
Cross-Layer Scheduler for Video Streaming over MPTCP

Xavier Corbillon
Télécom Bretagne, IRISA,

France

Ramon Aparicio-Pardo
Université Nice Sophia
Antipolis, I3S, France

Nicolas Kuhn
Centre National d’Etudes
Spatiales (CNES), France

Géraldine Texier
Télécom Bretagne, IRISA,

France

Gwendal Simon
Télécom Bretagne, IRISA,

France

ABSTRACT
Transport protocols that can exploit multiple paths,
especially MPTCP, do not match the requirements of
video streaming: high average transmission delay, too strict
reliability, and frequent head-of-line phenomenons resulting
in abrupt throughput drops. In this paper, we address this
mismatch by introducing a cross-layer scheduler, which
leverages information from both application and transport
layers to re-order the transmission of data and prioritize
the most significant parts of the video. Our objective is to
maximize the amount of video data that is received in time
at the client. We show that current technologies enable the
implementation of this cross-layer scheduler without much
overhead. We then demonstrate the validity of our
approach by studying the performance of an optimal
cross-layer scheduler. The gap between the performance of
the traditional scheduler versus the optimal scheduler
justifies our motivation to implement a cross-layer
scheduler in practice. We propose one implementation with
basic cross-layer awareness. To evaluate the performance of
our proposal, we aggregate a dataset of real MPTCP
sessions and we use video stream encoded with HEVC. Our
results show that our cross-layer proposal outperforms the
traditional scheduler. Viewers not only benefit from the
inherent advantages of using MPTCP (such as a better
resilience to path failure) but also get a better QoE
compared to the traditional scheduler.

1. INTRODUCTION
The multi-path communication protocols, and especially

the Multi-Path Transmission Control Protocol (MPTCP),
are at a turning point of their development. Since most
devices have several available network accesses (typically
Wi-Fi and cellular for mobile devices), MPTCP is expected
to enable quicker and more stable communication by
concurrently exploiting several network paths. Researchers
promoting MPTCP at the IETF record successful
deployment experiments [4, 6]. Meanwhile, popular devices

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
Conf’15, March 18 - 20 2015, Portland, Oregon, US
Copyright 2014 ACM 978-1-4503-2705-3/14/03...$15.00
http://dx.doi.org/10.1145/2557642.2557652.

now natively support MPTCP (for example the iOS7 [1]).
However, MPTCP has not been broadly adopted by
multimedia content providers for at least two reasons.
First, experiments have revealed some weaknesses,
including performance degradations when the underlying
paths are not homogeneous [11] and the lack of support in
middleboxes [5, 16, 17]. Second, the current behavior of
MPTCP introduces more frequent head-of-line blocking
phenomenons than in TCP. These phenomenons, which
result in short but abrupt throughput drops, make
MPTCP a poor transport protocol for video streaming, for
which network stability is a requirement.

In this paper, we address the current concerns about
MPTCP regarding the transport of multimedia content.
For video streaming, transport protocols based on TCP
have some drawbacks, including high average transmission
delay, no consideration of application error concealment
techniques, and lack of throughput stability. The issue
related to head-of-line phenomenon in MPTCP is an
additional weakness. To make MPTCP friendlier to video
streaming, our idea is to enable and exploit interactions
between the application and the transport layers. The
interactions between these layers have recently received a
surge of interest, as epitomized by the Transport Services
(TAPS) working group at the IETF [14]. The advent of
companies that all together develop their own video player,
implement mobile Operating Systems (OSs), and manage
the delivery chain make the borders between the
application and transport layers more porous. We show in
this paper that these interactions improve the performance
of MPTCP regarding video streaming. More generally, our
study extends to any multi-path transport protocol
mimicking the behavior of TCP (including reliability,
congestion control, and in-order packet delivery).

We focus on the multipath streaming of a video. Our
objective is to increase the quality of experience (QoE) of
the viewers by maximizing the reception of decodable video
data in difficult conditions (video bit-rate close to the
available bandwidth and small application buffer). We do
not deal with adaptive mechanisms like implemented in
HTTP Adaptive Streaming (HAS). Rather, we consider
that the adaptive mechanism has selected one
representation for a video chunk (or segment) and we deal
with the transport of this chunk. Our proposal applies to
both live and on-demand services.

Paper Contributions. We introduce the concept of a
cross-layer scheduler, which leverages information from
both application and transport layers to schedule the



delivery of video packets in MPTCP. We provide a
theoretical analysis of the potentials of our cross-layer
scheduler by the mean of an Integer Linear Program (ILP).
This optimization model validates the motivation for
video-aware MPTCP. We also propose an implementation
based on realistic cross-layer interactions. To evaluate the
performance of this cross-layer scheduler in realistic
environments, we gather a dataset containing the traces of
real streaming traffic using MPTCP on Ethernet, Wi-Fi
and cellular network accesses. These traces1 include the
timestamps of both sending and arrival times of each
packet in each path. Our evaluation reveals that our
cross-layer scheduler improves the QoE of users, thus it
transforms MPTCP into a more efficient multimedia
transport protocol. We also show that our implementation
is still far from being as efficient as the optimal, so our
proposal is a first step toward better video-aware
implementations of MPTCP.

Paper Structure. We provide in Section 2 a tour on
both video steaming and MPTCP. We detail the main
changes that are inherent to the use of multiple paths at
the transport layer and we justify the rationale behind
using MPTCP in our study. We introduce our cross-layer
scheduler in Section 3 with different types of information
awareness. We describe our optimization model in
Section 4. The set of tools we implemented to acquire the
datasets is described in Section 5. Finally, we evaluate the
performance in Section 6 and conclude the paper with a
discussion in Section 7.

2. BACKGROUND
This Section shows background material related to

MPTCP and multimedia stream.

2.1 Multi-Path Networking
We focus on a cross-layer solution between the

application and the transport layers. The main features of
transport protocols are the reliability (how to deal with
packet losses), the in-order delivery (should packets be
delivered at the destination application in the same order
as they were emitted at the source) and the congestion
control. The application layer is responsible for generating
the data and guaranteeing that both ends can interpret the
data. The interactions between the application and the
transport layers are mainly done through the introduction
of cascading buffers. We show in Figure 1 the packet
transmission process from the standpoint of both
application and transport layers. We consider an
End-to-end (E2E) communication between a server and a
client and we assume it is possible to divide an E2E flow
into several subflows. Each subflow contains a series of data
packets, which are carried out on different paths. The light
gray TCP sending buffers represent the additional buffers
introduced when multi-path is used at the transport layer.

Application Sending Buffer. The application pushes
the data to be transmitted in this buffer. The application
manages the input/output of the data; the default output
process being First-In First-Out (FIFO).

1To enable more realistic and fair comparisons with future
works on MPTCP, these traces are publicly available at
http://ourwebsite.enstb.fr

Multi-Path Sending Buffer. The application sees the
MPTCP connection as a unique socket even though multiple
network paths are used. In particular the congestion and
the flow controls are coupled among paths. The Multi-Path
Sending Buffer is the main element of this global socket at
the server side. It is implemented into specific libraries in
the kernel of OSs. The data from the Application Sending
Buffer is packetized into TCP packets, kept in the Multi-
Path Sending Buffer, and then pushed into TCP Sending
Buffers with respect to the global congestion control.

