
 

Abstract—In this paper we assess the problem of using
autonomous robots for mapping natural environments. We
present new solutions to two related problems: automatic
classification of benthic habitats using video images, and robot
navigation. An information-based segmentation algorithm is
proposed to tackle the first problem. Robot navigation in this
type of environments is cast in a new formalism, grounded on
the notion of Random Closed Set models. We study in detail the
problem of estimating from the segmented images the features
relevant for this type of models, and their use for robot
navigation.

Index Terms—autonomous robots, habitat mapping,
unstructured environments, non-linear filtering, robot guidance.

I. INTRODUCTION

HE paper describes on-going work at I3S on the use of
autonomous robots to autonomously map regions of the

sea bottom. The work presented has been developed in the
context of  the European project SUMARE,1  with the goal of
producing maps of the maerl habitat in  the Orkney Islands
(Scotland) using an underwater robot equipped of vision and
sonar sensors. The major goal of these surveys is to evaluate
the amount of living and dead maerl in the region, and
characterizing its spatial distribution. Precise spatial
registration is thus not a major concern for this study.

One of the major challenges presented by this application
was the requirement of producing maps of large regions
without having to install artificial beacons for localization
purposes, which would imply prohibitive costs and work load.
In order not no loose the vehicle, i.e., to guarantee that it will
return at the end of each survey to a pre-specified recovery
area, the robot must iteratively map the regions surveyed, and
use this information to navigate inside the operating area.
Several approaches have been presented for simultaneous
navigation and mapping, which are appropriate for human-
made environments, where a dense set of outstanding features
can be identified and mapped by the robot [1-4]. However,
these methods are not adequate for navigation in natural
areas, where, in general, the set of features that can be used
for positioning is reduced and sparse, preventing a continuous
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update of the robot’s position. Based on the assumption that
natural environments, such as the sea bed, are fundamentally
random-like in appearance (which is an equivalent way to say
that they have a high complexity, in the sense of
Kolmogorov), we formulated a new approach to the
navigation and mapping based on local statistical descriptions
of  the workspace. The formal tool on which our approach is
based are Random Closed Set models [5], which have been
used in the context of image analysis in biology and physics
studies. These models are doubly stochastic processes: a first
spatial (point) processes determines the (random) set of points
at which realizations of a second (shape) process place
randomly shaped objects. They are commonly named “germ-
grain models”, reflecting this two-step construction process.
Our maps are thus, not a “photographic” representation of
some individual regions which have outstanding
characteristics that make then useful for the (re)positioning of
the sensor, but rather a distributed representation of the
random structure of each observed region.
More formally, the environment representation that the robot
builds and uses for localization is a collection of vector fields
and labels defined over a partition of the observed space,
which for the sea-bed mapping applications, we identify with

a manifold O  in +ℜ×ℜ2 , each point being identified by
its coordinates in the horizontal plane and its depth (always

positive). Let { }M
iiO 1=  be a partition of O :
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These subsets correspond to the homogenous regions of the
observed space. Their boundaries code, thus, the contours of
the macroscopic objects present in the workspace, as well as
the limits of regions occupied by different habitats. Inside
each subset, the environment characteristics are coded by a

vector field and a label. The label il  establishes the type of
Random Closed Set model (families of the point and shape
processes) and the continuous vector field

i
id

ii Opp ∈ℜ⊂Θ∈ ,)(θ  defined at each point of each

subset specifies the vector of parameters (of dimension id
depending on the model type) of the Random Closed Set
model of which the neighborhood of the point is a typical
realization.
Basing the robot navigation on this kind of maps presents
several advantages, compared to feature-based methods:
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§ It does not require a dense set of outstanding features. It
can thus provide guidance information in workspaces
where the other approach would breakdown;

§ It is robust with respect to small variations
(displacements induced by currents, for instance) of the
individual microscopic objects present.

§ It implicitly codes the outstanding features of the
environment (boundaries of the homogenous regions),
which are important for decision-making processes such
as path planning.

Several new signal/image processing problems must be solved
to make this approach operational:

§ Map building: How to identify the partition { }iO , i.e.,

the boundaries of  the “homogenous” regions and their
labels (i.e., the model type), and how to estimate, inside

each region, the vector fields id
ii O ℜ→:θ  that

locally provide information with respect to the
appearance of the environment ?

§ Map navigation: How to use such a map for navigation,
i.e., how to update the estimate of the robot position
given its perceptual data (vision and sonar) at each
position ?

For map building, the first problem is a
detection/segmentation problem, between models of distinct
complexities. Naïve use of Maximum likelihood detectors will
lead to over-estimation of the model complexity, and must be
corrected using additional penalty terms, such as the Akaike
or the MDL criteria. The second problem is a parameter
estimation problem that we tackle using a maximum
likelihood approach and the fundamental result of Mathéron
stating the equivalence between a Random Closed Set model
and the set of hitting probabilities that it determines over the
set of compact shapes. The work we present is based on
segmented video images, and uses an innovative algorithm
for image segmentation based on information theory tools,
which is appropriate for sea-bed images.

