Reduction of logical regulatory network preserving dynamical properties

Emilien Cornillon, Gilles Bernot, Jean-Paul Comet

22 may 2014
1 Introduction
 - Modelisation of gene regulatory network
 - Identification of parameters

2 Framework

3 Reduction methods
 - Method suppressing a variable (Naldi 2011)
 - Method suppressing a threshold
 - Example

4 Conclusion
Gene regulatory network

Interactions of elements (ADN, ARN, proteins) → Biological function
Gene regulatory network

Interactions of elements (ADN, ARN, proteins) → Biological function
Modelisation of a regulatory network ...

René Thomas theory (1973)
- Discretization of concentrations
Modelisation of a regulatory network …

René Thomas theory (1973)

- Discretization of concentrations
- Abstraction of gene products to variables

Interaction graph
... driven by parameters

State of a network
Vector for which components are value of variables.
... driven by parameters

State of a network

Vector for which components are value of variables.
... driven by parameters

State of a network
Vector for which components are value of variables.

\[\mathbf{K}_{\mathbf{v},\omega} : \text{value toward which } \mathbf{v} \text{ tends depends to the level of its predecessors} \]
... driven by parameters

State of a network
Vector for which components are value of variables.

\(K_{v,\omega} \): value toward which \(v \) tends
depends to the level of its predecessors

Example:
In the state \((0,0)\) \(K_{b,\omega} = 1 \) and \(K_{a,\omega} = 2 \)
Desynchronization and shorting transitions

- 2 variables can’t cross their thresholds at the same time.
Desynchronization and shorting transitions

- 2 variables can’t cross their thresholds at the same time.
- A variable can’t cross several thresholds at the same time.
Desynchronization and shorting transitions

- 2 variables can’t cross their thresholds at the same time.
- A variable can’t cross several thresholds at the same time.
Determining parameters

Determining by biological experimentation is very difficult

→ Systematic checking of the compatibility of all parametrizations with the biological informations (model checking)
Determining parameters

Determining by biological experimentation is very difficult

→ Systematic checking of the compatibility of all parametrizations with the biological informations (model checking)

Number of parametrizations

\[\#K = \prod_i n_i^{2^{\text{pred}_i}} \]

where \(n \): number of values of \(i \) / \(\text{pred}_i \): number of predecessors
Determining parameters

Determining by biological experimentation is very difficult

→ Systematic checking of the compatibility of all parametrizations with the biological informations (model checking)

Number of parametrizations

\[
\#K = \prod_{i} n_{i}^{2^{\text{pred}_i}}
\]

where \(n \): number of values of \(i \) / \(\text{pred}_i \): number of predecessors

⚠️ Gene network are often very large.

→ The checking of all parametrizations can be very long
An intuitive solution: reduction of networks

Biological experimentation is based on an hypothesis.

Suppressing of less important information to reduct the number of possible parametrizations

In this presentation:
- To which states tends the network?
- Suppression of non-informative states
- Preservation of final states

E. Cornillon, G. Bernot, J.-P. Comet
An intuitive solution: reduction of networks

Biological experimentation is based on an hypothesis.

Suppressing of less important information to reduct the number of possible parametrizations.

In this presentation:

To which states tends the network?
- Suppression of non informative state
- Preservation of final states
Formalisation with multiplexes (Khalis 2009)

Multiplex

Symbol m associated with a logical formula φ_m representing conditions of regulation between variables.

Integration of cooperations and concurrency in the interaction graph
Formalisation with multiplexes (Khalis 2009)

Multiplex

Symbol \(m \) associated with a logical formula \(\varphi_m \) representing conditions of regulation between variables.

Integration of cooperations and concurrency in the interaction graph.
Formalisation with multiplexes (Khalis 2009)

Multiplex

Symbol m associated with a logical formula φ_m representing conditions of regulation between variables.

