3.95, 0.5) (8.4, 1.7) (5.5, 0.9) (10.9, 39.7)

is robust with respect to the presence of outliers. Figure 3 illustrates the situ-
ation when q = 40 outliers have been introduced. On both sides of the figure
the dashed line corresponds to the true density of the errors εi (Laplace). The
full line corresponds to the estimated density f̂ θ̂n

n of the residuals, with θ̂n the
minimum-entropy estimator on the left-hand side and θ̂n the LS estimator on
the right-hand side. The positions of the residuals along the horizontal axis
are indicated by stars (the vertical position is arbitrary). Note that the mini-
mum entropy estimator manages to separate the regular observations from the
outliers, whereas all residuals remain mixed for the LS estimator. Once the
residuals are parted into distinct clusters, with an estimated density f̂ θ̂n

n show-
ing three distinct modes (on the left and right for the outliers, near zero for
the regular data), the entropy does not change when the left and right clusters
are translated further away from zero. Hence, the minimum-entropy estimate
is not modified when the distance of outliers to regular data points becomes
very large (a property similar to so-called redescending M -estimators).

6 Perspectives and open questions

Although in Section 3 we pointed out some connection between minimum-
entropy estimation and the approach of Bickel (1982) and Manski (1984),
there exists a basic difference that should not be undervalued: they approxi-
mate the score-function used in ML estimation, or equivalently the ML crite-
rion (4), whereas we approximate the entropy of the distribution of residuals.
That the two become close when the parameters θ are in the neighborhood
of θ̄ is clear from (4): for θ around θ̄, the residuals are close to the errors εi

and their estimated distribution is close to f . However, the difference may be
important further away from θ̄ (although Figure 1 indicates that (4), (7) and
(13) remain very similar for a reasonable parameter range). Also, the depen-
dence of the kernel estimates (12) or (14) in θ makes the derivation of the
asymptotic properties of θ̂n minimizing (7) or (13) much more difficult than
for the minimizer of (10). In particular, the adaptivity of θ̂n is still an open
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Fig. 3. 100 regular errors with Laplace distribution (dashed line), 40 outliers with
εi ∼ N (10, 4). Residuals and their estimated density: left for minimum entropy
estimation, right for LS.

question.

The example of Section 5.3 shows that θ̂n is robust with respect to outliers, a
property already investigated for the minimization of the Hellinger distance in
(Beran, 1978). A similar study for θ̂n is still to be done. Displaying estimators
asymptotically efficient for regular data and robust with respect to outliers
would clearly be of practical importance in many signal and image processing
applications.

The results presented here, and also most of those mentioned (Beran, 1978;
Bickel, 1982; Manski, 1984, etc.), concern static systems only, in the sense
that the errors εi are supposed to be independent (although the case of εi’s
and Xi’s being interdependent is considered in (Manski, 1984)). The extension
to α-mixing, or m-dependent sequences of errors would be important for sig-
nal processing applications (an example presented in (Pronzato and Thierry,
2001a,b) shows that minimum-entropy estimation still performs well in the
presence of correlated errors — interference noise).

Finally, as mentioned in Section 2, several methods exist for entropy estima-
tion, and each of them could be used to define a minimum-entropy estima-
tor. Some do not require kernel smoothing of the empirical density of resid-
uals, which could be considered as an advantage over the plug-in estimates
used in this paper, see, e.g., Vasicek (1976) for a sample-spacing method and
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Kozachenko and Leonenko (1987) for an approach relying on nearest neighbors
(in particular, the latter applies for samples in any dimension k, and could
be used for minimum-entropy estimation in multiple regression where Yi is
then a k-dimensional vector). However, investigating the asymptotic prop-
erties of their associated minimum-entropy estimators seems a very difficult
task. Another direction would be to consider recent developments in paramet-
ric estimation via divergence minimization. In a parametric context (which,
for regression models, means that f is known), the asymptotically efficient
estimator of Beran (1977), based on minimizing Hellinger distance, requires
smoothing of the empirical distribution in order to compute its distance to a
distribution with density. On the other hand, the approach used by Bronia-
towski (2003); Broniatowski and Keziou (2004) is based on a duality property
that permits to estimate the divergences of interest without requiring smooth-
ing. The application to the semi-parametric problem considered in the paper
is an open and motivating issue.
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