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Abstract

In this paper we present a novel approach to mobile robot navigation based on environment representation
by statistical models. Natural unstructured scenes are interpreted as realisations of Random Closed Sets
(RCS), whose global characteristics are mapped. Contrary to the feature based approach, this environment
representation does not require the existence of outstanding objects in the workspace, and is robust with
respect to small dynamic changes. We address the relocalisation problem assuming that a statistical model,
serving as a map of the environment, is available a priori. Simulation results demonstrate the feasibility of
our approach.

1 Introduction

In the recent years a variety of navigation methods for autonomous mobile robots have been studied. While
good results have been obtained, in particularly for indoor robots, a lot of open issues still need to be ad-
dressed. This is especially true for navigation in natural highly unstructured environments. While terrestrian
robots can use GPS for localisation, an autonomous vehicle operating underwater (AUV) has to strongly
rely on its perceptual capabilities in order to estimate its position.

The main challenge of navigation in large underwater areas concerns the safety of the robot: if it looses
track of its current position autonomous recovery can no longer be guaranteed. To overcome the problems
associated with search and recovery, the vehicle needs to be able to return to a homing area (e.g. the vicinity
of the boat from which it was launched), where it can be picked up after completion of the mission. If the
positioning error becomes too large, the robot will miss the homing area and get lost.

Navigation of AUV’s requires thus that the estimation error be maintained below appropriate bounds.
This cannot be guaranteed if the vehicle relies only on proprioceptive (inertial) sensors. Perceptual data
must be used to find natural landmarks that can be periodically used for relocalising the robot.

The most common approach for relocalisation of mobile robots is feature based, see e.g. [1, 2]. Features,
described by low dimensional parameter vectors, are stored in an internal map. Relocalisation is subsequently
done by estimating the rigid motion that matches recently observed features to those already contained in
the map.

While the feature based approach yields good results in environments where dense maps of outstanding
features, that can be easily identified, can be built, it is less suited to unstructured environments where
unstable feature identification leads to frequent mismatch or to absence of feature matches. We propose
a novel environment description that is suited for environments where identification of salient features is
difficult.

Instead of creating a detailed description of the environment as a collection of features, we propose
a representation by statistical models that capture the local macroscopic characteristics of unstructured
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environments. Such characteristics can be (i) the number of objects per unit area, (ii) their spatial distri-
bution, and/or (iii) the distribution of basic local morphological attributes, such as shape, color or size.
The advantage of this representation is that it does not rely on individual features. Mismatch problems are
thus eliminated, and the representation is robust to perturbations (small displacement of objects, or shape
deformations).

The paper is organized as follows. In section 3 we propose to model the robot’s environment as a realization
of a Random Closed Set model. In section 2 we discuss environment descriptions in general terms and propose
in section 3 the use of RCS models as suitable descriptions for unstructured environments. Section 4 gives
an overview of how RCS models can be used for mobile robot navigation. We assume here that such a
description is available a-priori and do not address here the problem of joint mapping and localization for
these models. In section 5 we present preliminary simulation results that validate our approach. Finally,
some conclusions are drawn in section 6.

2 Environment descriptions

An exhaustive description of natural unstructured environments is not necessary for the purpose of mobile
robot navigation. The basic criteria for the choice of suitable environment maps are (i) simplicity of coding
and (ii) robustness of recognition. The choice of the map depends thus of the nature of the envionment in
which the robot progresses. In general we can induce a partition of the robot’s workspace by associating to
each point a mark belonging to a limited number of classesM. Indoor environments can e.g. be classified into
: ’corridors’, ’walls’, ’doors’, etc. For outdoor environments plausible classes are for example : ’stones’, ’sand’,
’tree’, etc. This is a rather coarse classification, but still adequate for navigation if the classes are choosen in
an appropriate way. This classification, based on the perceptual data (using e.g. sonars or cameras), induces
a series of patches on the workspace of the robot. This discretized description of the environment can be
mathematically represented as the union of compact sets:

Ξ =
∞⋃

i=1

(Ξi + pi,mji)), Ξi ∈ K, mji ∈M. (1)

In the equation above K is a family of compact sets (set of possible shapes) and M is the mark space,
designating the class to which the set belongs (other attributes than shape). Without loss of generality, we
assume that the center of gravity of the sets Ξi is at the origin. The sum Ξi +pi denotes the set Ξi translated
by the vector pi ∈ R2. The Ξi represent thus the morphological characteristics of the objects (or patches)
and pi their location in the workspace. An example is shown in figure 1. Figure 1(a) shows a raw images of
the sea bottom, where the white regions of the image correspond to dead ’Maerl’ (coraline alga) found at
the Orkney islands in the north of Scotland. This image shows well the patchy nature of this natural field.
The classified version of this image (M contains just one class) is illustrated in figure 1(b).