Map navigation is a filtering problem. Since the workspace
description is not continuous, use of the common Kalman or
Extended Kalman approaches requires a two-step procedure:
a first association phase provides indication of which
homogenous region the robot is perceiving, and a subsequent
step effectively processes the new data using the (continuous)
map of the relevant region. This approach is highly sensitive
to errors in the association step. We rely on an approximation
to the optimal non-linear filter based on Gaussian mixtures
that we proposed previously for terrestrial applications [6],
which does not suffer from this problem, and can
accommodate non-linear dynamics (which is the case for
underwater platforms) and non-Gaussian observations (which
is the case for small observation windows, e.g., when the
robot is close to the sea bottom).

In the paper, we present in detail our solutions to the above
problems, illustrated by  simulations that demonstrate the
validity of our approach to the navigation of robots in natural
environments and the effectiveness of our algorithms for map
building and robot positioning.

We point out that, for the application under study, our map
provides more than guidance information, enabling the
determination of the ultimate information being sought: an
indication of the spatial distribution of a given species (maerl)
and its total amount (directly derived from the parameters of
the random closed set models inside each region).  For this
purpose, a (supervised) classification must be done, indicating
which random closed set models indeed correspond to maerl.

II. DATA PROCESSING

In this section we present the pre-processing stage of the
mapping and navigation system, which, from the raw image
and proprioceptive robot data produces the input data to
navigation filtering and map building. The section is
organized into two parts. The first is dedicated to the image
segmentation problem, which produces segmented versions of
the acquired images. For the application under consideration
(mapping of a given habitat) a supervised approach is
required, since we must assign a label to each identified
homogenous region of the sea-bed. The second assesses the
determination of the information relevant for update of  (and
matching with) the statistical maps.

A. Image segmentation

The image segmentation algorithm that we use in this study is
a combination of supervised and unsupervised techniques,
which help us gaining robustness against the large variability
that can be expected in images of an natural sea bed,
produced under varying lighting conditions, see figure below.
A first step of unsupervised segmentation, based on the
comparison of local estimates of the intensity distribution
produces an initial segmentation of the image into its large
macroscopic regions. A second step assigns labels to these
areas, using as a staring point the result of the unsupervised
segmentation. This second step is supervised, using a data
base of possible intensity distributions for the classes that may
appear in the region of study. This data base has been learned
by manual labeling of a representative set of unsupervised
segmented images, in collaboration with members of the
International Centre for Island Technology, of the Heriot
Watt University, Scotland.
The algorithms used in each step are briefly presented below.

1) Unsupervised images segmentation

Initial image segmentation is obtained by using a novel



 

classified 
image 

Unsupervised 
segmentation 

Supervised 
labeling 

raw B&W 
Fig. 1 Image classification.

algorithm that partitions the raw image into regions of
homogeneous local distributions of the intensity level of the
pixels. It is an  unsupervised algorithm that automatically
adjusts to the complexity of the observed scene. The
algorithm is based on the analysis of the probability
distribution of image intensity (gray level) over small
neighborhoods, and uses formal decision theory tools to
iteratively learn the distributions of the classes present in the
image.
It is grounded on fundamental results from type theory [refs
type theory], which is a branch of statistics that studies
repeated realizations of a basic random variable, and on the
Minimum Description Length, which establishes a consistent
approach to model selection under varying model complexity.
We present here the major result on which our algorithm is
based, referring the interested reader to [Albert Oceans]
where the algorithm is fully motivated.
We first introduce some nomenclature and notation. Let X be
a discrete random variable (rv) with probability space

( )PA,,Ω  where { }Laaa ,,, 21 L=Ω  is the (finite

discrete) realization space, A  is a sigma-field of subsets of
Ω  and P  is a probability measure. We denote by lower-case

letters x the realizations of X . Consider a sequence

{ } n
n

n xxxx Ω∈= ,,, 21
)( L of n independent realizations

of X.  The type of )(nx , which we denote by

[ ]1,0:)( aΩnx
ν is the empirical estimate of the

probability distribution (pd)  of X, and is given by:
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Our unsupervised algorithm is based on the following result:
Lemma
Consider that we are given two sequences of length n
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of iid discrete rv’s taking values in alphabet { }:1 ,, Laa L=Ω

of size L=Ω . The MDL (Minimum Description Length,

see [1] for a deep discussion of this approach to model
selection) test for choosing between the two hypothesis
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where the probability distributions 1, µµ  and 2µ  are

unknown, is given by
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is the empirical estimate of the distribution law under 1H ,

which coincides with the balanced mixture of the two types.