TCP Sending Buffer. Each network path has its own
TCP Sending Buffer. Each subflow is a regular TCP
connection but the congestion and flow controls are
implemented in the Multi-Path Sending Buffer, so the
Congestion Window (CWND) of the TCP connection is
globally managed such that each TCP Sending Buffer
receives sets of packets according to a global management.

Receiving Buffer. MPTCP implements only one
receiving buffer, which gets all incoming packets from all
subflows before the delivery to the application. When
in-order delivery is required (which is the case in MPTCP),
packets must be stored until all previous packets have been
delivered. If a packet is missing (like packet 10 in
Figure 1), head-of-line blocking can happen when too many
subsequent packets are stored in this buffer (here packets
ranging from 11 to 13).

Application Receiving Buffer. Packets are delivered
to the application. More details for video streaming
application can be found in Section 2.2.

Each of these buffers introduces some extra-delay [7] but
they guarantee reliable, in-order E2E communication on
multi-paths. The recent research activities related to
multi-path transport protocols, such as Concurrent
Multipath Transfer SCTP (CMT-SCTP) or MPTCP, have
dealt with the scheduling of packets at the Multi-Path
Sending Buffer (which packets to send to which TCP
Sending Buffer) [2, 22, 25] and the management of
retransmission in case of packet losses [24,27].

We focus on MPTCP [15] since it mimics the behavior of
TCP in a multi-path environment, and thus it is friendly
to most today’s applications based on HTTP. Other
transport layer protocols include CMT-SCTP [18] and
Multi-Path Real-time Transport Protocol (MPRTP) [28].
The former features the same coupled congestion control as
MPTCP (Opportunistic Linked-Increases Algorithm
(OLIA) [20,26]) but it has no default options, so parameter
setting is hard, and it suffers from deployment issue since
it is based on SCTP. The latter essentially targets video
delivery based on the UDP. In the recent years, most video
applications have adopted HTTP and TCP since these
protocols are not filtered by middleboxes in the E2E
channel, as opposed to UDP. Finally, it is worth pointing
out that even though we choose MPTCP as the transport
layer protocol, the idea and general concept of our
scheduler can easily be applied to other solutions.

2.2 Multimedia Stream Structure
The goal of a video encoder is to convert the original

sequence of images (arrays of pixel values) into a video
bit-stream. The decoder does the opposite. The idea that
is now adopted in video compression is the principle of
hierarchical structure of video stream data. The bit-stream



Application Sending Buffer

Multi-Path Sending Buffer

10

TCP Sending Buffer

TCP Sending Buffer

13 12 11 ??

Receiving Buffer

Application Receiving Buffer

E2E channel

CWNDCWND

Figure 1: Multi-path data transmission at the application and transport layers. The light gray rectangles represent data unit
generated by the application (for example a video frame), while the dark grey rectangles are TCP packets resulting from data
packetization. In this example, the packet with id 10 was lost and it is retransmitted.

is cut into frames, which have temporal dependencies with
regards to their types: Intra (I), Predicted (P) or
Bidirectional (B) pictures. Each frame is cut into sets of
macroblocks, including tiles in High Efficiency Video
Coding (HEVC). In the following, the term video unit
refers to an independent piece of data generated by the
application with dependencies to other units. The term
video unit can be interpreted as either frame or tile.

A drawback of current video compression approaches is
the propagation of errors due to the causal dependency
between video units. Indeed, the loss of one video unit can
make the decoder unable to process all the video units that
depend on the missing video unit. The video decoders
implement error-concealment strategies to minimize the
distortion on the video. In the case of frames, errors may
propagate until the next I-frame in the worst case. In the
case of tiles, the propagation of errors is similar since a tile
in a given frame may also depend on tiles in other frames.
In this case, the error is spatially restricted in the
displayed image.

To fix the problems due to video unit losses, the client
application implements an Application Receiving Buffer as
explained in Section 2.1 and shown in Figure 1. This buffer
introduces a delay at the reception before the video unit is
consumed (decoded and displayed), this delay being
hopefully large enough to allow data retransmission in case
of packet losses. To increase the probability to get all video
units in time, it is tempting to implement a large
Application Receiving Buffer, but it is at the expense of a
larger video playback delay, i.e., the difference between the
time the client requests the video and the time the video
starts playing. Studies have shown that a large playback
delay is a major cause of abandonment for viewers [21].

The management of data in the Application Sending
Buffer can also introduce extra-delay. The motivation for
this buffer comes from the fact that the order in which the
frames are displayed is not the same as the order in which
the frames are encoded and should be decoded. In today’s
systems, data are streamed in the frame decoding order, so,
in the case of live streaming, the application has sometimes
to wait for the encoding of the next frames before sending
an encoded frame to the Multi-Path Sending Buffer. Note
that in the case of Video on Demand (VoD) streaming
where the video has already been fully encoded, the
application does not need to buffer video units in the

Application Sending Buffer since the video data are stored
in the frame decoding order.

Finally, the video that is streamed from the server to the
client is carried out in a package. The application that
generates the video prepares the encoded video data so
that standard video players can interpret and read the
stream. The preparation of the content is mainly its
integration into a multimedia container. In general, recent
video containers follow the ISO base media file format
(ISOBMFF), which specifies a structure and metadata for
multimedia content. The format contains a series of boxes,
which provide information on the timing and the structure
of the actual video data (the mdat box).

2.3 Existing Work on Carrying out Video
Through Multiple Paths

Although many papers have studied multi-path video
streaming in the past, few of them have addressed both
application and transport layers, and even fewer have dealt
with realistic features of MPTCP. In the multimedia
community, papers have mostly focused on the application
level (a seminal work is [19]). In the network community, a
research axis is to deal with streaming in specific wireless
environment (for example [8]). Our paper is between these
approaches (without any assumption on the physical layer).

In one of the first publications on live tests performance
evaluation of MPTCP [9], the authors have claimed that
the default MPTCP can reasonably be used to transport
Netflix and Youtube videos. However, some issues inherent
in the use of multiple paths to carry out videos have
already been identified in the literature [19], in particular
in heterogeneous environments where the use of multiple
paths may result in poor QoE.

The scheduler is identified as one key component driving
the performance of MPTCP [4] but some other approaches
have also been considered. Using an adequate scheduler
has shown to be a “winning game” change with other
purposes than carrying out video [2, 22, 25]. Some related
works consider either a cross-layer Forward Error
Correction (FEC) coding [30] or “transport layer aware”
prefetching process [9]. These proposals are in line with
the services the TAPS working group at the IETF aim to
provide: smart interactions between the multi-path
transport and the video generation to improve QoE.

Some papers have been discarded from the analysis,



because (i) they use old versions of MPTCP and
simulations [12]; (ii) the clients download data from
various servers [10], which is not in the scope of this paper
nor a default use case of MPTCP.