Commonly used approaches for environment description are e.g. the grid based and the feature based
approach. Using the grid based approach (e.g. using the classes ’occupied’ and ’free space’) we obtain
directly Ξ. The disadvantages are the storage capacities required, particularly problematic for large scale
environments. The second approach is the feature based approach. An environment description is obtained
by creating a geometric description of the Ξi and their locations pi. If the morphological characteristics of
the individual objects are simple (e.g. structured indoor environments) the feature based approach is well
suited, since the complexity of feature matching is reduced. Both approaches, however, are very sensitive to
errors in the classification of the raw data.

In unstructured environments the patches have arbitrary shapes and relocalisation using the feature
based approach tends to fail, due to the increasing complexity involved in the matching process. A different
way to describe unstructured environments, by considering that the patches form a random pattern can be
formulated using the notion of random closed set (RCS) models.

3 Modelisation of scattered objects as random closed sets

Random closed sets are mathematical models that are appropriate for modelisation of random-like patterns.
They have been frequently used in biological and physical contexts, in order to analyze natural patterns.



One of its earliest applications was the modelisation of the crystallization in metals by Kolmogorov in 1937
[3]. Good introductions to this formalism can be found in [4, 5].

A random closed set Ξ (a collection of randomly shaped compact sets, as given by equation (1)) is a
doubly stochastic process, also called germ-grain model. A first random point process describes the spatial
location of objects (germs), denoted by pi in equation 1, at which realizations of a second stochastic process
(grains) determine the local morphology of the field, i.e. the characteristics of the sets Ξi. For this model we
can assume that the intersection between distinct patches can be non empty. The distribution of the germs
can, for example, be clustered, structured or uniformly distributed, see figure 2.

(a) (b) (c)

Fig. 1. (a) Image from the sea-bottom taken in the north of scotland. The white patches correspond to
crystalized (dead) coral ’Maerl’. (b) The image after classification. (c) A modelisation using a clustered
distribution (clusters of varying size composed of compact discs with random radius.

(a) (b) (c)

Fig. 2. Examples of RCS models. (a) isotropic boolean model (uniformly distribution of the patches), (b)
anisotropic boolean model, the number of patches depends on the location, (c) a clustered distribution of
the patches.

We assume that the counting measure µ associated to the point process (germ model) is a member of a
parameterized family of distributions Gp:

µ ∈ Gp = {µλ, λ ∈ Λ},
where Λ is a compact set. The vector λ is the collection of parameters that determine the statistical distri-
bution of the locations pi. The shape process (grain model) constrains the set of possible elementary shapes
(e.g. to discs of random radius, lines of random orientation or to mixtures of them). Similarly to the germ
process we consider that the distribution of the shapes can be parameterized by a finite number of parameters
γ, such that

κ ∈ GΞ0 = {κγ , γ ∈ Γ},
where κ is a probability measure over the space of possible shapes, Γ is a compact set and Ξ0 is a random
shape. Different model types can be obtained by considering distinct pairs of families Gp, GΞ0 (for instance,



for Gp: homogeneous Poisson point process, regular pattern, etc., and for GΞ0 : discs whose radii are uniformly
distributed in an interval, line segments of random length and orientation, etc.). The random closed set
model is thus given by the model type Mi,j = (G(i)

p , G
(j)
Ξ0

). A particular model M ∈ Mi,j is specified by the

parameter vector θ = (λ, γ), M(θ) = µλ, κγ , where µλ ∈ G
(i)
p and κγ ∈ G

(j)
Ξ0

.
The aim of the theory of random closed sets is to determine the model type Mi,j and the model parameter

θ̂)(λ̂, γ̂), such that an observed scene (inside an observation window (OW ) of size ν(OW ), where ν(.) is the
Lebesgue measure) is a typical realization of the random closed set model M(θ) = µλ, κγ ∈ Mi,j . It is often
difficult to obtain direct counting measures and estimates of the morphological characteristics of the sets
Ξi from classified images, especially when the elementary grains Ξi can overlap, as illustrated in figure 2.
Estimation of the distributions of the germ and the grain processes by direct identification of each individual
shape is in these cases impossible.

