Planification d'expériences numériques : quelques tendances et questions ouvertes

Luc Pronzato

Laboratoire I3S, CNRS-Univ. Nice Sophia Antipolis, France

125

Outline

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

I Space-filling design: miniMax & Maximin

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

2 Regularized Maximin

Beyond space filling

Possible objectives

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

Computer experiment = simulations

 $x \in \mathbb{R}^d \to \text{observation } \mathscr{Y}(x) \text{ (real phenomenon, physical system)}$ Numerical simulation: $x \to Y(x) = f(x)$ Pairs $(X_i, f(X_i)), i = 1, 2, \dots, n \to \text{approximation } \eta_n(\cdot) \text{ of } f(\cdot) (\to \text{epistemic uncertainty} - \text{due to simulator, model } \eta_n(\cdot), \text{finite data set...})$

Possible objectives

Computer experiment = simulations

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

 $x \in \mathbb{R}^d \to \text{observation } \mathscr{Y}(x)$ (real phenomenon, physical system) Numerical simulation: $x \to Y(x) = f(x)$ Pairs $(X_i, f(X_i)), i = 1, 2, \dots, n \to \text{approximation } \eta_n(\cdot) \text{ of } f(\cdot) (\to \text{epistemic uncertainty} - \text{due to simulator, model } \eta_n(\cdot), finite data set...)$

- optimization: find $x^* = \arg \max_{x \in \mathscr{X}} f(x)$ (hopefully close to $\arg \max_{x \in \mathscr{X}} \mathscr{Y}(x)$)
- \bullet inversion: reconstruct $\{x\in \mathscr{X}: f(x)=T\}$
- estimation of failure prob. $\operatorname{Prob}\{f(x) > C\}$ when $x \sim \phi(\cdot)$ (intrinsic uncertainty due to input variability)
- sensitivity analysis (functional variance analysis)
- approximation/interpolation

1 Space-filling design

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

Objective = approximation/interpolation

f(x) some unknown function defined for $x \in \mathscr{X} \subset \mathbb{R}^d$ construct a 'good' approximation $\eta_n(\cdot)$ of $f(\cdot)$ over \mathscr{X} from pairs $(X_i, f(X_i)), i = 1, 2, ..., n$ (*n* not necessarily fixed beforehand)

Since $f(\cdot)$ is unknown \rightarrow put n points $\mathbf{X}_n = (X_1, \ldots, X_n)$ in \mathscr{X} as dispersed as possible (can be justified precisely [Biedermann & Dette, 2001])

miniMax and Maximin

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

Classical measures of dispersion (often $\mathscr{X} = [0, 1]^d$ ① miniMax distance: minimize $\Phi_{mM}(\mathbf{X}_n) = \max_{x \in \mathscr{X}} \min_i ||x - X_i||$ $d = 1 \Leftrightarrow X_i = (2i - 1)/(2n), \ i = 1, \dots, n$ $\Rightarrow \Phi_{mM}^* = 1/(2n)$ $d > 1 \Leftrightarrow$ sphere-covering

miniMax and Maximin

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

Classical measures of dispersion (often $\mathscr{X} = [0, 1]$ (1) miniMax distance: minimize $\Phi_{mM}(\mathbf{X}_n) = \max_{x \in \mathscr{X}} \min_i ||x - X_i||$ $d = 1 \Leftrightarrow X_i = (2i - 1)/(2n), i = 1, ..., n$ $\Rightarrow \Phi_{mM}^* = 1/(2n)$ $d > 1 \Leftrightarrow$ sphere-covering (2) Maximin distance: maximize

$$\begin{split} \Phi_{Mm}(\mathbf{X}_n) &= \min_{i \neq j} d_{ij} = \min_{i \neq j} \|X_i - X_j\| \\ d &= 1 \Leftrightarrow X_i = (i-1)/(n-1), \ i = 1, \dots, n \\ &\Rightarrow \Phi^*_{Mm} = 1/(n-1) \\ d &> 1 \Leftrightarrow \text{sphere-packing} \end{split}$$

miniMax and Maximin (2)

miniMax and Maximin (2)

4 Conclusions

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

① miniMax criterion Φ_{mM}

 Φ_{mM} has nice properties in terms of approximation theory, but is difficult to compute

Possible evaluation via Delaunay triangulation (tessellation)

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

① miniMax criterion Φ_{mM}

 $\blacksquare \Phi_{mM}$ has nice properties in terms of approximation theory, but is difficult to compute

Possible evaluation via Delaunay triangulation (tessellation)

- $\mathbf{X}_n \ (= n \text{ points in } \mathscr{X} = [0, 1]^d) \to \text{take all symmetric points w.r.t. } 2d \text{ faces of } \mathscr{X}$
- Compute the Delauany triangulation (tessellation)
- candidates for arg max_{x∈X} min_i ||x X_i|| are centers of a circumscribed spheres

miniMax with Delaunay tessellation: 5-point Lh

Luc Pronzato

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

miniMax with Delaunay tessellation: 5-point Lh

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

 $\Phi_{Mm}(\mathbf{X})$ can be calculated... but remains computationally costly: up to $M^{\lceil d/2 \rceil}$ simplices (and circumscribed spheres) with $M = (2d+1)n \rightarrow$ computing time $\mathcal{O}(M \log M + M^{\lceil d/2 \rceil})$

http://www.packomania.com/

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

To ensure good projective properties along all axes: make each one-dimensional projection Maximin-optimal $(X_i = \frac{i-1}{n-1}) (\rightarrow finite set, with <math>(n!)^{d-1}$ elements)

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

Maximi

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

To ensure good projective properties along all axes: make each one-dimensional projection Maximin-optimal $(X_i = \frac{i-1}{n-1})$ (\rightarrow finite set, with $(n!)^{d-1}$ elements)

n, not Lh, (
$$d = 2, n = 7$$
, radius= $\phi_{Mm}(\mathbf{X})/2$)