Integration of cooperations and concurrency in the interaction graph

$\alpha \geq 2$

$\neg (b \geq 1) \land a \geq 2$

$\gamma \geq 1$

β
Formalisation with multiplexes

Set of resources

Predecessor multiplexes of a variable v which the formula is evaluated to true, in the current state $\eta: \rho(\eta, v)$
Formalisation with multiplexes

Set of resources

Predecessor multiplexes of a variable v which the formula is evaluated to true, in the current state $\eta : \rho(\eta, v)$

State (a,b)	Resources
$(1,1)$ | \emptyset
$(2,1)$ | $\{\alpha\}$
$(0,0)$ | $\{\beta\}$
$(2,0)$ | $\{\alpha, \beta\}$
The immunity regulatory network of phage λ

Bacteriophage λ

Virus infecting bacteria like E. Coli
The immunity regulatory network of phage λ

Bacteriophage λ

Virus infecting bacteria like E. Coli

2 ways after infection:
- **lytic**: release of produced viruses and host destruction
- **lysogenic**: host preservation and immunity to this virus against superinfection
The immunity regulatory network of phage λ

Bacteriophage λ

Virus infecting bacteria like E. Coli

2 ways after infection:
- lytic: release of produced viruses and host destruction
- lysogenic: host preservation and immunity to this virus against superinfection

4 main genes: CI, Cro, CII, N
- CI represses other genes to maintain the lysogenic cycle
- Cro inhibits the gene CI to maintain the lytic mode
The immunity regulatory network of phage λ

2 genes considered: Cro and CI

![Diagram of the regulatory network]

Parameters (Thieffry 1995):

- $K_{CI} = 0$
- $K_{CI}, \{m_{CI}\} = 1$
- $K_{Cro} = 0$
- $K_{Cro}, \{m_{Cro}^{1}\} = 1$
- $K_{Cro}, \{m_{Cro}^{2}\} = 0$
- $K_{Cro}, \{m_{Cro}^{1}, m_{Cro}^{2}\} = 2$
The immunity regulatory network of phage λ

6 states: 3 values for Cro and 2 values for CI

Attraction basin: minimal set of terminal states
The immunity regulatory network of phage λ

6 states: 3 values for Cro and 2 values for CI

Attraction bassin: minimal set of terminal states
Suppressing of variables (Naldi 2011)

The suppressed variable is considered as very fast.

\begin{center}
\begin{tikzpicture}[scale=0.5]
 \draw[thick,->] (0,0) -- (6,0) node[right] {Cro};
 \draw[thick,->] (0,0) -- (0,6) node[above] {CI};
 \draw[thick,red] (0,0) -- (2,0) -- (2,2) -- (0,2) -- (0,0);
 \draw[thick,blue] (2,0) -- (4,0) -- (4,4) -- (2,4) -- (2,0);
 \draw[thick,green] (4,0) -- (6,0) -- (6,6) -- (4,6) -- (4,0);
 \draw[thick,->] (0,2) -- (2,2);
 \draw[thick,->] (2,4) -- (4,4);
 \draw[thick,->] (4,6) -- (6,6);
 \draw[thick,->] (0,0) -- (2,2);
 \draw[thick,->] (2,0) -- (4,4);
 \draw[thick,->] (4,2) -- (6,6);
 \draw[thick,->] (0,2) -- (2,0);
 \draw[thick,->] (2,4) -- (4,2);
 \draw[thick,->] (4,6) -- (6,4);
\end{tikzpicture}
\end{center}
Suppressing of variables (Naldi 2011)

The suppressed variable is considered as very fast.

Possible reduction if the variable is not autoregulated.

Order of successive reductions → different minimum state graphs.
Suppressing of variables (Naldi 2011)

The suppressed variable is considered as very fast.

Possible reduction if the variable is not autoregulated.
Suppressing of variables (Naldi 2011)

The suppressed variable is considered as very fast.

Possible reduction if the variable is not autoregulated

Order of successive reductions \rightarrow different minimum state graphs
Suppressing of variables (Naldi 2011)

- Important reduction of number of states
- Need to know the values of parameters
- Multiplicity of edges after reduction
Suppressing of threshold

Reduction of a threshold of a variable

Similar to Naldi’s method
Suppressing of threshold

Reduction of a threshold of a variable

Similar to Naldi’s method

E. Cornillon, G. Bernot, J.-P. Comet

Reduction of logical regulatory network

22 may 2014
Comparison

Reduction of a threshold of a variable

Suppressing variable method: more drastic but loss of information.
Folding of reduced network ($fold_s^v$)

Decreasing of number of values of a variable

- Folding of states ($fold_{s}^v$)
- Folding of parameters ($fold_{k}^v$)
- Folding of formulas ($fold_{f}^v$)
Formulas

- Adjacent states to suppressed threshold
 \[\Phi_s^v \equiv \left(v \geq s - 1 \right) \land \neg \left(v \geq s + 1 \right) \]

- A set \(\omega \) is the set of resources of \(v \) in the current state
 \[\Phi_\omega^v \equiv \left(\bigwedge_{m \in \omega} \varphi_m \right) \land \left(\bigwedge_{m \in G^{-1} \setminus \omega} \neg \varphi_m \right) \]