We exploit here an important property of random closed sets [6], stating that the distribution of any
general random closed set is uniquely determined by the hitting capacity which is, for each compact set K,
the probability that the intersection of K with the RCS Ξ is not empty:

TΞ(K) = P (Ξ ∩K 6= ∅); ∀K ∈ K, (2)

where K is the family of all compact sets. The important fact is that knowledge of the hitting capacities for
all K ∈ K is equivalent to the knowledge of the model parameter θ (assuming the model type to be known).
In the case of isotropic models (θ is independent of the location and orientation of the observer) we know
that TΞ(K) = TΞ(K + p), where K + p is the set K translated by the vector p. Under the assumption that
the RCS model is locally isotropic (inside the observation window WO) we can obtain empirical estimates
of the hitting capacities from classified images.

For obvious reasons (limited computational capacities) we are able to estimate hitting capacities only
for a finite collection of compact sets Kn = {K1, . . . ,Kn}. In this case we capture just a limited number
of characteristics of Ξ. Consequently, the sets Ki should be choosen in order to capture those that are the
most relevant. We call Kn the structuring elements (notation proposed by [7]).

For some model types we can find analytical forms of equation (2), allowing us to compute the hitting
probabilities in terms of the model parameters θ. This is the case for the well studied Boolean model. The
germ process is a Poisson point process, determined by the intensity parameter λ, and the grains are i.i.d.
realisations of compact sets. The hitting capacity for boolean models can be shown (see [4]) to be

TΞ(K) = 1− exp(−λEκ(ν(Ξ0 ⊕ Ǩ))), (3)

where ⊕ is the Minkowski-addition ((A ⊕ B) = {a + b;∀a ∈ A, b ∈ B}), E(.) is the statistical expectation
operator and Ǩ = {−x; x ∈ K}. For many models it is theoretically possible to find an equivalent boolean
model. If we assume e.g. a cluster process, whose cluster locations are determined by a Poisson point process,
we can consider the clusters as being very complex shaped grains. The hitting capacities can be obtained by
(3). The main difficulty, however, is to compute Eκ(νd(Ξ0 ⊕ Ǩ)). In this case a non boolean model can be
more convenient.

In this presentation of our approach to mobile robot navigation we concentrate on modelisation by
Boolean models. Ongoing work concerns characterization of other types of random closed set models as
those illustrated in figure 2, in particular clustered models, which seem good candidates to describe some
kinds of natural scenes.

In general, the perceptual characteristics change throughout the workspace, induced by varying tem-
perature, soil fertility, ocean current, etc. If these variations are abrupt, we can partition the workspace
into disjoint areas Ak (see figure 3), whose macroscopic characteristics are described by different types of
statistical models Mik,jk

(θ):

Workspace =
∞⋃

k=1

Ak, Ak ↔ Mk(θ) ≡ Mik,jk
(θ) = (µ(ik)

λ , κ(jk)
γ ),

with µ
(i)
λ ∈ G

(i)
p and κ

(i)
γ ∈ G

(i)
Ξ0

. We denote by Mk(θ) the model associated to area Ak. To model smooth
variations of the field inside each region Ak, we let the model parameter θ depend on the location x
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Fig. 3. Segmentation of the workspace into areas where the characteristics of the environment are described
by different random closed set models.

Map: x → θ(x) = (λ(x), γ(x)); x ∈ Ak. (4)

The approach to navigation of robots in natural environments proposed here considers that the map
given in the previous equation has been learned by (or given a priori to) the robot, i.e., the robot knows the
partition {Ak} and the piecewise continuous vector field defined by (4).