I(n the previous expression, )( µνD  is the Kullback-Liebler

directed divergence (also called relative entropy) between ν
and µ:
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The proof of this result can be found in [3]. It shows that the
Kulback-Liebler divergence is the relevant metric to decide
whether two sequences are realizations of the same rv or of
distinct ones. It also indicates that we must compare the two
individual types to their mixture, and not directly to each
other, as intuition could suggest. The decision test is always
well defined, since the original types are necessarily
absolutely continuous with respect to their mixture, even if
they may not be mutually absolutely continuous.

The previous Lemma indicates which statistic T we should
use to decide whether two small neighborhoods of the image
have (or have not) the same intensity distribution. It also
indicates how the threshold of the test (γ ) varies with the

size of the sample sequence n. Our algorithm is an
anisotropic diffusion algorithm, which iteratively learns the
underlying distribution of the intensity for each region. The
algorithm works over a square grid of fixed size defined over
the image, each point of the image describing the (intensity)
distribution  associated to the corresponding neighborhood. In
the first step, each node is initialized with the type of the
pixels of the corresponding image region. At each subsequent
step, the distribution at each node i,j is updated as a weighted

mixture of the distributions k
qp,ν  of the nodes in its

neighborhood ),( jiV :
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where the weights ),|,( jiqpkα depend on the test statistic.
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that is optimal to decide whether the image window
corresponding to node i,j follows the statistical model
associated to node p,q. The weights must be close to one if the
nodes (i,j) and (p,q) correspond to the same distribution, and
close to zero otherwise. If we assume that the size of the

sequences (n) is large, 1>>n , the threshold γ can be
approximated by

2
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where the last approximations assumes that L>>1 also. In
this case, our test is equivalent to
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where c=1/2.  This shows that the relevant statistic depends
on the size of the observed sequence: as n grows, a larger
value of the distance are tolerated for deciding that the
sequences come from the same statistical model. For this
reason, the weights ),|,( jiqpkα  increase with iteration

number:

( ) Tk
k ejiqp βα −=,|, , 1−≤ kk ββ .

The algorithm gradually diffuses the local histograms,

converging to a grid ∞
ji,

ν  partitioned in homogeneous

regions inside which the types are the same.

We point out that, as said before, our algorithm differentiates
the different image regions by comparing local estimates of
the intensity level. Thus, it will not be able to distinguish
regions that may have distinct texture (granularity) if they
result in the same gray level distributions. Although this
possibility exists, the extensive tests that we conducted on real
underwater images show that the algorithm is able to separate
the different sea-bed habitats present in all practical cases
found until now.

2) Classification
Association of a label to the homogenous regions of the

solution ∞
ji,

ν  of the segmentation algorithm uses a data base

of histograms  that has been built by manual classification of
segmented images. This data base contains, for each class n
(in our case five major classes have been learned: dead maerl,
living maerl, macroalgae, algae balls and sand) a set of

nK examples of histograms that have been obtained using the

segmentation algorithm { }
nKm

n
mv ,...,1= . Association of each

type ∞
jiv ,  to a class n is made by choosing the class that

minimizes the distance to the classes’

representatives: ( ) 
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We present below one example of a classified image, where
four classes are present: macroalgae, living maerl, dead maerl
and sand. Fig. 2 show the original image and Fig. 3 the result
of classification.

Fig. 2  Original image.

Fig. 3  Classified image.

The darker region corresponds to macroalgae, the dark gray
to living maerl, light gray to dead maerl and the lightest
region is sand.

B. Local statistics of spatial distribution and shape

1) Random Closed Set Modeling

Without loss of generality we can formally describe an

environment by associating to each point 2ℜ∈p a mark

M  ∈m , describing the type of object (in our case; maerl,

sand, alga,etc).,at that location (M  is the markspace). The
determination of the mark associated to each point is a result
of the image segmentation algorithm previously described
together with knowledge of the robot state. The workspace



can thus be represented as a collection of compact sets, to
which a mark is associated (all points inside the compact set
belong to the same type of object):

MK ∈∈Ξ+Ξ=Ξ
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where, K  is the family of compact sets, and the sum

ii p+Ξ denotes the compact set iΞ translated by the vector

ip . Note that this formalism assumes that one of the classes

plays the role of background, against which the objects are

placed. The iΞ  describe thus the morphological
characteristics of the individual objects and the vector of
locations their spatial distribution. We can consider that the
patches form a random pattern and that the environment is a
realization of a random process. If we consider a large
number of local observations (segmented images) we remark
that there is some regularity in the occurrence of the random
field, meaning that some ‘occurrences’ are more likely than
other, restricting e.g. the size and the form of the individual
compact sets to a strict subset of the family of compact sets
K .