2 Regularized Maximin

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

Define
$$d_{ij} = ||X_i - X_j||$$
, so that $\Phi_{Mm}(\mathbf{X}) = \min_{i \neq j} d_{ij}$

$$\underline{\phi}_{[q]}(\mathbf{X}) = \left[\sum_{i < j} d_{ij}^{-q}\right]^{-1/q} \text{ and } \overline{\phi}_{[q]}(\mathbf{X}) = \left[\sum_{i < j} \mu_{ij} d_{ij}^{-q}\right]^{-1/q}$$

with
$$\mu_{ij} > 0$$
 and $\sum_{i < j} \mu_{ij} = 1$

2 Regularized Maximin

~

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Bevond space filling

4 Conclusions

Define
$$d_{ij} = ||X_i - X_j||$$
, so that $\Phi_{Mm}(\mathbf{X}) = \min_{i \neq j} d_{ij}$
 $\underline{\phi}_{[q]}(\mathbf{X}) = \left[\sum_{i < j} d_{ij}^{-q}\right]^{-1/q}$ and $\overline{\phi}_{[q]}(\mathbf{X}) = \left[\sum_{i < j} \mu_{ij} d_{ij}^{-q}\right]^{-1/q}$
with $\mu_{ij} > 0$ and $\sum_{i < j} \mu_{ij} = 1$
Then
 $\underline{\phi}_{[q]}(\mathbf{X}) \le \phi_{Mm}(\mathbf{X}) \le \overline{\phi}_{[q]}(\mathbf{X}) \le \underline{\mu}^{-1/q} \underline{\phi}_{[q]}(\mathbf{X})$, $q > 0$,

with $\mu = \min_{i < j} \mu_{ij}$ (convergence monotonic in q from both sides as $q \to \infty$)

2 Regularized Maximin

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

Define
$$d_{ij} = ||X_i - X_j||$$
, so that $\Phi_{Mm}(\mathbf{X}) = \min_{i \neq j} d_{ij}$
 $\underline{\phi}_{[q]}(\mathbf{X}) = \left[\sum_{i < j} d_{ij}^{-q}\right]^{-1/q}$ and $\overline{\phi}_{[q]}(\mathbf{X}) = \left[\sum_{i < j} \mu_{ij} d_{ij}^{-q}\right]^{-1/q}$
with $\mu_{ij} > 0$ and $\sum_{i < j} \mu_{ij} = 1$
Then
 $\underline{\phi}_{[q]}(\mathbf{X}) \le \phi_{Mm}(\mathbf{X}) \le \overline{\phi}_{[q]}(\mathbf{X}) \le \underline{\mu}^{-1/q} \underline{\phi}_{[q]}(\mathbf{X})$, $q > 0$,

with $\underline{\mu} = \min_{i < j} \mu_{ij}$ (convergence monotonic in q from both sides as $q \to \infty$)

By continuity:
$$\overline{\phi}_{[0]}(\mathbf{X}) = \exp\left[\sum_{i < j} \mu_{ij} \log(d_{ij})\right]$$

Regularized Φ_{Mm}

with $\underline{\mathbf{X}}_{[q]}^{*}$ optimal for $\underline{\phi}_{[q]}$

$$\mu = \text{uniform measure } (\mu_{ij} = \underline{\mu} = {\binom{n}{2}}^{-1} \text{ for all } i < j) \Rightarrow$$
 $\frac{\phi_{Mm}(\underline{\mathbf{X}}_{[q]}^*)}{\phi_{Mm}^*} \ge {\binom{n}{2}}^{-1/q},$

(Maximin efficiency $> 1 - \epsilon$ for $q > rac{2\log(n)}{\epsilon}$)

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

12 / 37

Luc Pronzato Workshop de clôture ANR OPUS

Regularized Φ_{Mm}

$$\mu = \text{uniform measure } (\mu_{ij} = \underline{\mu} = {\binom{n}{2}}^{-1} \text{ for all } i < j) \Rightarrow$$

$$\frac{\phi_{Mm}(\underline{\mathbf{X}}_{[q]}^*)}{\phi_{Mm}^*} \ge {\binom{n}{2}}^{-1/q},$$

21/10/2011 1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

with $\underline{\mathbf{X}}_{[q]}^*$ optimal for $\underline{\phi}_{[q]}$ (Maximin efficiency $> 1 - \epsilon$ for $q > \frac{2\log(n)}{\epsilon}$)

 $q=2 \rightarrow$ "Energy criterion" of [Audze & Eglais, 1977]

for $q \lesssim 5$ easier optimization (Lh designs) than for ϕ_{Mm} [Morris & Mitchell, 1995]

 ${\mathscr T}$ use the smallest q such that the optimum designs coincide

Luc Pronzato Workshop de clôture ANR OPUS 21/10/2011

Regularized Φ_{Mm}

$$\mu = \text{uniform measure } (\mu_{ij} = \underline{\mu} = {\binom{n}{2}}^{-1} \text{ for all } i < j) \Rightarrow$$

$$\frac{\phi_{Mm}(\underline{\mathbf{X}}_{[q]}^*)}{\phi_{Mm}^*} \ge {\binom{n}{2}}^{-1/q},$$

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

with $\underline{\mathbf{X}}_{[q]}^*$ optimal for $\underline{\phi}_{[q]}$ (Maximin efficiency $> 1 - \epsilon$ for $q > \frac{2\log(n)}{\epsilon}$)

 $q=2 \rightarrow$ "Energy criterion" of [Audze & Eglais, 1977]

for $q \lesssim 5$ easier optimization (Lh designs) than for ϕ_{Mm} [Morris & Mitchell, 1995]

