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Abstract--In this paper we present a novel approach to mobile 
robot navigation in unstructured environments. Natural scenes 
can very often be considered as random fields where a large 
number of individual objects appear to be randomly scattered. 
This randomness can be described by statistical models. In this 
paper we consider that a natural scene can be interpreted as 
realisations of Random Closed Sets (RCS), whose global 
characteristics are mapped. Contrary to the feature based 
approach, this environment representation does not require the 
existence of outstanding objects in the workspace, and is robust 
with respect to small dynamic changes. We address the problem 
of estimating the position of a mobile robot, assuming that a 
statistical model, serving as a map of the environment, is 
available to it a priori. Simulation results demonstrate the 
feasibility of our approach. 
 
 

Index Terms—Mobile robot navigation, Random closed sets, 
Statistical description, Non-linear filtering 

I. INTRODUCTION 

ast years have witnessed a significant research effort on 
autonomous underwater vehicles (AUV). The principal goal 
is to have robots, able to explore regions not accessible to 

human operators, or to perform unsupervised long term 
missions (e.g. survey of natural resources). Even if most of the 
vehicles actually in use are still teleoperated, for some missions, 
e.g. pipeline inspection, where the vehicle is artificially guided 
by a human-made feature, autonomous progression of the 
robot can be achieved. 

While stable localisation methods have been proposed for 
indoor robots, navigation of robots in natural environments is 
still a challenge. We identify two reasons. First, we are 
confronted with large scale environments, requiring long range 
navigation. In the absence of external position information, 
pose estimation that is based only on dead-reckoning results in 
unbounded increase of the estimation error. Installation of 
artificial beacons yields good results, but the autonomy of the 
vehicle is limited a-priori. Perceptual information can be used in 
order to overcome this limitation. The robot creates a map (or 
uses an existing one), describing the natural landmarks 
observed in the workspace. This map, if dense enough, can be 
used to localise the robot later, when it returns to the same 
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region. The second point concerns the structure of the 
environment. Natural scenes are highly unstructured (in the 
sense that euclidean geometry is not always appropriate in 
order to describe such environments). The type of maps (and of 
natural landmarks) differs largely from maps appropriate for 
indoor environments. 

It is thus important to evaluate the question: ‘What is the 
perceptual information that provides the best information for 
pose estimation ?’. The most common approaches for localising 
mobile robots are feature based, see e.g. [1][2]. Other methods 
use 3D elevation maps [11] (requiring non-flat sea-bottoms),.or 
the use of mosaics [3] based on visual information (requiring 
flat bottoms). Features, described by low dimensional 
parameter vectors, are stored in an internal map and localisation 
is basically done by estimating the rigid motion that matches 
recently observed features to those already contained in the 
map.  

Natural environments have a random appearance. While in 
structured environments we are able to identify outstanding 
features (that we can easily distinguish from neighbouring 
ones), natural environments do not always present outstanding 
features, especially if the field of view is limited. Mismatches 
due to unstable feature identification, or sparseness of features 
preclude the use of feature maps. An additional challenge are 
dynamic changes of the environment (e.g. migration of flora and 
fauna, or simply alga, whose leaves are driven by the ocean 
current). 

We propose a novel environment description that is suited 
for environments where identification of salient features is 
difficult. Instead of creating a detailed description of the 
environment as a collection of features, we propose a 
representation by statistical models that capture the local 
macroscopic characteristics of unstructured environments. 
Such characteristics can be (i) the number of objects per unit 
area, (ii) their spatial distribution, and/or (iii) the distribution of 
basic local morphological attributes, such as shape, colour or 
size. We consider this representation as an alternative to other 
map approaches, which, if the necessary conditions are 
satisfied, yield good results. The advantage of this 
representation is that it does not rely on individual features. 
Mismatch problems are thus eliminated, and the representation 
is robust to perturbations (small displacement of objects, or 
shape deformations). 

The paper is organised as follows. In section II we discuss 
environment descriptions in general terms and propose in 
section III the use of RCS models as suitable descriptions for 
unstructured environments. Sections IV and V gives an 
overview of how RCS models can be used for mobile robot 
navigation. We assume here that such a description is available 
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a-priori and do not address the problem of joint mapping and 
localisation for these models. In section VI we present 
preliminary simulation results that validate our approach and 
draw some conclusions in section VII. 

II. ENVIRONMENT DESCRIPTIONS 

An exhaustive description of natural unstructured    
environments is not mandatory for the purpose of mobile robot 
navigation. The basic criteria for the choice of suitable 
environment maps are (i) simplicity of coding and (ii) 
robustness of recognition. The choice of the map depends thus 
of the nature of the environment in which the robot progresses. 
In general, we can induce a partition of the robot's workspace 
by associating to each point a mark belonging to a limited 
number of classes M Indoor environments can e.g. be 
classified into : 'corridors', 'walls', 'doors', etc. 