Random Closed Set (RCS) models are a mathematical
model that has been widely used in order to analyze random
patterns We recall that a RCS is a doubly stochastic process.
A first process (point process) determines the locations of the
objects and a second process (shape process) the
morphological characteristics of the objects placed at each
location.

   
(a)                                       (b)

   
(c)                                       (d)

Fig. 4  Example of RCS models: (a) isotropic boolean model, (b)
anisotropic boolean model, (c) clustered distribution and (d) regular
distribution of the grains.

We consider that these two processes are independent,
which is not always the case for natural environments. Under
the assumption of independency  we can construct a family of

RCS model types { }N

ii 1== ll  as a set of  pairs of one point

process model and one shape process model. Examples of
point processes are: Poisson point process, regular

distribution or clustered distribution (see Fig. 4). A particular

model is obtained by a model parameter ),( iii γλθ = , where

iλ determines the point process and iγ the shape process,

means the measure defined on the shape space. (In the sequel

we denote by iθ the RCS model type and the particular
model parameter). The shape process is chosen in order to
restrict the possible shapes to simple basic shapes, such as
line-segments of random length and orientation or compact
discs of random radius. This is an approximation of generally
very complex shaped objects, which are impossible to model
by low dimensional parameter vectors.

Direct estimation of the spatial distribution (count
measure) and the morphological characteristics is impossible.
However, it is known, [7], that knowledge of the RCS model
is equivalent to knowledge of the hitting capacities of the
random field for all compact sets. The hitting capacity is
defined as the probability that the intersection of the random
field with a compact set K∈K  is non-empty:

).()( ∅≠∩Ξ=Ξ KPKT

2) Estimation of model parameters
While we are not able to directly estimate the model
parameter, we can obtain an estimate of the hitting capacities
from the segmented images, under the assumption that the
random field is locally isotropic which implies that

)(  )( pKTKT += ΞΞ . The equivalence between the hitting

capacities and the random closed set model mentioned  above
can be exploited to estimate the model parameters. It is thus

more convenient to write )( : )( KTKT
i

Ξ=
θ

, knowing that the

model type is il . For boolean models (the point process is a
Poisson point process and the grains are i.i.d. in the
workspace) the hitting capacity can be written as a function of

the compact set K shape and the model parameter iθ [5]:

{ }))(exp(1  )( 0 KEKT
(

⊕Ξ−−= νλθ

where ⊕  is the Minkowski-addition { }BbAabaBA ∈∈∀+=⊕ ,, ,

( )⋅E  is the statistical expectation operator with respect to the

measure of the shape process, { }KxxK ∈−= ,
(

, (.)ν is the

Lebesgue-measure and 0Ξ  is a random shape. The basic

requirement for our approach to the modelization of natural
scenes and to mobile robot navigation is the ability to
determine the hitting capacities as a function of the RCS
model type and parameters. For the moment we are restricted
to the consideration of boolean models. In order to identify
more complex models, such as regular or clustered
distributions of the objects, additional efforts need to be spent.

Of course we cannot observe the hitting capacities for all
compact sets, but just for a limited number of compact sets

{ }n
n KKK ,,1 K= , which we call the structuring elements,

since the whole information of the structure of the random
field will be captured by the hitting capacities for these sets.
The aim of the theory of random closed sets is to estimate the



model type and the model parameter such that the observed
scene is a typical realization of the RCS.

3) The likelihood function

Estimates )(ˆ jKT of the hitting capacities can be obtained

by placing each structuring element in nK at N (sampling

number) positions { }N

iip 1= inside the observation window,

each time evaluating the event: jK  hits (or not) the random

field Ξ :

N

k
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 In order to estimate the model parameter, assuming the
model type to be known, we must find the likelihood of
observing a given set of hitting capacities, given the model

parameter: ))(ˆ( i
nKTp θ . The model parameter iθ can then

be obtained as the maximum likelihood estimate:
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I the N events leading to the determination of the sample

estimates )(ˆ jKT  are mutually independent, the probability of

a given number of hits jk  (for a given structuring element

jK ) follows a binomial distribution:
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where )( jKT is the hitting capacity, dependent on the model

parameter. The variance of )( Nkp j is

))(1)((2
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−=σ . In order to guarantee that the

individual hitting events are mutually independent  it is
important to choose an appropriate sampling number N and
the positions at which the events (hit or not hit) are evaluated.
This number depends on the size of the observation window,
on the structuring element and on the RCS model. If the
samples are taken on a (appropriately chosen) regular grid in
the observation window we can for boolean models identify a
lower bound to their optimal number. The worst consequence
of small sampling numbers (below the optimum number) is
that we do not exploit all the information that we can retrieve
via the hitting capacities. We can thus characterize the
likelihood of a hitting capacity (or equivalently the number of

hits jk given the model parameter as

jkN

j
i

jk

j
ijj

ij KTKT
k

N
Nkp

−
−










= ))(1()(),(

θθ
θ .