 ${\mathscr T}$ use the smallest q such that the optimum designs coincide

Continuous versions: ξ a probability measure on \mathscr{X} , $\tilde{\phi}_{[q]}(\xi) = \left[\int_{\mathscr{X}} \int_{\mathscr{X}} \|x - y\|^{-q} \xi(dx) \xi(dy)\right]^{-1/q}$ $\tilde{\phi}_{[0]}(\xi) = \exp \int_{\mathscr{X}} \int_{\mathscr{X}} \log \|x - y\| \xi(dx) \xi(dy)$

12 / 37

Regularized Φ_{Mm} (2)

Workshop de clôture ANR OPUS 21/10/2011

Luc Pronzato

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

A less severe regularization of Φ_{Mm} with NN

Write
$$\Phi_{Mm}(\mathbf{X}) = \min_i d_i^*$$
 with $d_i^* = \min_{j \neq i} ||X_i - X_j|$
(= Nearest Neighbor distance to X_i)

Define

$$\underline{\phi}_{[NN,q]}(\mathbf{X}) = \left[\sum_{i=1}^{n} (d_i^*)^{-q}\right]^{-1/q}, \overline{\phi}_{[NN,q]}(\mathbf{X}) = \left[\sum_{i=1}^{n} \frac{(d_i^*)^{-q}}{n}\right]^{-1/q}$$

1 Space-filling

125

Luc Pronzato Workshop de

clôture ANR OPUS 21/10/2011

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

${}^{{}^{\sharp}}$ A less severe regularization of Φ_{Mm} with NN

Write
$$\Phi_{Mm}(\mathbf{X}) = \min_i d_i^*$$
 with $d_i^* = \min_{j \neq i} ||X_i - X_j||$
(= Nearest Neighbor distance to X_i)

Define

$$\underline{\phi}_{[NN,q]}(\mathbf{X}) = \left[\sum_{i=1}^{n} (d_i^*)^{-q}\right]^{-1/q}, \overline{\phi}_{[NN,q]}(\mathbf{X}) = \left[\sum_{i=1}^{n} \frac{(d_i^*)^{-q}}{n}\right]^{-1/q}$$

3 Beyond space filling

4 Conclusions

Luc Pronzato Workshop de clôture ANR

OPUS 21/10/2011

1 Space-filling 2 Regularized Maximin

 $\begin{array}{l} \text{Then} \quad \underline{\phi}_{[NN,q]}(\mathbf{X}) \leq \phi_{Mm}(\mathbf{X}) \leq n^{1/q} \, \underline{\phi}_{[NN,q]}(\mathbf{X}) \\ \text{(convergence monotonic in } q \text{ from both sides as } q \to \infty) \end{array}$

${}^{{}^{\sharp}}$ A less severe regularization of Φ_{Mm} with NN

Write
$$\Phi_{Mm}(\mathbf{X}) = \min_i d_i^*$$
 with $d_i^* = \min_{j \neq i} ||X_i - X_j||$
(= Nearest Neighbor distance to X_i)

Define

$$\underline{\phi}_{[NN,q]}(\mathbf{X}) = \left[\sum_{i=1}^{n} (d_i^*)^{-q}\right]^{-1/q}, \overline{\phi}_{[NN,q]}(\mathbf{X}) = \left[\sum_{i=1}^{n} \frac{(d_i^*)^{-q}}{n}\right]^{-1/q}$$

Maximin 3 Beyond space filling

4 Conclusions

Luc Pronzato Workshop de clôture ANR

OPUS 21/10/2011

1 Space-filling 2 Regularized

> Then $\underline{\phi_{[NN,q]}(\mathbf{X}) \leq \phi_{Mm}(\mathbf{X}) \leq n^{1/q} \underline{\phi_{[NN,q]}(\mathbf{X})}}{(\text{convergence monotonic in } q \text{ from both sides as } q \to \infty)}$ $\frac{\phi_{Mm}(\underline{\mathbf{X}}_{[NN,q]}^*)}{\phi_{Mm}^*} \geq n^{-1/q},$ with $\underline{\mathbf{X}}_{[NN,q]}^*$ optimal for $\underline{\phi}_{[NN,q]}$ (Maximin efficiency $> 1 - \epsilon$ for $q > \frac{\log(n)}{\epsilon} \to \text{gain of factor 2}$)

Workshop de clôture ANR OPUS 21/10/2011

Relation with MST and other graphs & entropy

[Beardwood, Halton, Hammersley 1959]: X_i i.i.d., p.d.f. φ , TSP graph $\mathcal{G}_{TSP}(\mathbf{X})$

$$\frac{\sum_{e_i \in \mathcal{G}_{TSP}(\mathbf{X})} |e_i|}{n^{(d-1)/d}} \to C(d) \int \varphi^{(d-1)/d}(x) \, dx \text{ a.s.} , \ n \to \infty$$

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

then [Steele, 1981] for other Euclidean functionals on \mathbf{X} , [Redmond & Yukich, 1994] using quasi-additivity

Workshop de clôture ANR OPUS 21/10/2011

Relation with MST and other graphs & entropy

[Beardwood, Halton, Hammersley 1959]: X_i i.i.d., p.d.f. φ , TSP graph $\mathcal{G}_{TSP}(\mathbf{X})$

$$\frac{\sum_{e_i \in \mathcal{G}_{TSP}(\mathbf{X})} |e_i|}{n^{(d-1)/d}} \to C(d) \int \varphi^{(d-1)/d}(x) \, dx \text{ a.s.} , \ n \to \infty$$

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

then [Steele, 1981] for other Euclidean functionals on **X**, [Redmond & Yukich, 1994] using quasi-additivity

[Redmond & Yukich , 1996], [Yukich, 1998], [Penrose & Yukich 2003...2011], [Wade, 2011]:

$$\frac{\sum_{e_i \in \mathcal{G}(\mathbf{X})} |e_i|^{\beta}}{n^{(d-\beta)/d}} \to C(\beta, d) \int \varphi^{(d-\beta)/d}(x) \, dx \,, \ n \to \infty$$

with $\mathcal{G}(\mathbf{X})$ Minimum Spanning Tree (MST), NN, TSP, Voronoi, Delaunay, Sphere of Influence, Gabriel... (different types of convergence (L_p) , different conditions on φ and β ...)

