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Abstract

In this paper we present a novel approach to mobile robot
navigation in natural unstructured environments. Natu-
ral scenes can be considered as random fields where a
large number of individual objects of random shape ap-
pear randomly scattered in space. In this paper we use
Random Closed Sets (RCS) to model the random scatter-
ing and shape of the objects observed, and base the navi-
gation of a robot on maps of the RCS model’s parameters.
Contrary to the feature based approach to robot naviga-
tion, this environment representation does not require the
existence of outstanding objects in the workspace, and is
robust with respect to small dynamic changes. We ad-
dress the problem of estimating the position of a mobile
robot assuming that the (statistical) map of the environ-
ment is available a priori. We also present an adaptive
guidance strategy that autonomously leads the robot to
locations where the perceptual observations result in an
efficient reduction of its state uncertainty. Simulations
demonstrate the feasibility of our approach.

1 Introduction

There is a growing interest in the development of au-
tonomous underwater vehicles (AUVSs) for applications
such as sea-floor mapping and environment monitoring.
AUVs offer a better alternative to human intervention in
ocean regions not easily accessible and for long missions.
The majority of the navigation systems of AUVs cur-
rently in operation rely on the use of long baseline (LBL)
arrays of acoustic transponders or to periodic returns to
the surface for GPS fixes, increasing the effective cost of
each operation. An alternative to these approaches is to
infer the robot’s positions from observation of its envi-
ronment.

While stable localization methods have been proposed for
in-door robots, navigation of robots in natural environ-
ments is still a challenge. We identify two reasons. First,
we are confronted with large scale open environments,
that require the ability to navigate to long distances. In
the absence of external position information, if pose es-
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timation is based only on dead-reckoning it results in an
unbounded increase of the estimation error. Perceptual
information can be used in order to overcome this lim-
itation. The robot creates a map (or uses an existing
one) describing the workspace. This map, if it is suffi-
ciently rich, can be used in order to maintain bounded
the uncertainty affecting the robot’s position during its
entire mission. The second point concerns the structure
of the environment. Natural scenes are highly unstruc-
tured, lacking the geometric type of landmarks (spatially
concentrated and simple to describe) on which are based
most indoor maps.

It is thus important to assess the question: ”What is
the perceptual information that provides the best infor-
mation for pose estimation ?”. The most common ap-
proaches for localizing mobile robots are feature based,
see e.g. [1]. Other methods use 3D elevation maps [2]
(requiring non-flat sea-bottoms), or the use of mosaics
[3]. All localization approaches rely on correct data as-
sociation in order to match recent observations to those
already contained in the map. This requires the identifi-
cation of outstanding objects (that can be distinguished
from neighboring ones). While in structured environ-
ments it is relatively easy to identify outstanding features,
this is not always guaranteed in natural environments,
specially when the field of view is limited (myopic percep-
tion) as it is the case for vision in underwater robotics.
Mismatches due to unstable feature identification, or fea-
ture sparseness lead to the divergence of the navigation
system.

We propose a novel environment description suitable for
environments where identification of salient features is
difficult or impossible. Instead of creating a detailed de-
scription of the environment as a collection of spatially
registrated features, we propose a representation by sta-
tistical models that capture their local macroscopic char-
acteristics. These characteristics can be, (i) the spatial
distribution of objects, and (ii) the distribution of basic
local morphological attributes, such as perimeter length
or size. Such a representation has to be considered as an
alternative to other mapping approaches, which, if the re-
spective conditions are met, yield better results since they
rely on more detailed information. If stable identification
of details is difficult the proposed representation presents
the advantage that it does not rely on precise knowledge
of the position and shape of each feature, since detailed



informations are discarded.

Another important topic on field robotics concerns the
efficient use of the environment map. One of its impor-
tant utilizations is for path planning. An optimal path
can be chosen using a variety of criteria such as minimum
path length or minimum uncertainty [4]. In this paper we
present a simple 1-step ahead predictor that guides the
robot to the neighboring position where the information
provided by the perceptual observations is maximum.