Under the assumption that the estimates for all hitting
capacities are independent we obtain the joint likelihood as

)()()( 1 inii
n kpkpkp θθθ K= ,

omitting the dependency on the sampling number N .  The

likelihood function ))(ˆ( i
nKTp θ is obtained from this

density by a simple scaling/normalizing operation:
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4) Choice of structuring elements

An important issue concerning the estimation of the model

parameters is the choice of the set nK . The problem is to
determine (i) how many structuring elements should be used
and (ii) their shape. We assume now that the maximum
likelihood estimate given by equation (1) is unbiased. In this
case a lower bound of the covariance of the estimate is given
by the inverse of the Fisher information matrix:

( )( ){ }T
n

k kpEJ n ))(ln( θθθ ∇∇−= .

We searched for the structuring elements that maximize
the determinant of nk

J . For a simple boolean model, with

),( rλθ= , Poisson point process of intensity λ , and whose

objects are compact discs of radius r , and restricting the
analysis to structuring elements that are squares of varying
side d , the hitting capacities  can be easily shown to be
given by

))4(exp(1  )( 22 rrddKT jjj πλθ ++−−=
And the Fisher information matrix is obtained from using

this expression on the binomial distribution found before, and
computing
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It is trivial to show that a single structuring element is not
sufficient in order to estimate this RCS model, since it leads
to a singular Fisher information matrix.

We assume that the first structuring element 1k  is a single

point, yielding
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The other structuring element 2k  is a square of side *
2d

which is the solution of:
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It is easy to show that an unique positive solution

0*2>d exists, which can be easily found numerically.
We addressed next the following question: What is the

information-gain if we add a third structuring element of side

3d ? The Fisher information matrix is now:
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where 2kG is a symmetric square-root of 2kJ . The

determinant of 3kJ is
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In the above equation, 1-1
k 232G −

kk GJ  is the information gain

provided by the third structuring element. Study of  this gain
as a function of the 3d  indicates that the optimal third

structuring element always coincides with either

)0( 11 == dsqK  or )( *22 dsqK = , depending on which is of the

two corresponding hitting probabilities is affected by a larger
uncertainty, see Fig. 5 showing a plot of the gain for a
specific Boolean model. This study indicates that for the type
of Boolean models two distinct structuring elements provide
all required information, that grows with the number of
samples that are used to estimate the corresponding hitting
capacities. For this reason, in all numerical studies presented
in subsequent sections of this paper, we use .2=n
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Fig. 5  Determinant of Fisher matrix for n=2 and the information gain of

an additional third shape, showing that its optimal size is either 01 =d  or

*2d .

III. MAP NAVIGATION

Assume that the Random Closed Set map, i.e., the partition of
the workspace, and the associated model type is known. We
address now the problem of using this map in an efficient way
to estimate the robot’s position. If the RCS model is

anisotropic inside a given region iO , meaning that the model
parameter is a smooth function of the point considered,
observation of the environment characteristics provides useful
information with respect to the robot  localization at all points

inside iO . If the map contains  isotropic regions the
localization is possible only when the robot reaches the
boundary of adjacent areas, corresponding to an abrupt
change of either the model parameter or the RCS model type.
Inside each isotropic area perceptual information cannot be
used for localization, and the robot must rely entirely on its
odometry in order to estimate its pose. The uncertainty
affecting its position estimates when it reaches a region
boundary may be very large, resulting in a large set of
possible true locations along the boundary (large ambiguity).
Most approaches to position estimation for mobile robots use
Extended Kalman filters, and must thus assume that the
observations are differentiable with respect to the robot‘s
state. Navigation between adjacent areas requires in this case
a first symbolic association step, prior to actual observations
filtering, in order to determine inside which region the robot
is located. We propose a method that does not rely on this two
step decomposition.

We first formulate the general framework of the Bayesian
approach to localization. Assume that the dynamic model of

the robot's state kX and the observation model are known:

( ) kkkk wuXfX +=+ ,1 ,                                                (2)

  ( ) kkk vXhY +Ξ= , ,

(3)



where (.,.)f and ( )⋅⋅,h are known (eventually non-linear)

functions, CUCf →×: , { } ECh →Ξ×: ,, where C  is the

configuration space of the robot's state, U is the space of the

control input, ku , { }Ξ  is the space of possible environment

realizations, E is the space of the perceptual observations and

kkw ν,1−  are uncorrelated, zero-mean white noises. The

optimal MMSE estimate of the robot's state given the past

observations { },,,1 kk YYY K=  is given by the conditional mean

∫=
C
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where ( )k
k YXp |  is the posterior density, which can be

recursively updated by alternating prediction and filtering
steps:
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(4)
The prediction step (convolution) propagates the probability
distribution in the state space according to the dynamic

model. If kY is the output of a memoryless observer, the
filtering step (pointwise multiplication) computes