4 Mobile robot navigation based on RCS models: a Bayesian approach

We address now the problem of using the map defined in the previous section to estimate the robot location.
We consider first local navigation inside each region Ak and start the discussion with a simple example.
If the model parameter θ(x) is known for all x ∈ Ak, the inverse map θ−1 : θ → B ∩ Ak, where B is the
field of all Borel sets of the ambient space, can be computed. If θ−1 = Ak the model Mik,jk

is isotropic and
relocalisation inside Ak is not possible. If, however, θ−1 = B ⊂ Ak (a strict subset), the model is anisotropic
and the vehicle’s pose, after observation of θ, can be restricted to locations in B. An example of an isotropic
scene was given in figure 2(a), and of an anisotropic scene in figure 2(b).

In the isotropic case, relocalisation is only possible on the boundaries between adjacent areas, indicated
by an abrupt change of the model type or by an abrupt change of the model parameters. It is thus convenient
to perform the partitioning {Ak} of the workspace such that the boundaries indicate not only a change of
the model type but also abrupt changes of the model parameters.

Navigating between adjacent areas requires thus hypothesis testing in order to determine the correct
model type and to determine when the robot crossed the boundaries. Such hypothesis testing can be done
using available tools for model selection, such as Generalized Maximum Likelihood, MDL [8] or the AIC
criteria [9]. We illustrate here just navigation inside smooth anisotropic areas (θ(x) continuous), assuming
that the model type has been correctly determined. In order to obtain a pose estimate we use a Bayesian
approach.

We assume here that the dynamic model of the robot’s state Xk is known:

Xk = f(Xk−1) + g(uk−1) + wk,

where f(.) is a known (non-linear) function, f : C → C, where C is the configuration space of the robot’s
state, wk is a white noise and uk is a driving term. The optimal MMSE estimate of the robot’s state Xk,
given the past observations Y k = {Y1, . . . , Yk}, is given by the conditional mean

X̂k =
∫

X
Xkp(Xk|Y k)dXk,

where p(Xk|Y k) is the a posteriori density of the robot’s state, given the observations. The a posteriori
density p(Xk|Y k) can be updated by alternating prediction and filtering steps:

p(Xk−1|Y k−1) Pred.→ p(Xk|Y k−1) Filt.→ p(Xk|Y k).



The prediction step (convolution) propagates the probability distribution in the state space according to the
dynamic model. If Yk is the output of a memoryless observator, the filtering step (pointwise multiplication)
computes

p(Xk|Y k) ∝ p(Xk|Y k−1)p(Yk|Xk).

The observations Yk = (Dk, Zk) contain proprioceptive observations Dk (velocity, heading,. . .) and mea-
sures Zk, obtained using perceptual sensors (vision, sonar,. . .). The measures Zk are in our case estimates of
the hitting capacities for the structuring elements Kn = {K1, . . . ,Kn}. These estimates are obtained directly
from the images (classified) acquired at time k: Zk ≡ T̂k = {T̂k(K1), . . . , T̂k(Kn)}. If we assume that the
proprioceptive and the perceptual observations are uncorrelated we obtain:

p(Yk|Xk) = p(Dk|Xk)p(T̂k|θ(Xk)),

since the observations T̂k depend on Xk only through the parameters of the RCS model at that point.
In order to use an optimal filter we need to identify correctly the conditional density p(T̂k|θ(Xk)). Since
the uncertainty of the empirical estimates T̂k depends on the size of the observation window, we should
rewrite the conditional density as p(T̂k|θ(Xk), ν(OW )) - the larger the observation window the better are
our estimates of the hitting capacities. This density is in general not gaussian.

The equations above define the general framework of navigation using a Bayesian approach. In the actual
state of the work we are restricted to boolean models for which we were able to derive analytical expressions
for the conditional density (for a single structuring element). In order to apply the approach to real data we
still need to spend an effort on the analysis of different appropriate models.

We characterised p(T̂ |θ, ν(OW )) for locally isotropic boolean models. An estimate T̂ of the hitting ca-
pacities can be obtained by placing the compact set (the structuring element) K at a number N (sampling
number) of random positions {pi}N

i=1 inside the observation windows and evaluate at each time the event:
K hits (or not) Ξ:

HN = {h(pi)}N
i=1; h(pi) ∈ (0, 1).