To te best of our knowledge, the only cross-layer
proposal for MPTCP and video streaming is in [24]. The
authors propose a cross-layer scheme between the Media
Access Control (MAC) and the transport layers to detect
when a path fails so that the traffic can be proactively
re-routed, or some packets discarded at the receiver level to
prevent the video from freezing. Since this proposal deals
with other layers than ours, both approaches are
complementary and the advantages are cumulative.

3. VIDEO-CONTENT AWARE
SCHEDULER OVER MPTCP

This section presents our video-aware scheduler over
MPTCP. First, we expose limitations that are inherent to
having a protocol stack with independant layers. Then, we
describe how cross-layering approaches can be introduced
to assess those limitations. We then show how to pass
information from the application layer to the scheduler of
MPTCP. Finally, we introduce the algorithm that is
exploited in the remaining of this paper.

3.1 Limitations Related to Protocol Stacks
with Independant Layers

Current implementation of the transport layers leads to
information loss between the application layer and the
transport layer. Indeed, most transport protocols,
including TCP, MPTCP and UDP, work at the bit-stream
level and are not aware of the structure of the transported
data. On the positive side, this design makes protocols
independent from applications. On the negative side, this
unawareness of the structure of the bit-stream (here the
unit structure of the video stream) comes with some
drawbacks. Particularly, data are transmitted from the
MPTCP Sending Buffer in the same order as they arrived
to this buffer, even if some data should no longer be sent,
for example an obsolete video unit whose playback
deadline has already expired. Such event is likely to occur
in transport protocols that guarantee in-order delivery,
such as TCP and MPTCP because the loss of one data
packet can delay the delivery of multiple following packets.

3.2 Motivation for Cross-layer Scheme
Our idea is to have a common view for both the

application and transport layers as shown in Figure 2. In
practice, this cross-layer vision is a scheduler, which is
aware of the video content, the application deadlines, and
the network conditions (see Section 3.3 for more details).
The cross-layer scheduler decides if and when a video unit
is given to the transport layer, so the cross-layer scheduler
changes the order of video units before sending the packets
to the TCP Sending Buffers. Our motivation is that the
cross-layer scheduler can exploit the triple awareness to
increase the number of video units that are decodable
without error at the client side. This objective typically
matters when the network conditions suddenly change and
when the Applicative Receiving Buffer is small. The
cross-layer scheduler can then choose to cancel the
transmission of low-importance video units and rather to
prioritize the transport of the most important ones.

10

TCP Sending Buffer

TCP Sending Buffer

Smart
scheduler

1

3

2

2 application aware

1 content aware

3 network aware

Figure 2: Our cross-layer scheduler

The cross-layer scheduler can be implemented either at the
transport layer or at the application layer. In the following of
the paper, we consider an implementation at the application
level because it is more convenient. Here are some details.

At the application level the cross-layer scheduler relies
on an existing transport protocol (in our case MPTCP),
which is already deployed, without further modification.
The application uses some system calls to get information
on the MPTCP stack and to know when it can send new
data to the transport layer. The unit structure of the video
stream is known. At the client side, only the video player
needs to be updated to deal with the frame order. Overall,
a content provider that develops both the streaming server
and the video client players (for example YouTube,
Dailymotion, and Netflix) can implement a cross-layer
scheduler without much difficulties.

The implementation of the cross-layer scheduler at the
transport level is more challenging. At this level, the cross-
layer scheduler has direct access to MPTCP stack in the
kernel. So it can directly access the network information.
Moreover it can decide how to cut the data into packets,
when to send a packet on the network and on which path.
But any proposal corresponds to a new MPTCP protocol,
which has to be validated and standardized. The cross-layer
scheduler also changes the behaviour of standard transport
layer protocols since the order in which the data is given to
the transport layer stack is not the order in which the data
are received in the Multi-Path Sending Buffer. With the
re-ordering process, the client should understand this new
protocol, which requires a new implementation of the kernel
at the client side.

3.3 Passing Information between the
Different Layers

We present in this Section the different information that
the cross-layer scheduler can use to take decisions. We
distinguish between the awareness of (i) information from
the video content, (ii) some network characteristics and
(iii) information on the application.

3.3.1 Video content awareness

What benefits. The cross-layer scheduler knows it



transports an encoded video and understands its structure.
Each video unit may have causal dependencies with other
video units. The cross-layer layer knows all those
dependencies and so is able to infer whether the client can
decode a video unit at a specific time or not. Each video
unit is associated with a specific video frame (even for
tiles). The cross-layer scheduler knows the picture order
counts (POC) and the coding identifier (coding id) of each
frame. With the POC, the scheduler knows the display
deadline of the associated picture.

How to implement. To get video content awareness, the
cross-layer scheduler reads the video container. The video
units are part of the encoded video structure, so the cross-
layer scheduler can extract the information from the right
ISOBMFF boxes.

3.3.2 Network awareness

What benefits. The cross-layer scheduler knows the
status of the network, including the smoothed Round-Trip
Time (sRTT), the global moving average bandwidth and
the loss probability of each path. With the sRTT, the
cross-layer scheduler can estimate the arrival time of each
packets, and choose to send a video unit close to its
deadline on the path with the shortest sRTT. From the
moving average bandwidth, the scheduler can choose to
drop some less important video units to favor others. From
the loss probability, it can choose to send highly important
video units on the path with the smallest loss probability.

How to implement. The MPTCP socket in the kernel
already knows the sRTT and has enough data to compute
the global moving average bandwidth and the loss
probabilities. A cross-layer scheduler implemented inside
the MPTCP stack already has those information. At the
application layer, the cross-layer scheduler needs to
implement a feedback loop from the MPTCP socket.
Although such feedback does not exist in open-source
implementations yet, the development is not challenging
since the server hosts both the MPTCP implementation
and the application.

3.3.3 Application awareness

What benefits. The cross-layer scheduler knows the
status of the video player on the client. It can estimate the
lag at the client side. This lag is the delay introduced by
the client before starting to display the decoded video. The
cross-layer scheduler can also estimate when the client
started playing the video. From the lag, the start
timestamp and the POC, the cross-layer scheduler can
estimate the deadline of each video units.

How to implement. The cross-layer scheduler needs a
feedback from the client. The client can add extra
information in its HTTP requests or use Real-Time
Transport Control Protocol (RTCP) to implement this
feedback in practice. The lag is a fixed value, which can be
communicated to the server. The hardest thing is to
estimate the timestamp when the client starts playing the
decoded video. We do not want to synchronize the clocks
of both server and client. It is not needed to have an
accurate timestamp as long as this timestamp is over
estimated (i.e. in the future compared to the real start
timestamp). Indeed, if the timestamp is under estimated,

Name Description
sv ∈ N∗ Number of packets needed to transmit

video unit v ∈ V
tprx ∈ R+ Applicative reception timestamp of

packet p ∈ P
tvdeadline ∈ R+ Decoding deadline of video unit v ∈ V

Dv Set of video units needed to decode video
unit v ∈ V due to dependencies

Table 1: ILP notations

the cross-layer scheduler is more conservative (it does not
send video units that have no chance to arrive in time).