For outdoor environments plausible classes are for example:  
'stones', 'sand', 'tree', etc. This is a rather coarse classification, 
but still adequate for navigation if the classes are chosen in an 
appropriate way. This classification, based on perceptual data 
(using e.g. sonars or cameras), induces a series of patches on 
the workspace of the robot. This discretised description of the 
environment can be mathematically represented as the union of 
compact sets: 
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mmp∪ .                                 (1) 

In the equation above K is a family of compact sets (set of 
possible shapes) and M is the mark space, designating the 
class to which the set belongs (other attributes than shape). 
Without loss of generality, we assume that the center of gravity 
of the sets iΞ  is at the origin. The sum ip+Ξi  denotes the set 

iΞ  translated by the vector 2ℜ∈ip . The sets iΞ  describe 

thus the morphological characteristics of the objects (or 
patches) and ip  their location in the workspace. An example is 

shown in Fig. 1. Fig. 1(a) shows a raw images of the sea bottom, 
where the white regions of the image correspond to dead 'Maerl' 
(coraline alga) found at the Orkney islands in the north of 
Scotland. This image shows well the patchy nature of this 
natural field. The classified version of this image ( M  contains 
just one class) is illustrated in Fig. 1(b). 

Most of the approaches map the individual features 
(description of the shape and the location of the sets iΞ ). If the 
field contains no outstanding features, the association of 
recently observed features to features contained in the map is 
subject to mismatch and leads to erroneous pose estimation.  

   
(a)                                                      (b) 

Fig. 1  Image of ‘Maerl’, taken in the north of Scotland. (b) the segmented 
image shows well the random distribution of the patches.  
 

A different way to describe unstructured environments, by 
considering that the patches form a random pattern, can be 
formulated using the notion of random closed set (RCS) models.  

III. MODELLING OF SCATTERED OBJECTS AS RANDOM 
CLOSED SETS 

 
Random closed sets are mathematical models appropriate for 
modelling of random-like patterns. They have been frequently 
used in biological and physical studies in order to analyse 
natural patterns. Good introductions to this formalism can be 
found in [4][5]. 

A random closed set (a collection of randomly shaped 
compact sets, as given by equation (1)) is a doubly stochastic 
process, also called germ-grain model. A first random point 
process describes the spatial location of objects (germs), 
denoted by ip  in equation (1), at which realis ations of a 

second stochastic process (grains) determine the local 
morphology of the field, i.e. the characteristics of the sets iΞ . 
The intersection between distinct patches can be non empty. 
The distribution of the germs can, for example, be clustered, 
structured or uniformly distributed, see Fig. 2. 

We assume that the counting measure µ  associated to the 

point process (germ model) is a member of a parameterised 
family of distributions pG : 

{ }Γ∈=∈ λµµ λ:pG , 

where Γ  is a compact set. The vector λ  is the collection of 
parameters that determine the statistical distribution of the 
locations ip . The shape process (grain model) constrains the 

set of possible elementary shapes (e.g. to discs of random 
radius, lines of random orientation or mixt ures of them). 
Similarly to the germ process we consider that the distribution 
of the shapes can be parameterised by a finite number of 
parameters γ , such that 

{ }Λ∈=∈ Ξ λκκ γ :0G , 

where κ  is a probability measure over the space of possible 

shapes, Λ is a compact set and 0Ξ is a random shape. 
Different model types can be obtained by considering distinct 

pairs of families OGGp Ξ,  (for instance, for pG : homogeneous 

Poisson point process, regular pattern, etc., and for 0ΞG : discs 
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whose radii are uniformly distributed in an interval, line 
segments of random length and orientation, etc.). 
The random closed set model is thus given by the model type 

),( )()(
, 0

ji
pji GGM Ξ= . A particular model jiMM ,∈  is specified by 

the parameter vector ( )γλθ ,= , { }γλ κµθ ,)( =M ,, where 
)(i

pG∈λµ and )(
0

jGΞ∈γκ . 

The aim of the theory of random closed sets is to determine 
the model type jiM , and the model parameter ( )γλθ ˆ,ˆˆ= , such that 

an observed scene (inside an observation window (OW) of size 
)(OWν , where ()ν is the Lebesgue measure) is a typical 

realisation of the random closed set model jiMM ,)( ∈θ . 