The estimated value k̂hit =
∑N

i=1 h(pi) denotes the number of times that Ξ was hit by K. If we assume
that all events h(pi) are mutually independent the probability law of khit is binomial:

p(khit|N) =
(

N
khit

)
T̂ khit(1− T̂ )N−khit ,

where T̂ = k̂hit/N is the estimated hitting capacity. The variance of p(khit|N) is σ2
k = NT̂ (1− T̂ ). An open

(currently under study) problem is to determine the maximum sampling number N∗ for which the hitting
events are independent. This number depends on the size of the observation window, the structuring element
and the RCS model: N∗ = f(ν(OW ),K, θ). The determination of N∗ requires a more detailed analysis of
the RCS model. Here we state just that if N is choosen too small the uncertainty of the estimates (given by
the variance σ2

k) is very large, but the probability of khit is truely determined by the binomial distribution.
If N is choosen too large the events are no longer independent and the distribution of khit is no longer
binomial. This is illustrated in figure 4(a,b), showing the empirical probability distributions for different
values of N (N = 30 and 100). The empirical distributions were obtained by simulating an isotropic boolean
model (the grains are compact discs whose radii are uniformly distributed in (r1, r2)) and an observation
window was placed at random positions (20000 positions). The plots show also the corresponding binomial
distributions which for N = 30 approximate well the empirical distribution (the events can be considered to
be independent) which is not the case for N = 100.

For large N (number of samples per image) the binomial distribution tends to a Gaussian, as shown in
figure 4. The density p(T̂k|θ(Xk), ν(OW )) is approximately Gaussian: N (k̂hit/N, T̂ (1− T̂ )/N). In this case
we can propagate the a posteriori density of the robot state given the past observations by an Extended
Kalman Filter (EKF), whose computational complexity is low. In pratice we see that this approximation is
good even for relatively small N if the hitting capacities T are close to 0.5 (figure 4(a)). In extreme situations
were T is close to 0 or 1 (figure 4(c)) the approximation becomes worse. Such situations occur in particular
when the intensity of the germ process is very small (for small sized grains). We overcome this problem
partly by selecting a structuring element K (having an appropriate size) resulting in a hitting capacity close
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Fig. 4. Empirical probabilities of the hitting capacities (based on 20000 estimates of khit for an isotropic
model), along with the binomial distribution and its approximation by a Gaussian. (a) number of samples
per image: N = 30 (structuring element K square of sidelength 5), (b) N = 30 (structuring element K square
of sidelength 24), and (c) N = 100. (structuring element K square of sidelength 5).

to 0.5. However,increasing the size of the structuring element reduces the number of samples N for which
the hitting events are independent.

In addition, we required the consecutive observations to be uncorrelated. This is true when two consecutive
observation windows do not intersect. In practice this condition is only verified if the perceptual observations
are used periodically, dependent on the speed of the vehicle. If we use the perceptual information permanently
we need to reduce either the number of samples N or alternatively enlarge the uncertainty of the observations.
Let α be the percentage of the image that corresponds to new observations. If we assume that the number
N is linearly dependent on the size of the observation window we set:

p(T̂k|θ(Xk), ν(OW ))=̂N (k̂hit/N, T̂ (1− T̂ )/(Nα)). (5)

5 Results

We present in this section results that demonstrate the feasibility of mobile robot navigation based on
environment descriptions by random closed set models. We simulated the navigation of an underwater robot
equipped with proprioceptive sensors (compass and speed sensor) that are used for dead-reckoning and a
camera pointing at the sea bottom. The robot moves at a constant altitude in an environment that was
obtained by sampling from an anisotropic Boolean model. The patches are compact discs whose radii are
uniformly distributed in an interval, r ∈ [r1, r2]. While the shape process is constant allover the workspace
we let the intensity λ, of the point process (Poisson distributed), depend on the location x. The map of the
environment is thus given by

θ(x) = (λ(x), r1, r2), x ∈ [−440, 1500]× [−600, 1400].

We tested the approach for two different intensity maps λi(x); i = 1, 2 that are illustrated in figure 5(a)
(figure 5(b) shows the realisations of the corresponding environments Ωi (the locations of the patches) along
with the initial location of the robot and the position estimate (with an initial error (+30, +20)). The ellipse
indicates the initial uncertainty and the square indicates the area that is locally observed by the camera
(some “observations” are shown in figure 6).