3.4 Our Algorithm
The goal of our algorithm is to prioritize the video units

that are the most likely to be received in time. The cross-
layer scheduler is content-aware (it knows how to extract
video units) and application-aware (it is able to estimate
their playback deadline from an applicative feedback loop).
It is also network-aware (it knows which path the MPTCP
stack selects to send the next packet as well as the sRTT of
this path). The cross-layer scheduler supposes the current
packet arrives at the client side after a travel time of sRTT

2
.

The available video units are sorted by coding id (i.e.
the original video bit-stream order). The cross-layer
scheduler iterates over the list and checks whether the
estimated playback time of each video unit is before the
estimated playback deadline. If one of the units validates
the estimated transmission success test, then it is sent.
Otherwise (if no available video unit is likely to arrive on
time), the scheduler gives priority depending on a function
of the type and the dependencies.

4. OMNISCIENT OPTIMAL MODEL
We now introduce a model, which computes the optimal

transmission of a given video by exploiting multiple paths.
We aim to compute an upper-bound of the performance of
a scheduler so that we can objectively rate the performance
of our proposal. The model determines which video data
should be carried out by which MPTCP packet so that the
number of video units that are decodable at the reception
side is maximum. It is a theoretically optimal cross-layer
scheduler with a full awareness: the video content, the
whole application interactions between server and client,
and the network characteristics. These parameters are
inputs of the model. The model goes beyond this
awareness and is omniscient because all the events of the
video transmission (including the time each packet takes to
reach the reception) are known by the solver. In other
words the optimal solution is a scheduler that can take
decision with the knowledge of the future.

4.1 Input
We summarize in Table 1 the main notations that we

introduce in the following.

MPTCP. Our model is based on the transmission of a
file using the MPTCP protocol. The input contains the
records of a full, completed transmission, including when
each MPTCP packet of the bit-stream has been sent at the



server and successfully received at the client. We denote by
P the set of packets that have been successfully received by
the client for the whole transmission. Each packet p ∈ P is
characterised by the timestamp tprx ∈ R+ of its delivery to
the client application.

The optimal solution of our solver is based on an actual
MPTCP transmission, without interfering with it. Indeed,
the cross-layer scheduler does not impact the scheduler
within MPTCP since our scheduler re-orders the packets of
the video units inside the bit-stream, so before sending the
data to the MPTCP packet scheduler. The scheduler
within MPTCP generates the same records of packet
transmission regardless of the implementation of the
cross-layer scheduler (provided that at any moment the
packet scheduler has available data to send).

Video. Our model is based on the notion of video unit
that is introduced in Section 2.2, i.e., the model applies
indifferently to either video frames or video tiles. We denote
by V the set of video units that have to be streamed from one
server to a client. Each video unit v ∈ V should be played
by the application at the client side at a given time, which
is noted tvdeadline. In other words, the whole data related
to video unit v must be in the Applicative Receiving Buffer
at tvdeadline. The transmission of a video unit v requires
the transmission of sv different packets. We consider packet
padding if the size of the video unit is not a multiple of a
Maximum Transmission Unit (MTU).

A video unit v ∈ V can be decoded and displayed if and
only if all the video units on which v depends have been
received and decoded on time. We denote by Dv the set of
video units on which v depends. In practice, cross-layer
error concealment strategies are implemented at the video
decoder to allow partial decoding of a unit v even if one of
the dependencies of v is missing. However, (i) the
strategies depend on the video decoder, (ii) error
concealment strategies are not widely implemented for tiles
yet, and (iii) the distortion due to a missing unit depends
on multiple parameters. Therefore we model here the most
constraining environment where we consider that only one
video unit v′ ∈ Dv can prevent a video unit v to be
decoded if v′ is missing at the client side.

4.2 Decision Variables
The main decision variable that our cross-layer scheduler

should take is, for each MPTCP packet, which video unit
data should be sent. We model it as:

xp
v =

{
1, if p transports data for v
0, otherwise

, ∀(v, p) ∈ V × P

This decision variable can be interpreted as follows.
Every time a new packet can be sent through any of the
TCP network paths, the cross-layer scheduler should buffer
a MPTCP packet in the MPTCP Sending Buffer. This
packet transports data related to a given video unit.
Instead of using the FIFO policy depending on the frame
decoding order, the cross-layer scheduler can re-order the
data. The decision variable x indicates the data carried out
by the MPTCP packets that are successfully transmitted.

A video unit v ∈ V is successfully received and decodable
if (i) at least sv packets carrying data related to v are sent,
(ii) the latest of these packets arrives before tvdeadline, and
(iii) all video units in Dv are received and decodable. We

Integer Linear Program formulation

max
x,y

∑
v∈V

yv

such that
∑
p∈P

xp
v = sv · yv ∀v ∈ V (1a)

∑
v∈V

xp
v 6 1 ∀p ∈ P (1b)

|Dv| · yv 6
∑

vdinDv

yvd ∀v ∈ V (1c)

xp
v · tprx 6 tvdeadline ∀(v, p) ∈ V × P (1d)

yv ∈ {0, 1} ∀v ∈ V
xp
v ∈ {0, 1} ∀(v, p) ∈ V × P

introduce a new decision variable, which is:

yv =

{
1, if v was received and decodable
0, otherwise

, ∀v ∈ V

4.3 Optimization Objectives
The main goal of our cross-layer scheduler is to improve

the quality of the decoded video at the client side. In our
model, we aim at maximizing the number of decodable
video units, formally

∑
v∈V yv. In general, the more video

units are received, the better is the QoE, but the distortion
due to two missing minor video units is sometimes smaller
than the loss of one major video unit. However, note that
our objective tends to favour those video units on which a
large number of video units depends, (typically the
I-frames for video units as frames), and these video units
are often the most impacting. Another option, which we do
not choose in this paper, is to pre-compute the QoE of the
decoded video for any solution, that is for any subset of
missing video units. This option requires the computation
of 2n combinations for a video of n video units. Our future
works include the development of more sophisticated
objective functions, which would be a good trade-off
between the simplicity of our current objective function
and the accuracy of the full QoE computation.

4.4 Integer Linear Program
The ILP model is defined by the set of equations (1). The

constraints (1a) ensure that a video unit v is received (yv =
1) if and only if at least sv different packets are used. The
constraints (1b) ensure that a packet can transport data
related to one and only one video unit. The constraints (1c)
state that a video unit v is decodable (yv = 1) if and only
if all video units on which v depend are also received and
decodable. And finally, the constraints (1d) ensure a packet
p can transmit a video unit v if and only if p is received by
the client before the decoding deadline of v.

5. MPTCP DATASET
To evaluate the performance of cross-layer schedulers in

realistic configurations, we need the logs of a real MPTCP
transmission, including, for each packet, the transmission
timestamp, the reception timestamp, the size of the
payload and the path on which this packet has been
carried out. To the best of our knowledge, no such dataset



VPN VPN

Web Server Client

NTP

|clock offset| < 1 ms
clock jitter ≈ 0.5 ms

Wi-Fi 3G

Figure 3: Testbed used for generating traces that
characterize the transmission of a file using MPTCP

is publicly available, so we collected a series of traces based
on a campaign of measures. We describe the platform, and
then this dataset. We finally highlight some observations,
which confirm weaknesses of MPTCP.