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

$$\frac{\sum_{e_i \in \mathcal{G}(\mathbf{X})} |e_i|^{\beta}}{n^{(d-\beta)/d}} \to C(\beta, d) \int \varphi^{(d-\beta)/d}(x) \, dx \,, \ n \to \infty$$

• \Rightarrow estimation of Rényi entropy $H_{\alpha}^{*}(\varphi) = \frac{1}{1-\alpha} \log \int \varphi^{\alpha}(t) dt$ with $\alpha = (d - \beta)/d$ $1 \leq \beta < d \Rightarrow 0 < \alpha \leq 1 - 1/d$, RHS max for $\varphi = \text{ct.}$ (uniform)

 \rightarrow maximize the LHS

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

$$\frac{\sum_{e_i \in \mathcal{G}(\mathbf{X})} |e_i|^{\beta}}{n^{(d-\beta)/d}} \to C(\beta, d) \int \varphi^{(d-\beta)/d}(x) \, dx \, , \ n \to \infty$$

• \Rightarrow estimation of Rényi entropy $H_{\alpha}^{*}(\varphi) = \frac{1}{1-\alpha} \log \int \varphi^{\alpha}(t) dt$ with $\alpha = (d-\beta)/d$ $1 \le \beta < d \Rightarrow 0 < \alpha \le 1 - 1/d$, RHS max for $\varphi =$ ct. (uniform)

 \rightarrow maximize the LHS

 \bullet NN graph: $|e_i|=d_i^* \to {\rm maximize}\; \underline{\phi}_{[NN,q]}$ with $q=-\beta$

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

$$\frac{\sum_{e_i \in \mathcal{G}(\mathbf{X})} |e_i|^{\beta}}{n^{(d-\beta)/d}} \to C(\beta, d) \int \varphi^{(d-\beta)/d}(x) \, dx \, , \ n \to \infty$$

• \Rightarrow estimation of Rényi entropy $H_{\alpha}^{*}(\varphi) = \frac{1}{1-\alpha} \log \int \varphi^{\alpha}(t) dt$ with $\alpha = (d-\beta)/d$ $1 \le \beta < d \Rightarrow 0 < \alpha \le 1 - 1/d$, RHS max for $\varphi = \text{ct.}$ (uniform)

 \rightarrow maximize the LHS

- NN graph: $|e_i| = d_i^* \rightarrow \text{maximize } \underline{\phi}_{[NN,a]}$ with $q = -\beta$
- $(1/n) \sum_{e_i \in \mathcal{G}_{MST}(\mathbf{X})} |e_i|$ used in [Franco, Ph.D., 2008] to classify designs (also considers $\operatorname{Var}_{\mathcal{G}_{MST}(\mathbf{X})}\{|e_i|\})$

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

$$\frac{\sum_{e_i \in \mathcal{G}(\mathbf{X})} |e_i|^{\beta}}{n^{(d-\beta)/d}} \to C(\beta, d) \int \varphi^{(d-\beta)/d}(x) \, dx \, , \ n \to \infty$$

• \Rightarrow estimation of Rényi entropy $H_{\alpha}^{*}(\varphi) = \frac{1}{1-\alpha} \log \int \varphi^{\alpha}(t) dt$ with $\alpha = (d-\beta)/d$ $1 \le \beta < d \Rightarrow 0 < \alpha \le 1 - 1/d$, RHS max for $\varphi =$ ct. (uniform)

 \rightarrow maximize the LHS

- NN graph: $|e_i| = d_i^* \to \text{maximize } \underline{\phi}_{[NN,q]}$ with $q = -\beta$
- $(1/n) \sum_{e_i \in \mathcal{G}_{MST}(\mathbf{X})} |e_i|$ used in [Franco, Ph.D., 2008] to classify designs (also considers $\operatorname{Var}_{\mathcal{G}_{MST}(\mathbf{X})}\{|e_i|\})$
- Shannon entropy with kernel estimator in [Jourdan & Franco, 2009, 2010]

3 Beyond space filling

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

Maximin optimal design is model-free,

 \rightarrow model-specific design?

3 Beyond space filling

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

 $\frac{\text{Maximin optimal design is model-free,}}{\rightarrow \text{ model-specific design?}}$

Model for $f(\cdot)$

 $f(x) = \mathbf{r}^{\mathsf{T}}(x)\beta + Z(x,\omega) \text{ with}$ $\mathbf{r}(x) \text{ a known (vector of) functions(s) of } x$ $Z(x,\omega) = \text{realization of a (second-order stationary)}$ **Gaussian process** (random field) $\mathbb{E}\{Z(x,\omega)\} = 0, \mathbb{E}\{Z(x,\omega)Z(u,\omega)\} = \sigma^2 C((x-u);\theta)$

3 Beyond space filling

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

 $\frac{\text{Maximin optimal design is model-free,}}{\rightarrow \text{ model-specific design?}}$

Model for $f(\cdot)$

 $f(x) = \mathbf{r}^{\top}(x)\beta + Z(x,\omega) \text{ with}$ $\mathbf{r}(x) \text{ a known (vector of) functions(s) of } x$ $Z(x,\omega) = \text{realization of a (second-order stationary)}$ **Gaussian process** (random field) $\mathbb{E}\{Z(x,\omega)\} = 0, \mathbb{E}\{Z(x,\omega)Z(u,\omega)\} = \sigma^2 C((x-u);\theta)$