 
 
 

    
(a)                                       (b) 

    
(c)                                       (d) 

Fig. 2  Example of RCS models. with different point processes. (a) 
isotropic boolean model, (b) anisotropic boolean model, (c) clustered 
distribution and (d) regular distribution of the grains.  

 
It is often difficult to obtain direct counting measures and 

estimates of the morphological characteristics of the sets iΞ  
from classified images, especially when the elementary grains 

iΞ can overlap, as illustrated in Fig. 2. Estimation of the 
distributions of the germ and the grain processes by direct 
identification of each individual shape is in these cases 
impossible.  

We exploit here an important property of random closed sets 
[6], stating that the distribution of any general random closed 
set is uniquely determined by the hitting capacity which is, for 
each compact set K, the probability that the intersection of  K 
with the RCS Ξ  is not empty: 
 

KK∈∀∅≠∩Ξ=Ξ KKPKT  ),(  )(                                           (2) 

 
The important fact is that knowledge of the hitting capacities 

for all KK∈K is equivalent to the knowledge of the model 
parameter θ  (assuming the model type to be known). In the 

case of isotropic models (θ  is independent of the location and 

orientation of the observer) we know that )()( pKTKT += ΞΞ . 

Under the assumption that the RCS model is locally isotropic 
(inside the observation window WO) we can obtain empirical 
estimates of the hitting capacities from classified images. 

For obvious reasons (limited computational capacities) we 
are  able to estimate hitting capacities only for a finite collection 
of compact sets { }nn KKK ,,1 …= , which we call structuring 

elements [7]. In this case we capture just a limited number of the 
characteristics of iΞ . 

For some model types we can find analytical forms of 
equation (2), allowing us to compute the hitting probabilities in 
terms of the model parameters θ . This is the case for the well 
studied boolean model. The germ process is a Poisson point 
process, determined by the intensity parameter λ , and the 
grains are i.i.d. realisations of compact sets. The hitting 
capacity for boolean models can be shown (see [4]) to be 
 

))),((exp(1)( 0 KEKT
(
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where ⊕  is the Minkowski-addition { }BbAabaBA ∈∈∀+=⊕ ,, , 

(.)E  is the statistical expectation operator with respect to the 

measure κ of the shape process and { }KxxK ∈−= ,
(

. In this 

presentation of our approach to mobile robot. navigation we 
concentrate on Boolean models. Ongoing work concerns 
characterisation of other types of random closed set models as 
those illustrated in Fig. 2  Example of RCS models. with different 
point processes. (a) isotropic boolean model, (b) anisotropic 
boolean model, (c) clustered distribution and (d) regular 
distribution of the grains., in particular clustered models, which 
seem good candidates to describe some kinds of natural 
scenes. 
 

In general, the perceptual characteristics change throughout 
the workspace, induced by varying temperature, soil fertility, 
ocean current, etc. If these variations are abrupt, we can 
partition the workspace into disjoint areas kA  (see Fig. 3), 
whose macroscopic characteristics are described by different 
types of statistical models )(, θkk jiM : 

 ),()(    ,  )()(
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where )(θkM is the model associated to area kA . To model 

smooth variations of the field inside each region kA , we let the 
model parameter θ  depend on the location x  
 
Map:   ( ) kAxxxxx ∈=→   ;)(),(  )( γλθ .                                 (3) 

 
The approach to navigation of robots in natural environments 
proposed here considers that the map given in the previous 
equation has been learned by (or given a priori to) the robot, i.e., 
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( ) HNjHj KTKTH
NNHp −−= ))(ˆ1()(̂)( , 

where NHKT j /ˆ)(̂ = is the estimated hitting capacity ( Ĥ is the 

observed number of hits). The variance of )( NHp is 

))(̂1)((ˆ2 jjH KTKTN −=σ . In order to guarantee that the individual 

hitting events are mutually independent  it is important to 
choose an appropriate sampling number N . This number 
depends on the size of the observation window, the structuring 
element and on the RCS model. The determination of the optimal 
number is still an ongoing problem.. Note however that the 
number of hits are binomial distributed for N smaller than the 
optimal value. For large N  the binomial distribution can be 
approximated by a normal distribution (see Fig. 4): 
 

)/)ˆ1(ˆ,/ˆ( ˆ ))(ˆ( NTTNHXTp k −= Nθ , 

where ),( AxN is the normal distribution defined by the mean x 

and the covariance A. 
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Fig. 4  Binomial distribution of the number of hits and its approximation 
by a normal distribution. 