).()()( 1 kkkkkk XYpYXpYXp −∝

The observations ( )kkk ZDY ,=  contain proprioceptive

observations kD  (velocity, heading,…) and measures kZ ,

obtained using perceptual sensors (vision, sonar,…). The

measures kZ  are in our case estimates of the hitting

capacities for a set of structuring elements nK . These

estimates are obtained directly from the classified images:

)}(ˆ,),(ˆˆ 1 nkkkk KTKTTZ K== . If we assume that, given the

robot’s state, the proprioceptive and the perceptual

observations are uncorrelated we obtain:

),)(ˆ()()( kkkkkk XTpXDpXYp θ=

since the observations kZ  depend on kX  only through the

parameters of the RCS model at that point. The likelihood of

the uncertainty of the perceptual observations ))(ˆ( kk XTp θ
was found in the previous section to be binomial distributed.

If the sampling number N for the estimation of the hitting

capacities is large enough the binomial distribution is well

approximated by a Gaussian (see Fig. 6):

))/1(,( ˆ ))(ˆ( NTTTXTp k θθθθ −= N ,

where ),( AxN is the normal law with mean x and covariance
A. This allows us to transfer the randomness due to the
environment into an equivalent additive Gaussian
“observation noise.”
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Fig. 6  Binomial distribution of the number of hits and its approximation
by a normal distribution.

A. IMPLEMENTATION OF THE OPTIMAL FILTER

Direct computation of the prediction (convolution) and
filtering (pointwise multiplication) steps is in practice not
feasible. We saw in the previous section that the observation
noise (for locally isotropic models) is well approximated by a
normal distribution. Under the assumption that the noises

kk vw ,  of equations (2) and (3) are zero mean and Gaussian

with covariance Q and R , respectively, and linearising the

state and observation model around the current estimate of
the robot’s state an approximation of the optimal non-linear
filter is given by the standard Extended Kalman Filter (EKF).
The linearised state and observation models are given by:
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This approximation is based on the assumption that at each
step the estimation error is small. To prevent filter
divergence, the linearisation must be a good approximation
over the entire uncertainty domain, which is the case when
the robot is moving in informative anisotropic areas.
However, navigation in isotropic areas leads to a considerable
growth of the uncertainty of the robot’s state and linearisation
of the non-linear model may artificially shrink the estimated
uncertainty of the position estimates, creating the possibility
that the EKF diverges. As we mentioned before, this is
particularly important when the robot reaches the boundary of
adjacent areas after having crossed an isotropic area where
consideration of the linearised model leads to a null gain for
perceptual information.

 In [7] we proposed an approximation of the optimal non-
linear filter by a Gaussian Mixture Model (GMM). We
assume that the posterior density of the robot’s state at time

1−k is Gaussian. We approximate the prediction density of
equation (4)

 
by a Gauss mixture:
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where the prediction density for each terms is normal
distributed with mean i

kk
X

1−
and covariance ∑ −

i
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. Each term

is multiplied by a scaling parameter i
ks 1− .

We assume that the number kN and the mean and variance of
the terms are chosen such that linearisation of the state space
model around each term is valid inside the principal support
of each component. Application of the filtering equation
results then in a Gaussian mixture with the conditional mean
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The updated scaling parameter after filtering, i
ks , are given

by:
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their correlation matrices. The principal result is that each
component can be propagated by an EKF, and repeated
application of the prediction and filtering step results always
in a Gaussian mixture. The scaling parameter depends
strongly on the innovations and as a consequence, terms for
which the predicted observations (hitting capacities)
correspond well to the true observations (small innovations)
are reinforced, otherwise they loose importance and will not
contribute significantly to the posterior density. When
crossing a boundary between adjacent areas, the terms on the
‘correct’ side are reinforced while all other loose importance,
resulting in a concentration of the density mass around the
true location of the vehicle.

In the current implementation of the filter we trigger the
mixture model when the linearisation is no longer valid over
the entire domain of uncertainty. For navigation between
isotropic areas this is the case when a boundary lies inside the
significant support of the uncertainty domain. In order to
reduce the computational complexity of the filter (depending
linearly on the number of terms), we eliminate spurious terms
(the scaling parameter falls below a given threshold) and fuse
close terms. If all but one term are eliminated we return to the
simple EKF.