Computer experiments

[Sacks, Welch, Mitchell, Wynn, 1989]: Take $C(\delta; \theta)$ continuous at $\delta = 0$, $C(0; \theta) = 1 \rightarrow$ two repetitions for the same x give the same f(x)

Kriging

Objective

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

Interpolate (or extrapolate): construct a prediction $\eta_n(x)$ for one particular realization of $Z(\cdot)$

 \neq situation: prediction for future realizations

 $(\rightarrow \text{ simply estimate } \beta!)$

Kriging

Objective

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

Interpolate (or extrapolate): construct a prediction $\eta_n(x)$ for one particular realization of $Z(\cdot)$ \neq situation: prediction for future realizations $(\rightarrow \text{ simply estimate } \beta!)$

Ordinary kriging:

$$f(x) = \beta + Z(x, \omega) \rightarrow \eta_n(x) = \eta_n[f](x)$$
BLUP at x : $\eta_n(x) = \mathbf{v}_n^\top(x)\mathbf{y}_n$ where
• $\mathbf{y}_n = (f(X_1), \dots, f(X_n))^\top$
• $\mathbf{v}_n(x)$ minimizes $\mathbb{E}\{(\mathbf{v}_n^\top \mathbf{y}_n - [\beta + Z(x, \omega)])^2\}$
• under the constraint
 $\mathbb{E}\{\mathbf{v}_n^\top \mathbf{y}_n\} = \beta \sum_{i=1}^n \{\mathbf{v}_n\}_i = \mathbb{E}\{f(x)\} = \beta$, i.e.,
 $\sum_{i=1}^n \{\mathbf{v}_n\}_i = 1$

Kriging (2)

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling 2 Regularized Prediction: $\eta_n(x) = \hat{\beta}^n + \mathbf{c}_n^\top(x)\mathbf{C}_n^{-1}(\mathbf{y}_n - \hat{\beta}^n \mathbf{1})$

MSPE: proportional to

$$\rho_n(x) = \left(1 - \begin{bmatrix} \mathbf{c}_n^\top(x) \ 1 \end{bmatrix} \begin{bmatrix} \mathbf{C}_n & \mathbf{1} \\ \mathbf{1} & 0 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{c}_n(x) \\ 1 \end{bmatrix} \right)$$

[with $\{\mathbf{C}_n\}_{i,j} = C((X_i - X_j); \theta), \{\mathbf{c}_n(x)\}_i = C((X_i - x); \theta),$

 $\hat{\beta}^n = (\mathbf{1}^\top \mathbf{C}_n^{-1} \mathbf{y}_n) / (\mathbf{1}^\top \mathbf{C}_n^{-1} \mathbf{1}) \text{ (WLS) and } \mathbf{1} = (1, \dots, 1)^\top]$

Maximin 3 Beyond space filling

4 Conclusions

Kriging (2)

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

Prediction:
$$\begin{aligned} \eta_n(x) &= \hat{\beta}^n + \mathbf{c}_n^\top(x)\mathbf{C}_n^{-1}(\mathbf{y}_n - \hat{\beta}^n \mathbf{1}) \end{aligned} \\ \text{MSPE: proportional to} \\ \hline \rho_n(x) &= \left(1 - \begin{bmatrix} \mathbf{c}_n^\top(x) \ 1 \end{bmatrix} \begin{bmatrix} \mathbf{C}_n \ \mathbf{1} \\ \mathbf{1} \ 0 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{c}_n(x) \\ 1 \end{bmatrix} \right) \\ \text{[with } \{\mathbf{C}_n\}_{i,j} &= C((X_i - X_j); \theta), \ \{\mathbf{c}_n(x)\}_i &= C((X_i - x); \theta), \\ \hat{\beta}^n &= (\mathbf{1}^\top \mathbf{C}_n^{-1} \mathbf{y}_n)/(\mathbf{1}^\top \mathbf{C}_n^{-1} \mathbf{1}) \ (\text{WLS}) \ \text{and} \ \mathbf{1} = (1, \dots, 1)^\top \end{bmatrix} \end{aligned}$$

20 / 37

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

Typical criteria: based on MSPE $\rho_n(x)$

E.g., minimize Max. MSPE: $\max_{x \in \mathscr{X}} \rho_n(x)$ with $\rho_k(X_i) = 0, i = 1, \dots, k$

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

Typical criteria: based on MSPE $\rho_n(x)$

E.g., minimize Max. MSPE: $\max_{x \in \mathscr{X}} \rho_n(x)$ with $\rho_k(X_i) = 0, i = 1, \dots, k$

The designs constructed are typically space-filling

Boundary effect

d=1 n=11 observations in [0,1], $C(t)=\exp(-50\,t^2)$ plot of $\rho_n(x)$

Boundary effect

3 Beyond space filling

4 Conclusions

d=1 n=11 observations in [0,1], $C(t)=\exp(-50\,t^2)$ plot of $\rho_n(x)$

Uniform distribution of points

Maximin

 \Rightarrow less points available for prediction near the boundary \Rightarrow larger uncertainty near the boundary

miniMax

Boundary effect

space filling 4 Conclusions d=1 n=11 observations in [0,1], $C(t)=\exp(-50\,t^2)$ plot of $\rho_n(x)$

Uniform distribution of points

Maximin

 \Rightarrow less points available for prediction near the boundary \Rightarrow larger uncertainty near the boundary

Maximin and miniMax

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

Similar to polynomial regression (e.g. D-optimality):

• put design points at the roots of some orthogonal polynomials

(e.g., roots of $t(t-1)P'_{p-1}(2t-1)$ for D-optimal design on [0,1] with $P_n = n$ -th Legendre polynomial on [-1,1])

Workshop de clôture ANR OPUS 21/10/20<u>11</u>

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

Similar to polynomial regression (e.g. D-optimality):