The paper is organized as follows. In section 2 we propose
the use of RCS models as suitable descriptions of unstruc-
tured environments. Section 3 gives an overview of how
RCS models can be used for mobile robot navigation. Im-
portant aspects are the approximation of the non-linear
filter and the guidance strategy in order to minimize the
uncertainty of the robot’s state. In section 4 we present
preliminary simulation results that validate our approach
and draw conclusions in section 5.

2 Modeling of Scattered objects as Random
Closed Sets

We can identify a very formal geometrical description of
an environment as a union of bounded sets (each one
describing a single object):

E=JEi+m), Eiek, (1)
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where K is the system of compact sets in IR? (2 +pi is
the set Z; translated by p;). Additional information can
be added by associating to each set a label m;, specifying
the type of object. Feature based approaches map the
objects Z; + p; individually, while e.g. grid-based (or mo-
saicing) approaches map the entire discretized workspace
=Z. In some situations (outstanding objects cannot be
identified) it makes more sense to consider the field (1)
as a random pattern. Localization is possible if dis-
tinct regions of the field, presenting different statistical
characteristics, can be identified.

A way to describe random fields can be done by using the
notion of random closed sets (RCS). Characterization
of random fields as RCS is not new and has already been
introduced by Kolmogoroff. We will present just the basic
concepts. More theoretical and deeper studies of RCS can
be found in [5, 6]. Roughly speaking a Random Closed
Set can be considered as a doubly stochastic process. A
first process (the point process) determines the sequence
of locations {p1, po, ...} of the objects. A second process
(the shape process) determines then the morphology of
the individual objects {Z1, Zs, . ..} that are placed at each
location (see figure 1 for examples).

Figure 1: Random Closed Sets: left stationary, right non-
stationary

We assume that the counting measure p associated to the
point process is a member of a parameterized family of
distributions G, where A\ is the parameter that deter-
mines the distribution. The shape model constrains the
set of possible elementary shapes. Similarly to the point
process we consider that the measure x associated to the
shape process is a member of a parameterized family of
distributions G, where « is the parameter that deter-
mines the distribution.

Different model types can be obtained (considering the
point and shape process to be independent) as pairs of
families (G, G,) (for instance, for Gy: stationary Pois-
son point process, regular pattern, etc., and for G: discs
whose radii are uniformly distributed in an interval, el-
lipses, etc.). The random closed set model is thus given
by the model type

Mi,j = (ng)ang))v

and a particular model M; ;(0) € M, ; is specified by the
parameter vector 6 = (A, 7).

2.1 Hitting capacities

It is in general impossible to directly estimate the count-
ing measure and the morphological characteristics of the
sets. It has been established [7] that the distribution of
a RCS is determined by the hitting capacities T=(K)
for all K € K. The hitting capacity is defined as the
probability that the set K intersects =

T=(K) = P(ENK #0). 2)

The obvious advantage of this result is that estimates of
the hitting capacities can be obtained easily from classi-
fied images, considering that the random field is locally
stationary. In general we are restricted to estimates for a
limited number of compact sets K™ = {Ky,..., K,} (de-
noted as the structuring elements). Representation of the
image by hitting capacities for a finite set of structuring
elements can be considered as a compression. Only ba-
sic characteristics of the scene (e.g. average size, average
perimeter length of the grains and intensity measure) are
kept and need consequently to be modeled. If the relation
(2) is known, these characteristics can be deduced from



observed hitting capacities and the scene can be partly
reconstituted. Until now the family of boolean mod-
els (point process is a Poisson process and the grains are
iid. in the workspace) is the only family [8] for which
T=(K) can be computed analytically. Hitting capacities
representing the RCS of figure 1(a) are shown in figure 2.
In the sequel we write Tp(K) = Tz(K) assuming that we
are able to associate = to its structural parameter vector

6.

Hitting capacities: T(K)

08 -7
for K =Square(varying sidelength_b’)

for K = Segment(varying length D)

Figure 2: Hitting capacities for a set of structuring elements.