- A set of resources allows to \(v \) to cross its threshold \(s \)
 \[\Phi_{\geq s}^v \equiv \bigwedge_{\omega \subset A^{-1}(v)} \left(\Phi_\omega^v \implies K_{v,\omega} \geq s \right) \]
Reduction definition

- $V^B = V^A$. $\forall u \neq v$ avec $u, v \in V^B$, $b^B_u = b^A_u$ et $b^B_v = b^A_v - 1$
- $\mathcal{K}^B = \{ K^B_{v, \omega} = \text{fold}^v_s(K^A_{v, \omega}) \}$
- $E^B = E^A$
- $M^B = M^A$. $\forall m \in M^B$, $\varphi^B_m \equiv \text{fold}^v_s((\neg \Phi^v_s \land \varphi^A_m) \lor (\Phi^v_s \land \varphi^A_m[v \geq s \leftarrow \Phi^{v\geq s}])))$
Reduction definition

- $V^B = V^A$. $\forall u \neq v$ avec $u, v \in V^B$, $b_u^B = b_u^A$ et $b_v^B = b_v^A - 1$
- $\mathcal{K}^B = \{K_{v,\omega} = fold_s^v(K_{v,\omega})\}$
- $E^B = E^A$
- $M^B = M^A$. $\forall m \in M^B$,
 $\varphi_m^B \equiv fold_s^v((\neg \Phi_s^v \land \varphi_m^A) \lor (\Phi_s^v \land \varphi_m^A[v \geq s \leftarrow \Phi^v[s^s])))$

\[s-3 \quad s-2 \quad s-1 \quad s \quad s+1 \quad s+2 \]
Reduction definition

\[V^B = V^A. \quad \forall u \neq v \text{ avec } u, v \in V^B, \quad b^B_u = b^A_u \text{ et } b^B_v = b^A_v - 1 \]

\[K^B = \{ K^B_{v, \omega} = \text{fold}_s^v(K^A_{v, \omega}) \} \]

\[E^B = E^A \]

\[M^B = M^A. \quad \forall m \in M^B, \quad \varphi^B_m \equiv \text{fold}_s^v((\neg \Phi_s^v \land \varphi^A_m) \lor (\Phi_s^v \land \varphi^A_m[v \geq s \leftarrow \Phi^v \geq s])) \]
Reduction of the phage λ network by Naldi: 4 variables (Thieffry 1995)

With Naldi’s method

Initial network: 48 states
Reduction of the phage λ network by Naldi: 4 variables (Thieffry 1995)

With Naldi’s method

Initial network: 48 states
Reduction of the phage λ network by Naldi: 4 variables (Thieffry 1995)

With Naldi’s method

\[\neg CI \geq 2 \]
\[\neg Cro \geq 3 \]
\[\neg CI \geq 2 \land \neg Cro \geq 3 \land \neg N \geq 1 \]

Initial network: 48 states / Reduced network: 12 states
Reduction of the phage λ network : 2 variables

Reduction by our method

\[\neg \text{CI} \geq 2 \quad \neg \text{Cro} \geq 1 \lor (\neg \text{Cro} \geq 2 \land \neg \text{CI} \geq 1)\]

Initial network : 12 states

Reduced network : 4 states
Reduction of the phage λ network: 2 variables

Reduction by our method

Initial network: 12 states

Reduced network: 4 states
Reduction of the phage λ network : 2 variables

Reduction by our method

Initial network : 12 states / Reduced network : 4 states
Formula of m_{CI} after reduction

\[\neg Cro \geq 2 \land \neg \left\{ \begin{array}{l} \neg Cl \geq 1 \land Cro \geq 2 \\
\neg Cro \geq 2 \land Cl \geq 1 \\
\neg Cro \geq 2 \land \neg Cl \geq 1 \end{array} \right\} \land (Cro \geq 2 \lor Cl \geq 1) \Rightarrow K_{Cro} \geq 1 \]

\[K_{Cro}, \{m_{Cro}^1\} \geq 1 \]

\[K_{Cro}, \{m_{Cro}^2\} \geq 1 \]

\[K_{Cro}, \{m_{Cro}^1, m_{Cro}^2\} \geq 1 \]
Conclusion

What have we doing?

- Reformulation of Naldi’s method with multiplexes.
- Definition of a method to reduct a autoregulated variable.
- Proof of preserving stable states and cycles.

What we must finish?

- Proof the preserving complex attractors and reachability of states.