• put design points at the roots of some orthogonal polynomials

(e.g., roots of $t(t-1)P'_{p-1}(2t-1)$ for D-optimal design on [0,1] with $P_n = n$ -th Legendre polynomial on [-1,1])

• Erdös-Turan theorem: roots r of orthogonal polynomials on [0,1] are asymptotically distributed with the arcsine density $\varphi(r)=\frac{1}{\pi\sqrt{r\,(1-r)}}$

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

Similar to polynomial regression (e.g. D-optimality):

• put design points at the roots of some orthogonal polynomials

(e.g., roots of $t(t-1)P'_{p-1}(2t-1)$ for D-optimal design on [0,1] with $P_n = n$ -th Legendre polynomial on [-1,1])

- Erdös-Turan theorem: roots r of orthogonal polynomials on [0,1] are asymptotically distributed with the arcsine density $\varphi(r)=\frac{1}{\pi\sqrt{r\,(1-r)}}$
- [Dette & Pepelyshev, 2010]:
 - use a space filling-design (e.g., Maximin Lh),
 - for all j = 1, ..., d, transform the *j*-th coordinates $\{X_i\}_j$ by $T: x \mapsto z = T(x) = \frac{1 + \cos(\pi x)}{2}$ $(x \sim \text{uniformly} \rightarrow z \sim \text{arcsine}),$
 - use the transformed design points Z_i

Correcting the boundary effect (2)

Workshop de clôture ANR OPUS 21/10/2011

3 Beyond space filling

4 Conclusions

... The arcsine transformation can be too severe for small nBack to the example, plot of $\rho_n(x)$:

Correcting the boundary effect (2)

Correcting the boundary effect (2)

Workshop de clôture ANR OPUS 21/10/2011

- 1 Space-filling
- 2 Regularized Maximin
- 3 Beyond space filling
- 4 Conclusions

Arcsine distribution: maximizes

$$\tilde{\Phi}_{[0]}(\xi) = \exp\left[\int_0^1 \int_0^1 \log \|x - y\| \,\xi(dx) \,\xi(dy)\right]$$
(continuous version of $\overline{\phi}_{[0]}(\mathbf{X}) = \exp\left[\sum_{i < j} \mu_{ij} \,\log(d_{ij})\right]$)

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

Arcsine distribution: maximizes

$$\tilde{\Phi}_{[0]}(\xi) = \exp\left[\int_0^1 \int_0^1 \log \|x - y\| \,\xi(dx) \,\xi(dy)\right]$$
(continuous version of $\overline{\phi}_{[0]}(\mathbf{X}) = \exp\left[\sum_{i < j} \mu_{ij} \,\log(d_{ij})\right]$)

Maximization of

$$\tilde{\Phi}_{[q]}(\xi) = \left[\int_0^1 \int_0^1 \|x - y\|^{-q} \,\xi(dx) \,\xi(dy)\right]^{-1/q}, \ 0 < q < 1$$

is obtained for ξ having the density $\varphi(x) = \frac{x^{(q-1)/2}(1-x)^{(q-1)/2}}{B(\frac{q+1}{2},\frac{q+1}{2})}$ (Beta distribution) [Dette, Pepelyshev, Zhigljavsky, 2009] (tends to arcsine for $q \to 0$ and to uniform for $q \to 1$)

Correcting the boundary effect (3)

 \ldots For a suitable Beta transformation (q=0.84)

Correcting the boundary effect (3)

Correcting the boundary effect (3)

27 / 37

27 / 37

Some remarks

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

• Irregularities in $\rho_k(x)$ are difficult to avoid \rightarrow related to a property of low discrepancy sequences:

$$\begin{split} \mathbf{X}^*_{mM} & \text{miniMax optimal } (x_i = (2i-1)/(2n)) \text{ minimizes } \\ \mathcal{D}(\mathbf{X}) &= \max_{x \in \mathbf{X}} |F_n(x) - U(x)| \ (U(\cdot) = \text{cdf of the } \\ \text{uniform distribution, } F_n(\cdot) \text{ empirical cdf for } \mathbf{X}) \text{ and } \\ \mathcal{D}(\mathbf{X}^*_{mM}) &= 1/(2n) \\ \text{but } \mathcal{D}(x_1, x_2, \dots, x_n) \geq 0.06 \log(n)/n \text{ for any sequence } \\ \text{of } n \text{ points } \end{split}$$

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

• [Vazquez & Bect, 2011]

$$\rho_n(x) = \sup_{f \in \mathcal{H}_1} |f(x) - \eta_n[f](x)|^2$$
, with \mathcal{H}_1 the unit
ball of the RKHS \mathcal{H} of functions generated by
 $k(u, v) = C((u - v); \theta)$

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

- 1 Space-filling
- 2 Regularized Maximin

3 Beyond space filling

4 Conclusions

• [Vazquez & Bect, 2011] $\rho_n(x) = \sup_{f \in \mathcal{H}_1} |f(x) - \eta_n[f](x)|^2$, with \mathcal{H}_1 the unit ball of the RKHS \mathcal{H} of functions generated by $k(u, v) = C((u - v); \theta)$

• [Vazquez & Bect, 2011] If $t \mapsto C(t; \theta)$ has a Fourier transform $\tilde{C}(u) = (2\pi)^{-d/2} \int_{\mathbb{R}^d} C(t; \theta) e^{i(t,u)} dt$ satisfying $c_1(1 + ||u||_2^2)^{-s} \leq \tilde{C}(u) \leq c_2(1 + ||u||_2^2)^{-s}, \ u \in \mathbb{R}^d$ with $s > d/2, \ 0 < c_1 \leq c_2$, then,

 $x_{k+1} = \operatorname{arg\,max}_{x \in \mathscr{X}} \rho_k(x) \Rightarrow \sup_{x \in \mathscr{X}} \rho_n(x) = \mathcal{O}(n^{1-2s/d})$