IV. OPTIMAL OBSERVATION STRATEGY

An important issue on autonomous navigation is to choose a
trajectory that reduces the uncertainty of the robot at its
destination [11]. This corresponds to the problem of defining

a sequence of control inputs { }Mkk
Mk

k uuU +
+ = ,,  K  that moves

the robot through M  intermediate positions between the
current position and the destination position, such that the

uncertainty at the destination is minimized. Such a path can
be obtained by a recursive −M step predictor with the
constraint that the final position must be the destination. In
[12],[13] path planning is performed by determining a set of
regions (dependent on the informativeness of the map)
forming a graph where the arc indicate the transitions
between those areas. In this case path planning reduces to a
graph search, whose complexity depends on the number of
identified positions. Here we limit the problem to a −1 step
ahead predictor that drives the robot to the next position
where the information gain is maximum.
It is known [10] that the estimate of the EKF,

kkX |
ˆ ,(assuming the validity of the linearisation) minimizes

the mean square error for a given control input 1−ku :
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We want to find the control input *
1−ku  that minimizes the

above function:
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The first term of the previous equation reflects the error due

to the distribution of the terms and the second the uncertainty

of each term, given by covariance matrix ∑i
kk

.
In our implementation we defined a finite set of control

inputs that guide the robot to a dense set of positions in the
region ahead of it. For each control input we evaluate the
mean square error and choose the control input that leads to
the minimum error. The computation of the mean square
error depends strongly on the innovations, and thus on the
perceptual observations (not know), via the scaling
parameters and the estimates of each term. For each mixture
term, we predict the hitting capacities assuming that the
robot’s nominal dynamic model is perfect, and that the
observation are equal to their expected value given the
predicted position.

V. SIMULATION RESULTS

In [9] we demonstrated navigation of a mobile robot inside
anisotropic areas. The approximation of the optimal filter by
an EKF was valid, since the uncertainty of the robot was



maintained small during the entire trajectory. The
linearisation around the estimated state was thus valid over
the principal uncertainty support, enabling application of the
EKF.

We concentrate here on navigation between isotropic areas.
As was said before localization can in this case be performed
when the robot reaches the boundary of adjacent areas,
indicated by a jump of the RCS model (either by a change of
the model type or by a jump of the model parameter). Since
permanent location is not possible during the crossing of an
isotropic area the accumulated error of the position estimate
is quite large. We simulated the navigation of an underwater
robot equipped with proprioceptive sensors (compass and
speed sensor), used for dead-reckoning, and with a camera
pointing at the sea bottom. We assume that the robot moves at
a constant altitude above the sea bed. Scaling of the images is
thus not necessary in order to preserve the metric of the
observations. We simulated a workspace that was divided into

two areas i
i

OO U
2

1=
= . Inside each area, we have chosen the

RCS model to be an isotropic boolean model, where the
grains are compact discs of constant radius. The model
parameter is thus ( )iii r,λθ = . The realized workspace (just

the locations of the grains are indicated) is shown in Fig. 8.
The initial EKF pose estimate is indicated by the big cross
along with the uncertainty indicated by the ellipse (blue). The
true robot location is centered at the square, indicating the
area that is observed by the camera. Some typical images

obtained in area 21,OO and at the boundary are illustrated in

Fig. 7.

         
Fig. 7  Typical images obtained (a) inside area 1, (b) on the boundary, (c)
inside area 2.
While the RCS model is isotropic inside the areas this is not
the case at the boundary. We said that the estimation of the
hitting capacities is based on the assumption that the model is
at least locally isotropic. In order to guarantee that the
observation noise is unbiased (which is due to the anisotropy
not the case at the boundary) we predict the hitting capacity
by integrating the RCS model all over the area observed by
the camera.

Fig. 8  Realization of a random field. The workspace is segmented in two
areas, with distinct RCS model parameters. The initial position of the
robot is indicated by a large dot.

A simulated ocean current disturbes the nominal trajectory
of the robot, resulting in a non observed drift between the true
position and the Bayesian estimate. Throughout the trajectory
images are acquired at regular time intervals. The perceptual
observations are empirical estimates of the hitting capacities

{ })(ˆ 1KTZ kk = . For these simulations a single structuring

element (a point) provides enough information allowing the
discrimination of the two RCS models.

The Gaussian mixture is triggered (Fig. 9) when the
boundary lies inside the significant support (99%) of the
uncertainty of the EKF estimate. The terms of the Gaussian
mixture are indicated by the plus signs and the boundary of
the principal support (coverage 99%) of the posterior density
by the thick line. The mean of the mixture (the Minimum
Mean Square Error estimate) is shown as a large circle and
the trajectory (in the subsequent figures) as a dashed line.

At each iteration the robot searches for the optimal control
input, restricted to those driving the robot inside a cone in
front of the robot. The angular aperture of the cone was
restricted to 90 degrees and the most distant position was at
70 (the size of the observation window, indicated by the large
square is 260x260). It should be noted that due to the
stochastic nature of the observations (see Fig. 6) for the
uncertainty of the observed hitting capacities), the effective
uncertainty reduction does not coincide exactly with the
predicted one. Fig. 10 shows, however, that the effective mean
square error follows well the predicted error throughout the
whole trajectory (the iteration number of the consecutive
images correspond to those indicated in Fig. 10 and Fig. 11).