5.1 Measurement Platform
To collect real traces of MPTCP traffic, we set up a

platform composed of an MPTCP web server, an MPTCP
client, and a layer three (L3) UDP Virtual Private
Networks (VPNs). The platform is depicted in Figure 3.

We measured the reception and transmission timestamps
respectively on the client and the server sides. To ensure the
consistency of the timestamps on two machines, both clocks
were synchronized. We used the Network Time Protocol
(NTP) with the server as master and the client as slave.
When both computers are close enough, NTP can lead to a
synchronization offset smaller than 1 ms with a drift that can
be neglected during a run. To guarantee the synchronization
of both computers, we installed them in the same room.

Although both the client and the server are in the same
Local Area Network (LAN), for the sake of the
representativity of our results, we need the MPTCP traffic
to face issues that are inherent to a transmission over the
public Internet, such as Round-Trip Time (RTT) variations
or different congestion levels within the network. To
guarantee that packets travel on the public Internet, we
used a layer three UDP VPNs.2 We opened a VPN tunnel
for each network interface, and then we set routing and
firewall rules to force MPTCP traffic to exclusively use
those VPN tunnels. The client and the server were located
in Rennes, France,and the VPN server in Roubaix, France,
in the data-center of a major European cloud provider.
Thus, the connection is realistic in the sense that the whole
connection through the VPN is typical from a connection
between an end-user and the server of a cloud service.

At the server side, we used a modified MPTCP linux
kernel, which captures and logs the timestamp when a
packet has been selected for transmission. This modified
kernel also logs some useful information known by the
MPTCP socket when the packet is transmitted. Those
modifications are only related to the logs, and thus they do
not impact the behavior of MPTCP.

At the client side, a tcpdump listened on each interface
for MPTCP data packets and stored the reception
timestamp and the data sequence number of each received
packet. Combining with the logs from server, we thus

2By using UDP as the underlying transport protocol, we
maintain the main properties of the link (loss, RTT variance,
etc.) except for the MTU [23].

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

5

10

Trace ID

M
P

T
C

P
g
o
o
d

p
u

t
(M

b
p

s) 3G

Wi-Fi

Figure 4: Average MPTCP goodput of all the traces

20 30 40 50 60
0

2

4

6

8

10

Time [s]
G

o
o
d

p
u

t
(M

b
p

s)

MPTCP Wi-Fi 3G

Figure 5: Measure of the goodput every second for a trace

collected both sending and reception timestamps of each
successfully received packets.

5.2 Description of the Dataset
We measured multiple transmissions of a 100 MB file

from the server to the client during two weeks in
September 2015. In the present paper, we restrict to a dual
Wi-Fi/3G connection. Once a trace (the transmission of
the file) is recorded, a random delay is set before another
transmission is measured, thus the transmissions happened
at various times and days.

The dataset captures all key events of series of MPTCP
transmissions. The dataset records the time at which the
packet scheduler chose the path for the emission of the
packet, the time at which the packet is sent on the
network, the time at which the packet is received by the
client, and the time at which the data is delivered to the
application layer on the client side.

In Figure 4, we show the average goodput of the subset of
traces that we use in our paper hereafter. In this Figure, the
average capacity of the 3G path can directly be read on the
y-axis but the average capacity of the Wi-Fi path should
be computed as the difference between the total MPTCP
average goodput and the 3G goodput. The traces exhibit a
high variability although the records have been picked in the
same configuration. The benefits of MPTCP are noticeable
on a series of traces where one of the network interfaces had
a very low available bandwidth, but the other network path
is well used, so MPTCP manages to guarantee an average
goodput around 6 Mbps for the vast majority of traces.

We show in Figure 5 the goodput, averaged every second,
for both interfaces during one given trance. The head-of-line
blocking phenomenon is visible twice, at the 28th and 39th



25

30

6 7 8 9 10 11

4

8

Time [ms]

P
a
ck

et
Id

Figure 6: Head of line blocking: each line represents one
packet, with the id on the y-axis. The circle mark on the
left is the timestamp of the packet transmission, the cross
mark is the reception timestamp, and the square mark is the
timestamp of the delivery to the Application.

seconds. Negative events on the 3G paths (packet loss on
a slow path) prevent any new packet from being delivered
on the fast Wi-Fi path. In that case, the server stops using
the Wi-Fi links until the missing packets is received from
the 3G path. Since the Wi-Fi is the fastest links, the overall
goodput of the multi-path transmission significantly drops
during a couple of seconds. For the delivery of a multimedia
stream, the impact on the QoE can be disastrous.

To further illustrate the head-of-line blocking issue, we
show in Figure 6 the timestamps related to the
transmission of 29 consecutive packets. Each line
represents one packet. For each packet, the circle mark on
the left is the time at which the packet has been sent. The
cross mark is the time at which the packet has been
received in the Multi-Path Receiving Buffer. And the
square mark is the time at which the packet has been
pushed to the Application Receiving Buffer. The two first
packets (2 and 3) have traveled over the network for a long
time. All the packets ranging from 4 to 27 arrived at the
client before both packets 2 and 3. Since MPTCP
guarantees in-order delivery, the packets from 4 to 27 have
to be buffered into the MPTCP Receiving Buffer, which
result in a head-of-line blocking phenomenon. The
background is gray for all packets buffered before the
delivery. Finally, all packets are pushed to the Application
Receiving Buffer at the same time upon the reception of
packet 3 but this late delivery may be too late depending
on the deadline of the video units.

6. PERFORMANCE EVALUATIONS
We now deal with the performance evaluation. We first

describe the settings of the simulations. We present a
glimpse of all the results by analyzing one trace. Then, we
measure the gap between the FIFO scheduler, which
mimics the behavior of the traditional MPTCP scheduler,
and the optimal omniscient model. We show here that
significant gains can be achieved by the implementation of
a cross-layer scheduler. We then compare our cross-layer
scheduler to the FIFO scheduler. The results are
encouraging, since they show that our scheduler improves
the QoE. Finally, we compare our cross-layer scheduler to
the optimal one. We see that our cross-layer scheduler is
still far from the optimal, which motivates further studies
in this area.

6.1 General Settings
We distinguish two main streaming use cases: the VoD

and the live-streaming scenario. One of the main differences
between both use cases is the number of video units that
are available in the Application Sending Buffer. For the
live-streaming, only a few video units are available at any
moment of the transmission (those that have been generated
at that time), while, for the VoD case, all video units are
in the Application Sending Buffer at the beginning of the
transmission. The behaviors of the cross-layer scheduler are
equivalent in both use cases. We present only the VoD use
case results in this Section.

The reference FIFO scheduler. We compare our cross-
layer scheduler and the optimal solution to the reference
FIFO scheduler, which mimics the current implementation
of MPTCP without any cross-layer scheduler. The video
units are processed in the bit-stream order. The scheduler
splits them into multiple data packets of size MTU (with
padding if needed). The scheduler then gives the packets to
the MPTCP stack, which sends them to the client by using
one of the available paths.