— same rate as for non-sequential construction —

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

• Comparison with non-parametric estimation with i.i.d. additive errors [Tsybakov, 2004]:

•
$$\sup_{f \in \Sigma(L,\alpha)} \mathbb{E} \| f - \eta_n[f] \|_2^2 = \mathcal{O}(n^{-2\alpha/(2\alpha+d)})$$

 $(\Sigma(L, \alpha) = \mathsf{H\"older smooth}, \mathbb{E} \leftrightarrow \mathsf{presence of random errors})$

= best achievable rate for <u>passive</u> (non-sequential) <u>or active</u> (sequential) constructions [Castro, Willett, Nowak, 2005]

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

• Comparison with non-parametric estimation with i.i.d. additive errors [Tsybakov, 2004]:

• $\sup_{f \in \Sigma(L,\alpha)} \mathbb{E} \| f - \eta_n[f] \|_2^2 = \mathcal{O}(n^{-2\alpha/(2\alpha+d)})$

 $(\Sigma(L, \alpha) = \mathsf{H\"older smooth}, \mathbb{E} \leftrightarrow \mathsf{presence of random errors})$

= best achievable rate for <u>passive</u> (non-sequential) <u>or active</u> (sequential) constructions [Castro, Willett, Nowak, 2005]

• [different for piecewise smooth functions: [Castro, Willett, Nowak, 2005] $\mathcal{O}(\max\{n^{-2\alpha/(2\alpha+d)}, n^{-1/d}\})$ for passive construction $\mathcal{O}(\max\{n^{-2\alpha/(2\alpha+d)}, n^{-1/(d-1)}\})$ for active construction — not important for α small, some effect when f is regular enough]

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

• Comparison with non-parametric estimation with i.i.d. additive errors [Tsybakov, 2004]:

• $\sup_{f \in \Sigma(L,\alpha)} \mathbb{E} \| f - \eta_n[f] \|_2^2 = \mathcal{O}(n^{-2\alpha/(2\alpha+d)})$

 $(\Sigma(L, \alpha) = \mathsf{H\"older smooth}, \mathbb{E} \leftrightarrow \mathsf{presence of random errors})$

- = best achievable rate for <u>passive</u> (non-sequential) <u>or active</u> (sequential) constructions [Castro, Willett, Nowak, 2005]
- [different for piecewise smooth functions: [Castro, Willett, Nowak, 2005] $\mathcal{O}(\max\{n^{-2\alpha/(2\alpha+d)}, n^{-1/d}\})$ for passive construction $\mathcal{O}(\max\{n^{-2\alpha/(2\alpha+d)}, n^{-1/(d-1)}\})$ for active construction — not important for α small, some effect when f is regular enough]
- But sequential construction is useful when objective = optimization, inversion, estimation of failure prob.

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

• Comparison with non-parametric estimation with i.i.d. additive errors [Tsybakov, 2004]:

- $\sup_{f \in \Sigma(L,\alpha)} \mathbb{E} \| f \eta_n[f] \|_2^2 = \mathcal{O}(n^{-2\alpha/(2\alpha+d)})$
 - $(\Sigma(L, \alpha) = \mathsf{H\"older smooth}, \mathbb{E} \leftrightarrow \mathsf{presence of random errors})$
 - = best achievable rate for <u>passive</u> (non-sequential) <u>or active</u> (sequential) constructions [Castro, Willett, Nowak, 2005]
- [different for piecewise smooth functions: [Castro, Willett, Nowak, 2005] $\mathcal{O}(\max\{n^{-2\alpha/(2\alpha+d)}, n^{-1/d}\})$ for passive construction $\mathcal{O}(\max\{n^{-2\alpha/(2\alpha+d)}, n^{-1/(d-1)}\})$ for active construction — not important for α small, some effect when f is regular enough]
- But sequential construction is useful when objective = optimization, inversion, estimation of failure prob.
- Importance of asymptotic statements? (how large *n* should be?)

Hidden difficulty: heta in $C(\cdot; heta)$ is unknown

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

 \rightarrow We must estimate θ from the same data as those use to construct $\eta_n(x)$

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

 \rightarrow We must estimate θ from the same data as those use to construct $\eta_n(x)$

 \rightarrow Maximum likelihood estimator $\hat{\theta}^n$ ($Z(x,\omega)$ is Gaussian)

 \rightarrow corrective term [Harville & Jeske, 1992; Abt 1999]:

 $\hat{\rho}_n(x;\theta) = \rho_n(x;\theta) + \operatorname{trace}\{\mathbf{M}_{\theta}^{-1} \frac{\partial \mathbf{v}_n(x;\theta)}{\partial \theta} \mathbf{C}_n \frac{\partial \mathbf{v}_n(x;\theta)}{\partial \theta^{\top}}\}$

where:

$$\mathbf{v}_n(x;\theta)$$
 such that $\eta_n(x) = \mathbf{v}_n^\top(x;\theta)\mathbf{y}_n$
 $\mathbf{M}_{\theta} =$ Fisher information matrix for θ

Example: [Zimmerman, *Envirometrics* 2006]

Sequential construction based on $\max_{x\in\mathscr{X}}\hat ho_k(x; heta)$

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

 $d = 2, C(t; \theta) = \exp(-\theta ||t||_2), \ \theta = 0.7, \ \mathbf{X}_7 = \mathsf{Mm} \ \mathsf{Lh}, \ \mathsf{then}$ $x_{7+j} = \arg\max_{x \in \mathscr{X}} \hat{\rho}_{7+j-1}(x; \theta), \ j = 1, 2 \dots$

 $\max_{x \in \mathscr{X}} \rho_{7+j}(x;\theta) \text{ and } \\ \max_{x \in \mathscr{X}} \hat{\rho}_{7+j}(x;\theta)$