Fig. 9  (Iteration 10) Creation of the Gaussian Mixture Model. The terms
are indicated by the plus signs. The principal support of the density (99%)
is indicated by the thick (red) line.
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Fig. 10  The effective mean square error after application of the optimal

action follows well the predicted mean square error.

    
0 10 20 30 40 50 60 70 80 90 100 110

0

100

200

300

400

500

600

700

Iteration

Error of the EKF estimate             

Error of the Gaussian mixture estimate

Fig. 11  The error of the estimated pose (distance to the true location) of
the EKF estimate and the GME.

Initially the robot is driven in direction to the boundary,
where localization can be performed. While the Gaussian
mixture estimate (GME) can already reduce its uncertainty,
some of the terms lying on or beyond the boundary, the EKF
estimate has a null gain for the perceptual observation, see
Fig. 12. When the EKF estimate finally reaches the boundary,

the non-zero gain results in a drastic reduction of its
uncertainty, as shown in Fig. 13, such that the true robot
location lies outside the principal support of the posterior
density. The consequence is that the error of the EKF
estimate cannot be significantly reduced in the future (see Fig.

11). The GME on the contrary preserves probability mass at
the true robot location, maintained by those terms whose
predicted observations correspond well to the real ones. The
chosen control input maintains the trajectory of the robot at
the boundary, and the ambiguity of the GME is slowly
reduced. In Fig. 14 its density is concentrated on two principal
nodes. However the terms of the density mode at the left will
be eliminated when they cross the boundary (to area 1), where
the predicted hitting capacities do not correspond any longer
to the observations. In Fig. 15 the density is already
concentrated in a single mode all along the boundary. A
significant reduction of the uncertainty is achieved when the
robot reaches the second corner of area 2 (corresponding to
iterations 55-60 in Fig. 10).

Throughout the remaining trajectory the robot continues to
follow the boundary and is able to maintain its positioning
error small (Iterations 70-110). Note that the number of
remaining terms is very small, due to elimination of spurious
terms and fusion to close ones. The principal support of
uncertainty is small and linearisation of the observation
model around these estimates is thus valid, such that adding
new terms to the mixture is not necessary. At iteration 108 a
single term of the mixture remains, replacing the previous
EKF estimate.

Fig. 12  (Iteration 17) The robot crosses the boundary. The EKF estimate
has still null gain for the perceptual observations.



   
Fig. 13  (Iteration 20)  The EKF estimate has a non-zero gain for the
perceptual observation, resulting in a drastic reduction of its uncertainty
(overconfident)

Fig. 14  (Iteration 33) The density of the GME has two nodes, representing
well the uncertainty of the workspace. The EKF estimate is already lost.

Fig. 15  (Iteration 40) The density of the GME is now concentrated at a
single node and the robot is driven along the trajectory.

Fig. 16  (Iteration 74) The robot continues to move along the boundary.
The mixture model contains now a few number of terms (all other terms
are eliminated or fused). The linearisation of the observation model is
valid, since the uncertainty support is small.

VI. CONCLUSIONS

In this paper we discussed two steps required for mapping
regions of the sea bottom, and the use of statistical maps of
their spatial characteristics for robot navigation. Modelization
of the sea bottom as RCS’s, describing the spatial distribution
and morphological characteristics of labeled objects, requires
a stable segmentation of the visual information. An
algorithm, performing unsupervised segmentation has been
presented. This algorithm is based on an analysis of the
distribution of the intensities of neighboring pixels. We
assessed the determination of the maximum likelihood
estimates of the RCS model parameters. This approach is
until now restricted to boolean models. The perceptual
features used are the estimates of the hitting capacities for a
limited number of structuring elements, whose choice was
also discussed. The interest of this kind of environment
modeling is two-folded. It provides biologists with a complete
model of the distribution of  the natural phenomena under
study. They can also be used for the localisation of mobile
robots presenting the advantage that they do not rely on the
identification of individual outstanding features, which do not
always exist. The consequence is an increased robustness with
respect to small environment changes.

 We present expressions that approximate the Bayesian
estimator of the robot state using RCS maps. We addressed
the problem of ambiguity in the workspace, which precludes
the use of a simple EKF, when uncertainty of the estimated
pose is very large. An approach that is related to multiple
hypothesis, the Gaussian mixture model, is proposed and its
feasibility is demonstrated by simulation results. In order to
use the RCS map in an efficient way we propose an
observation strategy that drives the robot to locations inside
the workspace where the information provided by the
perceptual observations results in the most significant
reduction of uncertainty. Simulation results illustrates that
RCS maps can effectively be used for localization.
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