Video Settings. We consider a 25 s-long video segment.
This duration is large enough to observe the impact of the
variability of the network on the streaming and not too far
from a typical video segment length (10 s) in HAS. Our
experiment can be interpreted as a HAS segment
download: a segment with a specific bit-rate has been
selected and now, due to the short playback delay, the
segment has to be downloaded to avoid stopping the video
playback. This video segment is an extract from Blender’s
Tears of Steel video [3]. It was encoded from the raw
pictures into an HEVC video, main profile, with a
resolution of 1920x1080 pixels, a bit-rate of 6 Mbps. We
used ffmpeg version 2.7.2-2+b1 with the libx265 version 1.7
module. We used the medium preset and we forced an I
frame every 94 frames.

Video Quality. Recent studies have shown that the
quality of the video experience depends on multiple
criteria, including not only the video quality but also the
video lag, i.e., the delay between the transmission start
and the video display start to the client [21, 29, 31]. In the
following, we consider these two axis.

We consider four different lags ranging from 500 ms,
which corresponds to a tight and challenging configuration
with a small Applicative Receiving Buffer, to 2 s, which is
reasonable in today’s video services. These configurations
are more constraining than what is observed today because
we anticipate lag reduction from video providers.

As for the video quality, we first have to reconstruct the
video as the client would see it after the transmission
losses. The three algorithms that are evaluated here (the
FIFO scheduler, our cross-layer scheduler, and the
omniscient optimal algorithm) produce a file with all the
video units that are received in time by the client. To
reconstruct the video, we take the original video (the one
that is transmitted) and we remove from its bit-stream the
lost video units. Then we use ffmpeg to decode the video
without the lost units and to generate a yuv420p video. To
compute an objective value of video quality, we used the
Video Quality Measurement Tool (VQMT) software [13]
and the traditional Peak Signal to Noise Ratio (PSNR).



0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Frame POC

M
S

-S
S

IM
FIFO cross-layer opt

Figure 7: QoE frame by frame

We used the original video (the one before the
transmission) as reference to compute the PSNR or the
Multiscale - Structural Similarity (MS-SSIM) metrics.

Network Settings. The transport layer behavior is
based on the real MPTCP dataset (see Section 5.2). This
dataset uses jointly a 3G and Wi-Fi connections. We chose
this multi-path configuration for mainly two reasons.
Firstly because this is the most common setup for today’s
mobile devices. Secondly because using MPTCP jointly on
3G and Wi-Fi is known to create jitter in the delivery of
data due to the head-of-line blocking, which adds
unpredictable variations in the transport layer behavior. In
the following, the presented results are statistics from 168
independent transmissions. Those transmissions are
simulated on 168 independent sections of our MPTCP
dataset. The three schedulers (FIFO, cross-layer and
optimal) use the same set of transmissions.

6.2 The Main Idea in a Nutshell
We present here the main idea of our proposal in one plot,

which depicts the MS-SSIM measurement frame by frame
for one of our trace. It is shown in Figure 7. While this
result is only one trace, the behavior that is shown here is
typical from our performance evaluation campaign and the
following results confirm it.

At the frame 70, both the cross-layer and the FIFO
schedulers fail in transmitting a frame, which results in a
severe drop of the video quality because this frame contains
key information. On the contrary, the optimal scheduler
anticipates that the frame 70 requires saving a large
bandwidth and it drops some frames of minor importance
between frame 50 and 70. It thus manages to get the frame
70 on time. The same process happens for frame 108.

Another interesting observation is that neither the FIFO
nor the cross-layer schedulers succeed in concealing from
the miss of frame 70. However, the cross-layer scheduler
manages to get back in a reasonable video quality at the
end of the transmission by getting the frame 245, which
provides key information and makes the remaining video
data decodable.

6.3 Traditional MPTCP vs. Optimal
To fairly compare the schedulers (either FIFO or cross-

layer) versus the optimal results, we used the same decoding
hypothesis as in the optimal model (see Section 4). First, the
video unit size is a multiple of the MTU otherwise padding
is used. A MPTCP packet thus transports data from only
one video unit. Second, a video unit cannot be decoded if

FIFO opt FIFO opt FIFO opt FIFO opt
0

0.2

0.4

0.6

0.8

1

R
ec

ei
v
ed

fr
a
m

e
ra

ti
o

500 ms 1000 ms 1500 ms 2000 ms

Figure 8: Ratio of frame received in time by the client for a
25 s 1080p HEVC video with an average bit-rate of 6 Mbps

FIFO opt FIFO opt FIFO opt FIFO opt
0

0.2

0.4

0.6

0.8

1

R
ec

ei
v
ed

ti
le

ra
ti

o

500 ms 1000 ms 1500 ms 2000 ms

Figure 9: Ratio of tile received in time by the client for a 4 s
1080p HEVC video with four tiles per frame with an average
bit-rate of 6 Mbps

all its data are not received in time. Third, the client cannot
decode a video unit if all its dependencies are not decoded
in time (i.e. before their display deadlines).

We first compare the FIFO scheduler to the optimal on the
ratio of video units that have been received in time during
one transmission. In Figure 8 (respectively Figure 9) we
represent the ratio of frames (respectively tiles) that are
received in time, with all its dependencies, for each of the
168 transmissions. The results are shown with a box plot,
with the 10th, the 25th, the median, the 75th, and the 90th

percentiles. For example the line at the bottom of the box
shows the performance of the 16th worst transmission over
the 168 transmissions. We show the results for four different
video lags.

Our main observation is about the variance of the
performance for the FIFO scheduler (which, to recall, is
the current MPTCP scheduler). For the 10th percentile,
less than one quarter of the frames are decoded while all
the frames are received for some other transmissions. The
variability of the results slightly decreases when the lag
increases, but, even for the 2 s lag, the difference between
the tenth and the nineteenth percentiles is significant. For
the same set of transmissions, the optimal scheduler shows
that it is possible to schedule the data so that more than
three quarters of the frames are well decoded, even for the
tenth percentile. The current MPTCP scheduler is
unable to address the cases of instable throughput
for video streaming. We also note that, for short lags
(500 ms and 1 s), more than half of the transmissions are
disastrous with less than half decoded video units. Finally,
since the differences between tiles and frames are not
significant, we restrict our studies to the frame level in the
remaining of the paper.



0 5 10 15 20 25
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

PSNR gap (dB)

C
D

F
0.5 s 1 s 1.5 s 2 s

Figure 10: PSNR gap between the optimal scheduler and the
FIFO scheduler. Positive gaps means that the PSNR of the
optimal is greater than the one of the FIFO. We represent
the CDF of the 168 transmissions.

FIFO cross-layer FIFO cross-layer FIFO cross-layer FIFO cross-layer
0

0.2

0.4

0.6

0.8

1

M
S

-S
S

IM

500 ms 1000 ms 1500 ms 2000 ms

Figure 11: QoE comparison by the mean of MS-SSIM
between the cross-layer and the FIFO schedulers

Our second observation is the gap between the FIFO
scheduler and the optimal one. We measure the PSNR for
the 168 transmissions and for both schedulers. We then
compare both PSNR, which is a standard video quality
process where videos are compared to the same video
reference. We show the PSNR gap in Figure 10 for the four
video lags. For a 500 ms lag (respectively 2 s), both the
FIFO and the optimal schedulers perform similarly for one
third (respectively one half) of the transmissions. But for
the remaining of the transmissions, the PSNR gap is
significant. Around half of the transmissions have more
than 10 dB of difference with the optimal. The distorsion
gap can be severe with more than 20 dB. It means that the
margin of progress for MPTCP scheduler is huge.