2.2 Random Closed Set maps

In general, the perceptual characteristics change through-
out the workspace, induced by geophysical phenomena
such as varying temperature, soil fertility, ocean current,
etc. As a consequence environments have to be described
by RCS models that are non-stationary. A map of the en-
vironment can be defined as a vector field, where a RCS
model (of a specific type and with a specific parameter
vector) is associated to each point, describing the local
characteristics of the field. This field can be partitioned
into disjoint areas Ay, whose boundaries indicate either
an abrupt change of the model type or of the model pa-
rameter:

Workspace = U A, Ay o Mp(0) = M;, ;,.(0), (3)
k=1

where M} (0) is the RCS model associated to area Ay. To
model smooth variations of the field inside each region
Ay, we let the model parameter 6 depend on the location
x:

Map: = — 6(z) = (M(z),y(z)); x € Ayg. (4)

The approach to navigation of robots in natural envi-
ronments proposed here considers that the map given by
equations (3) and (4) has been learned by (or given a pri-
ori to) the robot, i.e., the robot knows the partition {Ay}
and the continuous vector field defined by (4).

3 Robot localization based on Random Closed
Set maps

We address now the problem of using the map defined in
the previous section to estimate the robot location. Local

observations provide useful information for localization
only inside non-stationary areas of the RCS (the model
parameter is a function of the location). In this case the
pose error can be permanently corrected and positioning
uncertainty is kept bounded. Accuracy of the localiza-
tion depends on the informativeness of the field: strong
variations of the field result in more accurate pose esti-
mates since distinction between different locations inside
the area is more accurate. If the areas are stationary,
localization is only possible when the robot observes a
boundary between adjacent areas, indicated by an abrupt
change of the model parameter or of the model type. The
problem is that during navigation inside stationary areas
the pose error growths considerably, leading to a large
uncertainty when the robot reaches the boundary, and ul-
timately resulting in a large set of possible true locations
(large ambiguity). Most approaches to position estima-
tion for mobile robots use Extended Kalman filters, and
must thus assume that the error is small and that the
observations are differentiable with respect to the robot’s
state. Navigation between adjacent areas requires in this
case a first symbolic association step, prior to actual ob-
servations filtering. We propose a method that does not
rely on this two step decomposition. We first formulate
the general framework of the Bayesian approach to local-
ization. Assume that the dynamic model of the robot’s
state X}, is known:

Xi = f(Xp—1,Up—1) + Wi—1, (5)

where f(.,.) is a known (non-linear) function, f : X x4 —
X, where X is the configuration space of the robot’s state
and U the space of control inputs ug. The sequence wy
is assumed to be white. The optimal MMSE estimate of
the robot’s state X}, given the past observations Y* =
{Y1,...,Y%}, is given by the conditional mean

Xk-|k:/ Xip(Xp|YF)d X,
x

where p(Xj|Y*) is the a posteriori density of the robot’s
state, given the observations. The density p(Xy|Y*) can
be updated by alternating prediction and filtering steps:

_ Pred. _ Falt.
P(Xp 1 [YE) IS (X [ YR T (X YR,

The prediction step (convolution) propagates the prob-
ability distribution in the state space according to the
dynamic model. If the observations Y} are uncorrelated
(the noise vy is white), the filtering step (point-wise mul-
tiplication) computes

DXk V) oc p(Xi[YF1)p (Y| X).



The observation vector Y, = (D, Zi) contains propri-
oceptive observations Dy, (surge, heading,...) and exte-
rioceptive observations Zj, being estimates of the hit-
ting capacities for a finite set of structuring elements
K" obtained directly from binary images: Zj = T} =
{Tw(K1),...,Tu(K,)}. In general given Xy, Dy, and Zj,
are uncorrelated, such that

p(Yil Xi) = p(Dr| Xi)p(Ti|0( X)),

where we used the fact that the observations 7] . de-
pend on X} only through the type and parameters of the
RCS model at that point. We need to identify correctly
the conditional density p(T%|0(X)), which we character-
ized for locally stationary RCS models with point pro-
cesses satisfying the property of independent scattering
(boolean models). An estimate 7" of the hitting capacities
can be obtained by placing the compact set (the structur-
ing element) K at N (sampling number) positions {p; }¥ ,
inside the observation windows OW and evaluate at each
time the event: K hits (or not) =. Under the condition
that the individual events are mutually independent the
probability of the number of hits kj, follows a binomial
distribution:

Pre, (kn|N) = ( v )%(K)’%(l—Te(K))N b,

For large sampling numbers N the binomial distribution
is well approximated by Gaussians. We identified for
boolean models an upper bound for N guaranteeing the
independence of individual hits by placing the structuring
elements at the nodes of a regular grid whose cell size
depends on the K; and 6. For boolean models it is also
possible to correctly determine the correlations between
estimates of structuring elements of distinct size, such
that the full joint probability P(T(K1),. .., T(K,)|0) can
be characterized.

3.1 Optimal filtering

Direct computation of the prediction (convolution) and
filtering (point-wise multiplication) steps is in practice
not feasible. However if the noises of the dynamic and ob-
servation model are white zero-mean Gaussian (valid for
large sampling numbers N) and if linearization of the non-
linear models around the current estimate of the robot’s
state Xy, is valid the optimal filter can be approximated
by the extended Kalman filter (EKF) equations. This
validity of the approximation is based on the assumption
that at each step the estimation error is small. To prevent
filter divergence, the linearization must be a good ap-
proximation over the entire uncertainty domain. This is
generally the case when permanent positioning informa-
tion is available. If the robot navigates inside stationary
areas the uncertainty of its state growths, such that lin-

earization around the estimate is only valid in the vicin-
ity of the current estimate. In [9] we approximated the
optimal filter by a Gaussian mixture model (GMM),
corresponding to a bank of EKF. The posterior density
is approximated by a sum of individual terms:

M
(X4 V") Zs p(XPOYE) Y s =1
=1

The GMM estimate is Xj, = Z s\ )X( " The num-

klk*
ber M of terms must be chosen such that‘ linearization
of the dynamic and observation model is valid inside the
principal support of each term. It is easy to prove that
repeated application of the prediction and filtering step
results always in a Gaussian mixture, such that a closed
form solution is available.
The scaling parameters s,(;) depend strongly on the inno-
vations: Terms for which the predicted observations cor-
respond well to the true observations (small innovations)
are reinforced, otherwise they loose importance and will
not contribute significantly to the posterior density. The
number of terms and the spatial distribution of the terms
represent the state of ambiguity. In order to reduce the
complexity of the GMM, terms whose scaling parame-
ter decreases below a given threshold are eliminated and
close terms are fused.

3.2 Navigation strategy

To choose the path resulting in an optimal reduction
of positioning uncertainty we implemented a simple 1-
step ahead predictor that drives the robot to a position
where the information gain is optimized. It is known [10]
that the estimate of the EKF, X} 3, minimizes the mean
square error for a given control input uy_1, which for the
GMM is given by:

M
Te(un—a) = > sPIXL — Ksll® + (6)

M
S [ IR - X i
X

We search the control input wug_; that minimizes the
above function:

Up_q = arg uglifelu(Jk(kal)).

Since analytical computation is impossible we defined for
our implementation a finite set of control inputs that
guide the robot to a set of positions in the region ahead



of it. For each control input we determine the result-
ing mean square error and choose the control input that
leads to the minimum error. The computation of the
mean square error depends strongly on the innovations,
and thus on the perceptual observations (not know), via
the scaling parameters and the estimates of each term.
For each mixture term, we predict the hitting capacities
assuming that the robot’s nominal dynamic model is per-
fect, and that the observations are equal to their expected
value given the predicted position.

4 Simulation results

In [11] we demonstrated navigation of a mobile robot in-
side non-stationary areas. The approximation of the op-
timal filter by an EKF was valid, since the uncertainty
of the robot was maintained small during the entire tra-
jectory and linearization around the estimated state was
valid over the principal uncertainty support.

We concentrate here on navigation in workspaces, where
the RCS model is widely stationary. Relocalization can
in this case only be performed when the robot reaches
the boundary of adjacent areas, indicated by a jump of
the RCS model (either by a change of the model type
or by a jump of the model parameter). Since permanent
localization is not possible inside stationary areas the ac-
cumulated error of the position estimate is quite large.