We point out that a feature based approach is not well suited for this kind of environments: no single
salient perceptual feature can be easily identified in the environment (due to the large number of patches
and their similar shapes), resulting in a very complex pattern matching process, which is, at the same time,
highly sensitive to small perturbations.

A simulated (non-modeled) ocean current (of magnitude ' 3) perturbates the nominal trajectory of the
robot, resulting in an important drift between the true position and its dead-reckoning estimate. Throughout
the trajectory images are acquired at regular time intervals. The perceptual observations are empirical
estimates of the hitting capacity Zi = {T̂i(K1)} for a single structuring element K1 (square of side length
d), that are directly obtained from the images based on a fixed number N = 30 of samples.
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Fig. 5. (a) Intensity maps λ1(x); i = 1, 2; (b) Corresponding realisations of the environment. Each environ-
ment contains areas in which the model is anisotropic (no relocalisation possible).

Fig. 6. Local observations at different positions.

The probability density p(Zi|θ(Xk)) (derived from a binomial distribution for isotropic models) was
approximated by a Gaussian density (according to the discussion in the previous section). In order to take
into account that the consecutive observations are correlated we fixed the factor α of equation (5) as a
function of the translational speed.

We fixed an arbitrary trajectory, that was used for all simulations. For each of the intensity maps we
performed several simulations, each for a different realisation of the environment. The estimated trajectory
(dotted line) obtained for a single simulation based on map λ1(x) is shown in figure 7(a), along with the true
trajectory. An estimated trajectory that is merely based on odometry (without using perceptual observations)
is shown in figure 7(b). The final positioning errors, illustrated by the arrows, show clearly the gain of the
RCS map-based navigation compared to dead-reckonin estimates.

The performance of the map based navigation is better illustrated by figure 8. Figures 8(a) and (c) show
the positioning error (absolute distance) and the extension of the uncertainty ellipse (2σ) in direction of
the true robot position for simulations based on the maps λi(x); i = 1, 2 respectively. For both maps we
obtained estimates that are consistent with the positioning uncertainty (Similar results were obtained for
different realisations of the environment). Figure 8(b) and (d) show the evolution of the robot’s pose where
we assumed that the consecutive observations are uncorrelated. The resulting uncertainty of the robot’s state
is too optimistic. The pose error is no longer consistent with the positioning uncertainty. While for these
results the pose error remains bounded this can in general not be guaranteed (The EKF diverges).



(a) (b)

Fig. 7. (a) Navigation result for map λ1(x)(observationsuncorrelated). (b) Position estimate is based merely
on proptioceptive data (heading and speed measures). The thick error indicates the final positioning error.

The results illustrate also that the evolution of the size of the principal uncertainty support depends on
the spatial distribution and the shape of the objects. If we compare the plots of figure 8(a) and (c) we see
that the uncertainty of the robot’s state is larger in the second environment. The evident reason is that the
variations of the intensity are stronger in map λ1 than in map λ2(x).

6 Conclusions

In this paper we proposed a novel environment description for robot navigation, using the formalism of
random closed set models. These models capture the principal characteristics of an environment and do not
rely on individual feature description. Knowledge of exact location (or shapes) of features is not required,
resulting in increased robustness with respect to small changes. We present approximate expressions that
enable definition of an approximation to the Bayesian estimator of the robot state for these models. The
feasibility of the approach is demonstrated by simulation results.

A series of open problems must still be studied more thoroughly. In particular, we need to address the
problem of identification of the correlation of hitting capacities for distinct structuring elements. Another
open issue concerns the use of more complex RCS models, in order to describe clustered or regular envi-
ronments. Analytical expressions need to be found for these models and the associated hypothesis testing
formulated in order to discriminate between different types of regions. Finally the problem of joint mapping
and localization for this kind of environment representations must be addressed in order to realize fully au-
tonomous progression of a robot in a priori unknown environments: the robot must be able to simultaneously
estimate the map (the model type along with the model parameter) and its position, using the autonomously
created map.
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(a) Map 1: Correlation of consecutive observations is taken into account
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(b) Map 1: Correlation of consecutive observations is ignored
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(c) Map 2: Correlation of consecutive observations is taken into account
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(d) Map 2: Correlation of consecutive observations is ignored
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Fig. 8. Evolution of the position error during navigation in the two simulated environments and of the
uncertainty support.
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