6.4 Cross-Layer Scheduler vs. Traditional
MPTCP

We now compare our cross-layer scheduler to the FIFO
scheduler. We use both MS-SSIM and PSNR as the main
video quality for the four aforementioned video lags. We now
relax the constraint that a video unit cannot be decoded if
one of its dependencies misses. We let the libx265 video
decoder applies its error concealment strategy.

We present in Figure 11 the box plots for the MS-SSIM
measures. Our main observation is that the MS-SSIM of
the cross-layer scheduler is from 0.1 to 0.2 bigger than the
MS-SSIM of FIFO, for the 10th, the 25th and the median
percentiles. It is reflected by the observation that the 16th

worst transmission (10th percentile) of the cross-layer is
always better than the 42th (25th) worst of the FIFO. The
median transmission is also always greater than 0.7 for the
cross-layer, which means that our cross-layer scheduler

−10 −5 0 5 10 15
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

PSNR gap (dB)

C
D

F

0.5 s 1 s 1.5 s 2 s

Figure 12: PSNR gap between the cross-layer scheduler and
the FIFO scheduler. Positive gaps means that the PSNR
of the cross-layer is greater than the one of the FIFO. We
represent the CDF of the 168 transmissions.

cross-layer opt cross-layer opt cross-layer opt cross-layer opt
0

0.2

0.4

0.6

0.8

1

M
S

-S
S

IM

500 ms 1000 ms 1500 ms 2000 ms

Figure 13: QoE comparison by the mean of MS-SSIM of the
cross-layer and the optimal scheduler

succeeds in guarantying decent delivery in the majority of
transmissions.

We represent the PSNR gap in Figure 12. It can happen
that the FIFO scheduler results in a better PSNR than the
cross-layer. Indeed the decision taken by the cross-layer
scheduler can be counter-productive, for example when a
video unit is prioritized over other video units but
unpredictable packet losses prevents this video unit to be
decoded in time. We can see however that these risks are
overall positive since such PSNR degradation occurs in less
than 15% of the transmissions although PSNR
improvement occurs in more than 40% of the
transmissions. Furthermore, the gains are bigger for the
cross-layer with more than 20% of the transmissions with
more than 5 dB.

To sum up, the cross-layer scheduler manages to
offer a better video quality for the client in
comparison to the traditional MPTCP scheduler.

6.5 Cross-Layer Scheduler vs. Optimal
We now compare the cross-layer scheduler to the optimal

one, to check whether the cross-layer fills the gap to the
optimal. To be fair with the optimal scheduler, we
re-consider the constraint that a frame with a missing
depending frame cannot be decoded. Hence the MS-SSIM
results of the cross-layer scheduler are slightly worse than
what shown in Section 6.4.

We use again the box plots to show the MS-SSIM in
Figure 13. Our main observation is that the cross-layer
scheduler is far from being as efficient as the
optimal scheduler. In this challenging environment, the
cross-layer scheduler does not succeed in dealing with the



−30 −20 −10 0 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

PSNR gap (dB)

C
D

F
0.5 s 1 s 1.5 s 2 s

Figure 14: PSNR gap between the optimal scheduler and the
cross-layer scheduler. Positive gaps means that the PSNR
of the cross-layer is greater than the one of the optimal. We
represent the CDF of the 168 transmissions.

weaknesses of MPTCP and the constraints of the video
decoder, although the optimal scheduler manages to find a
data scheduling, which guarantees an MS-SSIM greater
than 0.8. This observation also applies to the PSNR gap in
Figure 14. Please note that, here again, in some rare cases,
the optimal scheduler is less efficient than the cross-layer
one, because the objective function is not to maximize the
PSNR but to maximize the number of decodable video
units. However, in two thirds of the transmission, the
cross-layer has a larger video distortion with gaps
sometimes bigger than 20 dB.

6.6 Overall Conclusive Evaluation
To conclude the evaluation, we provide the average MS-

SSIM for all the transmissions and all the video lags (see
Table 2). To echo what we previously said, we observe:

• The big gap between the traditional FIFO MPTCP
scheduler and the optimal scheduler.

• Our algorithm for the cross-layer scheduler improves
the performance of MPTCP regarding video streaming
but it is still far from the optimal scheduler.

0.5 s 1 s 1.5 s 2 s
FIFO 0.583 0.645 0.682 0.746

cross-layer 0.697 0.705 0.749 0.810
optimal 0.892 0.909 0.932 0.944

Table 2: Average MS-SSIM depending on the scheduler
strategy and the client lag

7. CONCLUSIVE DISCUSSION
In this paper, we have dealt with the delivery of video

stream on multiple paths. We have focused on protocol
issues related to application and transport layers. Despite
the promises of multi-path networking, the existing
solutions have not been widely adopted due to weaknesses
of the protocol at these layers. The main idea that we have
studied here is the interactions between both layers to
enable a better video data scheduling. We have shown that
the implementation of such cross-layer scheduler is possible
with reasonable development. To study the potentials of
this idea, we have designed a theoretical model, which

computes the optimal scheduling solution. This optimal
scheduler allows fair performance evaluations. The results
presented in Section 6 demonstrate two main statements:
(i) the gap between the current scheduler and the optimal
omniscient scheduler is huge and (ii) a relatively simple
cross-layer scheduler provides a performance gain in terms
of video quality.

This paper hopefully clarifies some of the questions
scientists may have about the weaknesses of MPTCP as
well as the solutions that can be designed to fix these
weaknesses. Many perspectives are still open, and we
highlight in the following the main scientific problems we
will address in the future.

Better Scheduling Algorithms. The algorithm we
have designed for our cross-layer scheduler makes a
relatively simple use of the available information. Our goal
was to demonstrate that the motivation for a cross-layer
scheduler is valid. Now, more sophisticated and efficient
algorithms can be designed. As shown in Section 6, our
algorithm is still far from being as efficient as the optimal
scheduler. In future works, we will study the different
information available at each layer to better predict the
near future behaviors of the transport layer in order to take
better decision regarding the scheduling of the video units.

Implementation and Standardization. The
implementation of a cross-layer scheduler requires the
development of clear Application Programming Interfaces
(APIs). As we noted in this paper, we need at least an API
to get a feedback from the transport layer protocol to get a
read-only access to key transport-layer information.
Similarly, an API should also be defined at the cross-layer
scheduler side so that the transport protocol could inform
the cross-layer scheduler when a new packet is ready to be
transmit on the network. If the goal is to create a
cross-layer scheduler independent of the video application,
another API to communicate with the application layer
should be defined.