V. IMPLEMENTATION OF THE OPTIMAL FILTER 

 
Direct computation of the prediction (convolution) and filtering 
(pointwise multiplication) steps is in practice not feasible. We 
saw in the previous section that the observation noise (for 
locally isotropic models) is well approximated by a normal 
distribution. Under the assumption that the noise kw  of the 
state space model is normal distributed we can obtain an 
approximation of the optimal non-linear filter by an Extended 
Kalman Filter (EKF). This approximation is based on the 
assumption that at each step the estimation error is small, 
allowing thus the approximation of the non-linearities of the 
state space model and the observation model by its 
linearisation around the current estimate of the robot’s state. 
The linearisation must be a good approximation over the entire 
uncertainty domain which is the case when the robot is moving 
in informative anisotropic areas. However, navigation in 
isotropic areas leads to a considerable growth of the 
uncertainty of the robot’s state and linearisation of the 

non-linear model may artificially shrink the estimated 
uncertainty of the position estimates, creating the possibility 
that the EKF diverges. This is particularly important when the 
robot reaches the boundary of adjacent areas after having 
crossed an isotropic area where consideration of the linearised 
model yields a null gain for perceptual information. 

 In [9] we proposed an approximation of the optimal 
non-linear filter by a Gaussian Mixture Model (GMM). We 
assume that the posterior density of the robot’s state at time 

1−k is Gaussian. We approximate the prediction density of 
equation (4)

 
by a gaussian mixture: 
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Each term is has a normal distribution with covariance 

∑ −
i

kk 1 and is multiplied by a scaling parameter i
kkP 1−

. We 

assume that the number kN and the locations of terms is 
chosen, such that linearisation of the state space model around 
each term is valid inside the principal support of the 
components. The choice of the locations and the scale 
parameters was discussed in [9]. The principal result is that 
each component can be propagated by an EKF and we proved 
in [9] that repeated application of the prediction and filtering 
step result always in a gaussian mixture. The update of the 
scaling parameters depends on the previous scaling parameter, 
the innovation and the innovation covariance (uncertainty of 
the perceptual observations). As a consequence, terms for 
which the predicted observations (hitting capacities) 
correspond well to the true observations (small innovations) 
are reinforced, otherwise they loose importance and will not 
contribute significantly to the posterior density. In our 
implementation of the mixture model, spurious terms, whose 
weight falls below a given treshold are eliminated and terms that 
are very close are fused. The number of actual terms of the 
mixture is  an indicator of the ambiguity of the workspace inside 
which the robot navigates. If all but one term are eliminated 
ambiguity is removed completely. 

If we consider the crossing of a boundary of adjacent areas 
the terms that are on the ‘correct’ side are reinforced and all 
other terms will loose importance, resulting in a concentration 
of the density on the areas inside which the robot is effectively 
located. 

VI. RESULTS 

 
In [10] we demonstrated navigation of a mobile robot inside 

anisotropic areas. The approximation of the optimal filter by an 
EKF was valid, since the uncertainty of the robot was 
maintained small during the entire trajectory. The linearisation 
around the estimated state was thus valid over the principal 
uncertainty support. 

Here we present the navigation between isotropic areas, 
precluding thus permanent localisation. We simulated the 
navigation of an underwater robot equipped with 
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proprioceptive sensors (compass and speed sensor) that are 
used for dead-reckoning, and with a camera pointing at the sea 
bottom. The robot moves at a constant altitude in an 
environment that was obtained by sampling from an isotropic 
Boolean model. The workspace is divided into two areas. The 
RCS model is a boolean model, where the grains are compact 
discs whose radius is uniformly distributed in an interval 

( )21,rrr∈ . The intensity of the Poisson point process is 

constant inside each area and changes abruptly at their frontier. 
The workspace (the locations of the grains) is shown in Fig. 5, 
along with the location of the robot and the position estimate 
(obtained by an EKF), indicated by a large cross (with a large 
error, resulting from the previous dead-reckoning period). The 
ellipse indicates the initial uncertainty and the square the area 
that is observed by the camera. 
 

 
Fig. 5  Realisation of a random field, where the changement of the 
intensity of the point process defines the frontier between the areas.  
 

We tested the approach for two different realisations. In the 
first realisation the jump of the intensity parameter at the 
boundary is larger; 0004.0,002.0 21 == λλ (Fig. 5) than for the 

second simulation; 0008.0,002.0 21 == λλ . A simulated 

(non-observed) ocean current perturbates the nominal 
trajectory of the robot, resulting in an important drift between 
the true position and its dead-reckoning estimate. Throughout 
the trajectory, that was chosen in order to guarantee that the 
frontier is crossed, images are acquired at regular time intervals. 
The perceptual observations are empirical estimates of the 
hitting capacity { })(ˆ),(ˆ 21 KTKTZ kkk = for two structuring elements 

(squares of varying side length) that are directly obtained from 
the images based on a fixed number N = 15 of samples. 