We simulate navigation of an underwater robot equipped
with proprioceptive sensors (compass and surge sensor)
for dead-reckoning, and with a camera pointing to the sea
bottom. The robot moves at a constant altitude, avoid-
ing thus the need of rescaling of the images in order to
preserve the metric. The simulated workspace is divided
into two areas, inside which the RCS model is a station-
ary boolean model: The grains are compact discs whose
radius is uniformly distributed in a known interval. The
boundary between these areas indicate an abrupt change
of the model parameter (the intensity of the point pro-
cess). Figure 3) illustrates roughly the workspace and a
small extract is shown in figure 4 (the upper left corner
of A;), representing a small part of area A; and Ay. The
areas are hard to identify if the boundary is not indicated.
A feature based approach is not suited in this case, since
no salient feature can be identified.

Figure 3 indicates also the initial GMM pose estimate (by
the symbol ), along with the principal uncertainty sup-
port (the thick line). The true robot location is centered
at the square, indicating the area that is actually observed
by the camera. The terms of the Gaussian mixture model
(which was triggered when the boundary between A; and
Ag crossed the principal support of uncertainty) are in-
dicated by the small plus-signs.

A simulated ocean current (~ 12% w.r.t. the nominal

A2 (Intensity: 0.002; radius in (5,15)) il

AT (Intensity: 0.0014; radius in (5,15))

GMM

Figure 4: An extract of the above workspace, corresponding
to the upper left corner of area A; (the triangle).

speed of the robot) produces a non observed drift be-
tween the true position and the estimate. The percep-
tual observations are empirical estimates of hitting capac-
ities for two structuring elements Z, = {T'(K,),T(K3)},
whose joint distribution was approximated by a Gaus-
sian. At each iteration the robot searches for the optimal
control input wug, restricted to those driving the robot in-
side a cone in front of the robot. The optimal control
input drives the robot first in direction to the boundary.
It is clear that the best information gain is obtained in
the vicinity of the boundary, such that the robot adopts
an oscillating behavior. Throughout the trajectory the
weight of the terms of the GMM are transferred to those
whose predicted observations coincide well with the ob-
servations. Spurious terms are eliminated and close terms
are fused. At the end of the experiment a single term of
the GMM remains. Figure 5 shows the trajectory of the
estimated and the true position. The evolution of the
mean square error, indicated in figure 6, illustrates well
the gain provided by the RCS model map.

5 Conclusions

In this paper we propose a novel environment descrip-
tion for robot navigation, using the formalism of random
closed set models. These models capture the principal



Figure 5: Estimated trajectory as a thick dash line com-
pared with true trajectory.

Mean square error of the GMM

Figure 6: Mean square error Jy(uj_;).

characteristics of natural environments. The approach
was motivated by the fact that identification of outstand-
ing features, on which the majority of existing approaches
to robot localization is based, is not always possible. De-
scription by statistical models does not rely on the iden-
tification of outstanding features and knowledge of their
exact location (or shapes) is not required, resulting in
increased robustness with respect to small changes.

We present approximate expressions that enable defini-
tion of an approximation of the Bayesian estimator of
the robot state for RCS models. We addressed the prob-
lem of ambiguity in the workspace, precluding the use of
a simple EKF, when uncertainty of the estimated pose is
very large. An approach that is related to multiple hy-
pothesis, the Gaussian mixture model, is proposed and
its feasibility is demonstrated by simulation results. In
order to use the RCS map in an efficient way we propose
an observation strategy that drives the robot to locations
inside the workspace where the information provided by
the perceptual observations results in the most significant
reduction of uncertainty.

A series of problems must still be studied more thor-
oughly. In particular, it is necessary to handle more
complex RCS models which are good candidates to de-
scribe real environments. Experiences with an ROV in
the north of Scotland (Orkney islands) suggested some-

times a more regular spatial distribution than predicted
by Poisson processes. Our present efforts focus on the
crucial problem of joint mapping and localization for this
kind of environment representations, where we concen-
trate on the autonomous segmentation of the workspace
into homogeneous areas.
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