Transport protocols. In this paper we have focused on
studying a cross-layer scheduler using a TCP-like transport
layer but using an UDP-based protocol is also possible,
with potential better results. Indeed, with TCP protocols,
the in-order delivery and the guaranty of reception of all
packets introduce jitter in the data delivery to the
application, especially when coupled in MPTCP. Those
two mechanisms do not exist in the UDP transport
protocol. A packet loss does not affect other packets and
so, jitter in the application delivery exclusively comes from
network loss. Following the works done on MPRTP, and
considering the recent proposals for UDP-based protocols,
like Quick UDP Internet Connections (QUIC), a more
efficient multi-path transport protocol can be implemented
by leveraging cross-layer interactions.

Client-Server Interactions. This paper studies only the
server side of the problem, as if no intelligence existed at the
client side. A feedback from the client has the potential to
improve the quality of the cross-layer predictions. Moreover,
the player can also predict some frames or some portion
of frames that would be better to lose depending on the
viewer behaviors. For instance, if the viewer focuses only
on some part of the video (some faces or objects) then it is
less important to lose information on the part of the video



the viewer does not pay attention to. This principle, which
has been studied for video compression (for example [31])
can also be applied to cross-layer scheduling and transport
protocols.

Acknowledgments
The authors are partially funded by the European
Community under its Seventh Framework Programme
through the Reducing Internet Transport Latency (RITE)
project (ICT-317700). The views expressed are solely those
of the authors.

8. REFERENCES
[1] Apple. iOS: multipath TCP support in iOS 7. Blog

post, April 2015.

[2] B. Arzani, A. Gurney, S. Cheng, R. Guerin, and B. T.
Loo. Impact of path characteristics and scheduling
policies on MPTCP performance. In Proc. of IEEE
AINA Workshop, 2014.

[3] Blender’s Tears Of Steel.
https://mango.blender.org/. Accessed: 2015-11-28.

[4] O. Bonaventure. Experience with multipath TCP.
Technical report, IETF Presentation, July 2014.

[5] O. Bonaventure. Multipath TCP through a strange
middlebox. Blog post, January 2015.

[6] O. Bonaventure, C. Paasch, and G. Detal. Use cases
and operational experience with multipath TCP.
Internet-Draft draft-ietf-mptcp-experience-03, IETF,
October 2015.

[7] B. Briscoe, A. Brunstrom, A. Petlund, D. Hayes,
D. Ros, I.-J. Tsang, S. Gjessing, G. Fairhurst,
C. Griwodz, and M. Welzl. Reducing internet latency:
A survey of techniques and their merits.
Communications Surveys Tutorials, IEEE,
PP(99):1–1, 2014.

[8] S. Chen, Z. Yuan, and G. Muntean. An energy-aware
multipath-TCP-based content delivery scheme in
heterogeneous wireless networks. In Proc. of IEEE
WCNC, 2013.

[9] Y. Chen, Y. Lim, R. J. Gibbens, E. M. Nahum,
R. Khalili, and D. Towsley. A measurement-based
study of multipath TCP performance over wireless
networks. In Proc. of ACM IMC, 2013.

[10] Y. Chen, D. Towsley, and R. Khalili. MSPlayer:
multi-source and multi-path leveraged YoutubER. In
Proc. of ACM CoNEXT, 2014.

[11] S. Deng, R. Netravali, A. Sivaraman, and
H. Balakrishnan. WiFi, LTE, or both?: Measuring
multi-homed wireless internet performance. In Proc. of
ACM IMC, 2014.

[12] C. Diop, G. Dugué, C. Chassot, and E. Exposito.
Qos-oriented MPTCP extensions for multimedia
multi-homed systems. In Proc. of IEEE AINA
Workshop, 2012.

[13] EPFL’s VQMT software.
http://mmspg.epfl.ch/vqmt. Accessed: 2015-11-29.

[14] G. Fairhurst, B. Trammell, and M. Kuehlewind.
Services provided by IETF transport protocols and
congestion control mechanisms. Internet-draft
draft-ietf-taps-transports-07, IETF, October 2015.

[15] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure.
TCP Extensions for Multipath Operation with
Multiple Addresses. RFC 6824, IETF, 2013.

[16] B. Hesmans, F. Duchene, C. Paasch, G. Detal, and
O. Bonaventure. Are TCP extensions
middlebox-proof? In Proc. of ACM HotMiddlebox,
2013.

[17] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh,
M. Handley, and H. Tokuda. Is it still possible to
extend TCP? In Proc. of ACM IMC, 2011.

[18] J. R. Iyengar, P. D. Amer, and R. R. Stewart.
Concurrent multipath transfer using SCTP
multihoming over independent end-to-end paths.
IEEE/ACM Trans. Netw., 14(5):951–964, 2006.

[19] D. Jurca and P. Frossard. Video packet selection and
scheduling for multipath streaming. IEEE Trans.
Multimedia, 9(3):629–641, 2007.

[20] R. Khalili, N. Gast, M. Popovic, and J. L. Boudec.
MPTCP is not pareto-optimal: Performance issues
and a possible solution. IEEE/ACM Trans. Netw.,
21(5):1651–1665, 2013.

[21] S. S. Krishnan and R. K. Sitaraman. Video stream
quality impacts viewer behavior: Inferring causality
using quasi-experimental designs. IEEE/ACM Trans.
Netw., 21(6):2001–2014, 2013.

[22] N. Kuhn, E. Lochin, A. Mifdaoui, G. Sarwar,
O. Mehani, and R. Boreli. DAPS: intelligent
delay-aware packet scheduling for multipath transport.
In Proc. of IEEE ICC, 2014.

[23] P. Likhar, R. S. Yadav, et al. Securing IEEE 802.11 G
WLAN Using OpenVPN and Its Impact Analysis.
arXiv preprint arXiv:1201.0428, 2012.

[24] Y. Lim, Y. Chen, E. M. Nahum, D. Towsley, and
K. Lee. Cross-layer path management in multi-path
transport protocol for mobile devices. In Proc. of
IEEE INFOCOM, 2014.

[25] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure.
Experimental evaluation of multipath TCP schedulers.
In Proc. of ACM CSWS, 2014.

[26] C. Raiciu, M. Handley, and D. Wischik. Coupled
congestion control for multipath transport protocols.
RFC 6356, IETF, 2011.

[27] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda,
F. Duchene, O. Bonaventure, and M. Handley. How
hard can it be? designing and implementing a
deployable multipath TCP. In Proc. of USENIX
NSDI, 2012.

[28] V. Singh, S. Ahsan, and J. Ott. MPRTP: Multipath
considerations for real-time media. In Proc. of ACM
MMSys, 2013.

[29] S. Winkler and P. Mohandas. The evolution of video
quality measurement: From PSNR to hybrid metrics.
IEEE Trans. Broadcasting, 54(3):660–668, 2008.

[30] J. Wu, C. Yuen, B. Cheng, M. Wang, and J.-L. Chen.
Streaming high-quality mobile video with multipath
TCP in heterogeneous wireless networks. IEEE Trans.
Mob. Comp., PP(99):1–1, 2015.

[31] J. You, T. Ebrahimi, and A. Perkis. Attention driven
foveated video quality assessment. IEEE Trans. Image
Proc., 23(1):200–213, 2014.