We assume here that we are able to determine at which time 
the linearisation around the estimate is not valid in order to 
initialise the gaussian mixture. This is the case if the boundary 
between the areas lies inside the principal support of the 
uncertainty region, indicated by the ellipse ( σ3 ).The terms of 
the gaussian mixture model are indicated in Fig. 6 by the plus 

signs and the boundary of the principal support (coverage 
%99 ) is traced (initially elliptic). The mean of the mixture is 

shown as a large circle and the trajectory (in the subsequent 
figures) in shown as a dashed line. 

 

 
Fig. 6  Creation of the Gaussian Mixture Model. The terms are indicated 
by the plus signs.  
 
When the robot progresses, some terms of the mixture cross the 
frontier between the areas. As long as the robot does not reach 
the frontier those terms loose importance and the posterior 
density is concentrated on the correct side of the frontier. In Fig. 
7 the robot crossed the frontier, resulting in the elimination of 
terms on the opposite side. This is clearly indicated in the figure 
by the boundary of the uncertainty support of the gaussian 
mixture. The pose estimate obtained by the EKF is not 
corrected, since the predicted change of the model parameter is 
zero and explicit hypothesis testing is not performed. Fig. 8 
shows what happens when the EKF pose estimate reaches the 
frontier. The map indicates a strong variation of the intensity of 
the point process and the density is concentrated along the 
frontier. The EKF estimate looses track of the true robot 
position, which is already inside the second area. 

 
Fig. 7  The posterior density is concentrated around the terms lying on 
the correct side of the frontier. The significant support of this density is 
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indicated. The terms lying on the wrong side do not contribute 
significantly to the density and will be eliminated. 
 

 
Fig. 8  The robot passed entirely to the area with lower intensity. The 
EKF estimate reaches the frontier, indicated by a strong gradient. of the 
intensity in the map. Its density is concentrated along the frontier. 
 
Fig. 9 shows the final result. The density of the gaussian mixture 
is concentrated around a single term (the large circle) and the 
density is again gaussian. All other terms of the gaussian 
mixture are removed (elimination of spurious terms and fusion 
of closed terms) throughout  the trajectory during which the 
robot crossed the frontier three times. A single passage is not 
sufficient in order to remove the initial ambiguity completely. 
The number of terms at each iteration is shown in Fig. 10 for 
both simulations. The lower curve correspond to the workspace 
where the intensity parameter changes strongly and the second 
curve corresponds to the less informative workspace. At each 
time when the robot passes the frontier the posterior density is 
concentrated on the terms that are on the correct side of the 
boundary, resulting in the elimination of spurious terms 
(Iterations 80, 120, 250). The figure shows well that the accuracy 
of the pose estimation depends on the information provided by 
the RCS map. 
 

 
Fig. 9  After three passes of the frontier the initial ambiguity is entirely 
resolved. The whole density is concentrated around the single remaining 
term (the EKF estimate falls outside the figure (on the right)). 
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Fig. 10 The number of remaining mixture terms are indicated for both 
realisations (strong change by the lower curve; small change by the upper 
curve). 
 

VII. CONCLUSIONS 

 
In this paper we propose a novel environment description for 

robot navigation, using the formalism of random closed set 
models. These models capture the principal characteristics of  
natural environment. The approach was motivated by the fact 
that identification of outstanding features, on which the 
majority of existing approaches to robot localisation is based is 
not always possible. Description by statistical models does not 
rely on the identification of outstanding features and 
knowledge of exact location (or shapes) of features is not 
required, resulting in increased robustness with respect to small 
changes. 

 We present approximate expressions that enable definition 
of an approximation to the Bayesian estimator of the robot state 
for RCS models. We addressed the problem of ambiguity in the 
workspace, precluding the use of a simple EKF, when 
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uncertainty of the estimated pose is very large. An approach 
that is related to multiple hypothesis, the gaussian mixture 
model is proposed and its feasibility is demonstrated by 
simulation results. 

A series of open problems must still be studied more 
thoroughly. In particular, we need to use more complex RCS 
models, in order to describe clustered or regular environments. 
Analytical expressions for the hitting capacities need to be 
found for these models. Another issue concerns the gaussian 
mixture model. In particular we need to add additional terms to 
the mixture in the case where the linearisation is no longer valid. 
Finally the problem of joint mapping and localisation for this 
kind of environment representations must be addressed in 
order to realise fully autonomous progression of a robot in a 
priori unknown environments: the robot must be able to 
simultaneously estimate the map (the model type along with the 
model parameter) and its position, using the autonomously 
created map. 
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