125

Sequential construction based on $\max_{x\in\mathscr{X}}\hat{ ho}_k(x; heta)$

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

 $d = 2, C(t; \theta) = \exp(-\theta ||t||_2), \ \theta = 0.7, \ \mathbf{X}_7 = \mathsf{Mm}$ Lh, then $x_{7+j} = \arg\max_{x \in \mathscr{X}} \rho_{7+j-1}(x; \theta), \ j = 1, 2...$

 $\max_{x \in \mathscr{X}} \rho_{7+j}(x;\theta) \text{ and } \\ \max_{x \in \mathscr{X}} \hat{\rho}_{7+j}(x;\theta)$

An alternative criterion

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

Choosing \mathbf{X}_n that minimizes $\max_{x \in \mathscr{X}} \hat{\rho}_n(x; \theta)$ is difficult

An alternative criterion

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

Choosing \mathbf{X}_n that minimizes $\max_{x \in \mathscr{X}} \hat{\rho}_n(x; \theta)$ is difficult

 \rightarrow Use a criterion that makes compromise between space filling and clustering, e.g., choose \mathbf{X}_n that maximizes $\gamma \log \det(\mathbf{M}_{\beta}) + (1 - \gamma) \log \det(\mathbf{M}_{\theta})$ [Müller et al., 2010, 2011], with

- M_β = FIM for trend parameters (maximization → space filling)
- $\mathbf{M}_{\theta} = \mathsf{FIM}$ for correlation parameters (maximization $\rightarrow \mathsf{clustering}$)

An alternative criterion (2)

Workshop de clôture ANR OPUS 21/10/2011

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

Example: n = 7, d = 2, $C(t; \theta) = \exp(-\theta ||t||_2)$, $\theta = 0.7$, 1000 Lh (999 random + \diamondsuit for Mm optimal)

 $\mathsf{MKV}=\max_{x\in\mathscr{X}}\hat{\rho}_n(x;\theta), \ J_\alpha = \det^\alpha(\mathbf{M}_\beta) + \det^{1-\alpha}(\mathbf{M}_\theta)$ (\$\alpha = 0.8\$)

4 Conclusions

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

• Only considered design for approximation/interpolation

4 Conclusions

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

- Only considered design for approximation/interpolation
- Nothing on algorithms (heuristics genetic, taboo search, SA —, MCMC — spatial point process —, local search)

4 Conclusions

Luc Pronzato

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

- Only considered design for approximation/interpolation
- Nothing on algorithms (heuristics genetic, taboo search, SA —, MCMC — spatial point process —, local search)
- Nothing on Bayesian methods:
 - Karhunen-Loève representation + Bayesian optimal design [Fedorov & Müller, 2007]
 - Maximum Entropy Sampling [Shewry & Wynn, 1987; Wynn & Youssef, 2011] (with substitution of INLA for MCMC to compute posterior means?)

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

4 Conclusions

• Basic guidelines:

- Precision of the construction (↔ final objective) for a given horizon n?
 - (IE or worst-case) e.g., $\max_{x \in \mathscr{X}} \rho_n(x)$
- $\bullet \ \rightarrow \ design \ criterion$

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

- Basic guidelines:
 - Precision of the construction (↔ final objective) for a given horizon n?
 - (IE or worst-case) e.g., $\max_{x \in \mathscr{X}} \rho_n(x)$
 - $\bullet \ \rightarrow \ design \ criterion$
 - ... taking all sources of uncertainty into account (estimation of parameters, simulations with variable precision...) e.g., $\max_{x \in \mathscr{X}} \hat{\rho}_n(x)$

Workshop de clôture ANR OPUS 21/10/2011

1 Space-filling

2 Regularized Maximin

3 Beyond space filling

- Basic guidelines:
 - Precision of the construction (↔ final objective) for a given horizon n?
 - (IE or worst-case) e.g., $\max_{x \in \mathscr{X}} \rho_n(x)$
 - $\bullet \ \rightarrow \ design \ criterion$
 - ... taking all sources of uncertainty into account (estimation of parameters, simulations with variable precision...) e.g., $\max_{x \in \mathscr{X}} \hat{\rho}_n(x)$
 - Some contraints may exist on real physical experiments (e.g., dynamical constraints → mobile sensors)

Workshop de clôture ANR OPUS 21/10/2011

- 1 Space-filling
- 2 Regularized Maximin
- 3 Beyond space filling
- 4 Conclusions

- Basic guidelines:
 - Precision of the construction (↔ final objective) for a given horizon n?
 - (IE or worst-case) e.g., $\max_{x \in \mathscr{X}} \rho_n(x)$
 - $\bullet \ \rightarrow \ design \ criterion$
 - ... taking all sources of uncertainty into account (estimation of parameters, simulations with variable precision...) e.g., $\max_{x \in \mathscr{X}} \hat{\rho}_n(x)$
 - Some contraints may exist on real physical experiments (e.g., dynamical constraints → mobile sensors)
- Only simplest rules and constructions will be used!

Workshop de clôture ANR OPUS 21/10/2011

- 1 Space-filling
- 2 Regularized Maximin
- 3 Beyond space filling
- 4 Conclusions

- Basic guidelines:
 - Precision of the construction (↔ final objective) for a given horizon n?
 - (IE or worst-case) e.g., $\max_{x \in \mathscr{X}} \rho_n(x)$
 - $\bullet \ \rightarrow \ design \ criterion$
 - ... taking all sources of uncertainty into account (estimation of parameters, simulations with variable precision...) e.g., $\max_{x \in \mathscr{X}} \hat{\rho}_n(x)$
 - Some contraints may exist on real physical experiments (e.g., dynamical constraints → mobile sensors)
- Only simplest rules and constructions will be used!

Thank you for your attention!